Properties

Label 592.8.a.c.1.1
Level $592$
Weight $8$
Character 592.1
Self dual yes
Analytic conductor $184.932$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,8,Mod(1,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 592.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(184.931935087\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-85.7890\) of defining polynomial
Character \(\chi\) \(=\) 592.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-90.7890 q^{3} +133.163 q^{5} +948.062 q^{7} +6055.64 q^{9} -4655.78 q^{11} -1049.71 q^{13} -12089.8 q^{15} +37870.8 q^{17} +37462.0 q^{19} -86073.6 q^{21} -40596.4 q^{23} -60392.5 q^{25} -351229. q^{27} -66725.4 q^{29} -220090. q^{31} +422694. q^{33} +126247. q^{35} -50653.0 q^{37} +95301.7 q^{39} -101084. q^{41} -816690. q^{43} +806389. q^{45} +1.00197e6 q^{47} +75278.3 q^{49} -3.43825e6 q^{51} +1.40417e6 q^{53} -619980. q^{55} -3.40113e6 q^{57} -686480. q^{59} -2.33880e6 q^{61} +5.74112e6 q^{63} -139782. q^{65} +8039.60 q^{67} +3.68571e6 q^{69} +1.08288e6 q^{71} +142983. q^{73} +5.48297e6 q^{75} -4.41397e6 q^{77} +844178. q^{79} +1.86441e7 q^{81} +8.33149e6 q^{83} +5.04300e6 q^{85} +6.05793e6 q^{87} +8.29467e6 q^{89} -995186. q^{91} +1.99818e7 q^{93} +4.98857e6 q^{95} +4.06489e6 q^{97} -2.81937e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 28 q^{3} - 14 q^{5} + 980 q^{7} + 8254 q^{9} - 2956 q^{11} + 2394 q^{13} + 28820 q^{15} - 45108 q^{17} - 11764 q^{19} - 135378 q^{21} - 21052 q^{23} + 194744 q^{25} - 439240 q^{27} + 288454 q^{29}+ \cdots - 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −90.7890 −1.94137 −0.970686 0.240352i \(-0.922737\pi\)
−0.970686 + 0.240352i \(0.922737\pi\)
\(4\) 0 0
\(5\) 133.163 0.476420 0.238210 0.971214i \(-0.423439\pi\)
0.238210 + 0.971214i \(0.423439\pi\)
\(6\) 0 0
\(7\) 948.062 1.04470 0.522352 0.852730i \(-0.325055\pi\)
0.522352 + 0.852730i \(0.325055\pi\)
\(8\) 0 0
\(9\) 6055.64 2.76892
\(10\) 0 0
\(11\) −4655.78 −1.05467 −0.527337 0.849656i \(-0.676810\pi\)
−0.527337 + 0.849656i \(0.676810\pi\)
\(12\) 0 0
\(13\) −1049.71 −0.132515 −0.0662576 0.997803i \(-0.521106\pi\)
−0.0662576 + 0.997803i \(0.521106\pi\)
\(14\) 0 0
\(15\) −12089.8 −0.924908
\(16\) 0 0
\(17\) 37870.8 1.86953 0.934766 0.355264i \(-0.115609\pi\)
0.934766 + 0.355264i \(0.115609\pi\)
\(18\) 0 0
\(19\) 37462.0 1.25301 0.626503 0.779419i \(-0.284486\pi\)
0.626503 + 0.779419i \(0.284486\pi\)
\(20\) 0 0
\(21\) −86073.6 −2.02816
\(22\) 0 0
\(23\) −40596.4 −0.695729 −0.347865 0.937545i \(-0.613093\pi\)
−0.347865 + 0.937545i \(0.613093\pi\)
\(24\) 0 0
\(25\) −60392.5 −0.773024
\(26\) 0 0
\(27\) −351229. −3.43414
\(28\) 0 0
\(29\) −66725.4 −0.508041 −0.254020 0.967199i \(-0.581753\pi\)
−0.254020 + 0.967199i \(0.581753\pi\)
\(30\) 0 0
\(31\) −220090. −1.32689 −0.663446 0.748224i \(-0.730907\pi\)
−0.663446 + 0.748224i \(0.730907\pi\)
\(32\) 0 0
\(33\) 422694. 2.04752
\(34\) 0 0
\(35\) 126247. 0.497718
\(36\) 0 0
\(37\) −50653.0 −0.164399
\(38\) 0 0
\(39\) 95301.7 0.257261
\(40\) 0 0
\(41\) −101084. −0.229056 −0.114528 0.993420i \(-0.536536\pi\)
−0.114528 + 0.993420i \(0.536536\pi\)
\(42\) 0 0
\(43\) −816690. −1.56645 −0.783227 0.621736i \(-0.786428\pi\)
−0.783227 + 0.621736i \(0.786428\pi\)
\(44\) 0 0
\(45\) 806389. 1.31917
\(46\) 0 0
\(47\) 1.00197e6 1.40771 0.703857 0.710342i \(-0.251460\pi\)
0.703857 + 0.710342i \(0.251460\pi\)
\(48\) 0 0
\(49\) 75278.3 0.0914078
\(50\) 0 0
\(51\) −3.43825e6 −3.62946
\(52\) 0 0
\(53\) 1.40417e6 1.29555 0.647776 0.761830i \(-0.275699\pi\)
0.647776 + 0.761830i \(0.275699\pi\)
\(54\) 0 0
\(55\) −619980. −0.502468
\(56\) 0 0
\(57\) −3.40113e6 −2.43255
\(58\) 0 0
\(59\) −686480. −0.435157 −0.217578 0.976043i \(-0.569816\pi\)
−0.217578 + 0.976043i \(0.569816\pi\)
\(60\) 0 0
\(61\) −2.33880e6 −1.31929 −0.659644 0.751578i \(-0.729293\pi\)
−0.659644 + 0.751578i \(0.729293\pi\)
\(62\) 0 0
\(63\) 5.74112e6 2.89271
\(64\) 0 0
\(65\) −139782. −0.0631329
\(66\) 0 0
\(67\) 8039.60 0.00326567 0.00163284 0.999999i \(-0.499480\pi\)
0.00163284 + 0.999999i \(0.499480\pi\)
\(68\) 0 0
\(69\) 3.68571e6 1.35067
\(70\) 0 0
\(71\) 1.08288e6 0.359066 0.179533 0.983752i \(-0.442541\pi\)
0.179533 + 0.983752i \(0.442541\pi\)
\(72\) 0 0
\(73\) 142983. 0.0430184 0.0215092 0.999769i \(-0.493153\pi\)
0.0215092 + 0.999769i \(0.493153\pi\)
\(74\) 0 0
\(75\) 5.48297e6 1.50073
\(76\) 0 0
\(77\) −4.41397e6 −1.10182
\(78\) 0 0
\(79\) 844178. 0.192637 0.0963183 0.995351i \(-0.469293\pi\)
0.0963183 + 0.995351i \(0.469293\pi\)
\(80\) 0 0
\(81\) 1.86441e7 3.89801
\(82\) 0 0
\(83\) 8.33149e6 1.59937 0.799685 0.600419i \(-0.205000\pi\)
0.799685 + 0.600419i \(0.205000\pi\)
\(84\) 0 0
\(85\) 5.04300e6 0.890683
\(86\) 0 0
\(87\) 6.05793e6 0.986296
\(88\) 0 0
\(89\) 8.29467e6 1.24719 0.623597 0.781746i \(-0.285671\pi\)
0.623597 + 0.781746i \(0.285671\pi\)
\(90\) 0 0
\(91\) −995186. −0.138439
\(92\) 0 0
\(93\) 1.99818e7 2.57599
\(94\) 0 0
\(95\) 4.98857e6 0.596957
\(96\) 0 0
\(97\) 4.06489e6 0.452218 0.226109 0.974102i \(-0.427399\pi\)
0.226109 + 0.974102i \(0.427399\pi\)
\(98\) 0 0
\(99\) −2.81937e7 −2.92031
\(100\) 0 0
\(101\) 51781.2 0.00500089 0.00250045 0.999997i \(-0.499204\pi\)
0.00250045 + 0.999997i \(0.499204\pi\)
\(102\) 0 0
\(103\) 8.90574e6 0.803045 0.401522 0.915849i \(-0.368481\pi\)
0.401522 + 0.915849i \(0.368481\pi\)
\(104\) 0 0
\(105\) −1.14619e7 −0.966256
\(106\) 0 0
\(107\) −23216.9 −0.00183215 −0.000916075 1.00000i \(-0.500292\pi\)
−0.000916075 1.00000i \(0.500292\pi\)
\(108\) 0 0
\(109\) −8.81772e6 −0.652174 −0.326087 0.945340i \(-0.605730\pi\)
−0.326087 + 0.945340i \(0.605730\pi\)
\(110\) 0 0
\(111\) 4.59873e6 0.319160
\(112\) 0 0
\(113\) −2.36821e7 −1.54399 −0.771997 0.635626i \(-0.780742\pi\)
−0.771997 + 0.635626i \(0.780742\pi\)
\(114\) 0 0
\(115\) −5.40596e6 −0.331459
\(116\) 0 0
\(117\) −6.35664e6 −0.366925
\(118\) 0 0
\(119\) 3.59038e7 1.95311
\(120\) 0 0
\(121\) 2.18916e6 0.112338
\(122\) 0 0
\(123\) 9.17735e6 0.444682
\(124\) 0 0
\(125\) −1.84455e7 −0.844704
\(126\) 0 0
\(127\) 30304.1 0.00131277 0.000656384 1.00000i \(-0.499791\pi\)
0.000656384 1.00000i \(0.499791\pi\)
\(128\) 0 0
\(129\) 7.41464e7 3.04107
\(130\) 0 0
\(131\) −1.27920e7 −0.497150 −0.248575 0.968613i \(-0.579962\pi\)
−0.248575 + 0.968613i \(0.579962\pi\)
\(132\) 0 0
\(133\) 3.55163e7 1.30902
\(134\) 0 0
\(135\) −4.67709e7 −1.63609
\(136\) 0 0
\(137\) −4.45086e7 −1.47884 −0.739422 0.673242i \(-0.764901\pi\)
−0.739422 + 0.673242i \(0.764901\pi\)
\(138\) 0 0
\(139\) −3.36501e6 −0.106276 −0.0531379 0.998587i \(-0.516922\pi\)
−0.0531379 + 0.998587i \(0.516922\pi\)
\(140\) 0 0
\(141\) −9.09682e7 −2.73289
\(142\) 0 0
\(143\) 4.88720e6 0.139760
\(144\) 0 0
\(145\) −8.88539e6 −0.242041
\(146\) 0 0
\(147\) −6.83444e6 −0.177457
\(148\) 0 0
\(149\) −3.75616e7 −0.930234 −0.465117 0.885249i \(-0.653988\pi\)
−0.465117 + 0.885249i \(0.653988\pi\)
\(150\) 0 0
\(151\) 7.66361e7 1.81140 0.905699 0.423922i \(-0.139347\pi\)
0.905699 + 0.423922i \(0.139347\pi\)
\(152\) 0 0
\(153\) 2.29332e8 5.17659
\(154\) 0 0
\(155\) −2.93080e7 −0.632158
\(156\) 0 0
\(157\) −3.83181e7 −0.790233 −0.395116 0.918631i \(-0.629296\pi\)
−0.395116 + 0.918631i \(0.629296\pi\)
\(158\) 0 0
\(159\) −1.27483e8 −2.51515
\(160\) 0 0
\(161\) −3.84879e7 −0.726831
\(162\) 0 0
\(163\) −4.20835e7 −0.761123 −0.380562 0.924756i \(-0.624269\pi\)
−0.380562 + 0.924756i \(0.624269\pi\)
\(164\) 0 0
\(165\) 5.62874e7 0.975477
\(166\) 0 0
\(167\) 1.08504e8 1.80276 0.901378 0.433033i \(-0.142557\pi\)
0.901378 + 0.433033i \(0.142557\pi\)
\(168\) 0 0
\(169\) −6.16466e7 −0.982440
\(170\) 0 0
\(171\) 2.26856e8 3.46948
\(172\) 0 0
\(173\) −3.54173e7 −0.520060 −0.260030 0.965601i \(-0.583732\pi\)
−0.260030 + 0.965601i \(0.583732\pi\)
\(174\) 0 0
\(175\) −5.72558e7 −0.807582
\(176\) 0 0
\(177\) 6.23248e7 0.844801
\(178\) 0 0
\(179\) −4.27586e7 −0.557235 −0.278617 0.960402i \(-0.589876\pi\)
−0.278617 + 0.960402i \(0.589876\pi\)
\(180\) 0 0
\(181\) −7.04378e7 −0.882940 −0.441470 0.897276i \(-0.645543\pi\)
−0.441470 + 0.897276i \(0.645543\pi\)
\(182\) 0 0
\(183\) 2.12338e8 2.56123
\(184\) 0 0
\(185\) −6.74513e6 −0.0783230
\(186\) 0 0
\(187\) −1.76318e8 −1.97175
\(188\) 0 0
\(189\) −3.32987e8 −3.58766
\(190\) 0 0
\(191\) −1.29769e8 −1.34758 −0.673788 0.738925i \(-0.735334\pi\)
−0.673788 + 0.738925i \(0.735334\pi\)
\(192\) 0 0
\(193\) 5.09514e7 0.510159 0.255079 0.966920i \(-0.417898\pi\)
0.255079 + 0.966920i \(0.417898\pi\)
\(194\) 0 0
\(195\) 1.26907e7 0.122564
\(196\) 0 0
\(197\) −1.80715e6 −0.0168408 −0.00842039 0.999965i \(-0.502680\pi\)
−0.00842039 + 0.999965i \(0.502680\pi\)
\(198\) 0 0
\(199\) −4.75898e7 −0.428083 −0.214041 0.976825i \(-0.568663\pi\)
−0.214041 + 0.976825i \(0.568663\pi\)
\(200\) 0 0
\(201\) −729907. −0.00633989
\(202\) 0 0
\(203\) −6.32598e7 −0.530752
\(204\) 0 0
\(205\) −1.34608e7 −0.109127
\(206\) 0 0
\(207\) −2.45837e8 −1.92642
\(208\) 0 0
\(209\) −1.74415e8 −1.32151
\(210\) 0 0
\(211\) 5.04805e7 0.369943 0.184972 0.982744i \(-0.440781\pi\)
0.184972 + 0.982744i \(0.440781\pi\)
\(212\) 0 0
\(213\) −9.83131e7 −0.697080
\(214\) 0 0
\(215\) −1.08753e8 −0.746290
\(216\) 0 0
\(217\) −2.08659e8 −1.38621
\(218\) 0 0
\(219\) −1.29813e7 −0.0835146
\(220\) 0 0
\(221\) −3.97532e7 −0.247742
\(222\) 0 0
\(223\) −1.34484e8 −0.812089 −0.406044 0.913853i \(-0.633092\pi\)
−0.406044 + 0.913853i \(0.633092\pi\)
\(224\) 0 0
\(225\) −3.65715e8 −2.14044
\(226\) 0 0
\(227\) −1.82525e8 −1.03569 −0.517847 0.855473i \(-0.673266\pi\)
−0.517847 + 0.855473i \(0.673266\pi\)
\(228\) 0 0
\(229\) 1.55708e8 0.856816 0.428408 0.903585i \(-0.359075\pi\)
0.428408 + 0.903585i \(0.359075\pi\)
\(230\) 0 0
\(231\) 4.00740e8 2.13905
\(232\) 0 0
\(233\) 6.82458e7 0.353452 0.176726 0.984260i \(-0.443449\pi\)
0.176726 + 0.984260i \(0.443449\pi\)
\(234\) 0 0
\(235\) 1.33426e8 0.670663
\(236\) 0 0
\(237\) −7.66420e7 −0.373979
\(238\) 0 0
\(239\) 1.59910e8 0.757677 0.378838 0.925463i \(-0.376324\pi\)
0.378838 + 0.925463i \(0.376324\pi\)
\(240\) 0 0
\(241\) 2.46558e8 1.13465 0.567323 0.823496i \(-0.307979\pi\)
0.567323 + 0.823496i \(0.307979\pi\)
\(242\) 0 0
\(243\) −9.24538e8 −4.13336
\(244\) 0 0
\(245\) 1.00243e7 0.0435485
\(246\) 0 0
\(247\) −3.93241e7 −0.166042
\(248\) 0 0
\(249\) −7.56407e8 −3.10497
\(250\) 0 0
\(251\) 3.82771e8 1.52785 0.763926 0.645304i \(-0.223269\pi\)
0.763926 + 0.645304i \(0.223269\pi\)
\(252\) 0 0
\(253\) 1.89008e8 0.733768
\(254\) 0 0
\(255\) −4.57849e8 −1.72915
\(256\) 0 0
\(257\) 1.28126e8 0.470837 0.235419 0.971894i \(-0.424354\pi\)
0.235419 + 0.971894i \(0.424354\pi\)
\(258\) 0 0
\(259\) −4.80222e7 −0.171748
\(260\) 0 0
\(261\) −4.04065e8 −1.40673
\(262\) 0 0
\(263\) −1.53745e8 −0.521142 −0.260571 0.965455i \(-0.583911\pi\)
−0.260571 + 0.965455i \(0.583911\pi\)
\(264\) 0 0
\(265\) 1.86985e8 0.617227
\(266\) 0 0
\(267\) −7.53064e8 −2.42127
\(268\) 0 0
\(269\) 4.21270e8 1.31956 0.659778 0.751461i \(-0.270650\pi\)
0.659778 + 0.751461i \(0.270650\pi\)
\(270\) 0 0
\(271\) −5.02799e8 −1.53462 −0.767312 0.641274i \(-0.778406\pi\)
−0.767312 + 0.641274i \(0.778406\pi\)
\(272\) 0 0
\(273\) 9.03519e7 0.268762
\(274\) 0 0
\(275\) 2.81174e8 0.815289
\(276\) 0 0
\(277\) 3.20002e8 0.904636 0.452318 0.891857i \(-0.350597\pi\)
0.452318 + 0.891857i \(0.350597\pi\)
\(278\) 0 0
\(279\) −1.33279e9 −3.67406
\(280\) 0 0
\(281\) −4.74241e8 −1.27505 −0.637524 0.770430i \(-0.720042\pi\)
−0.637524 + 0.770430i \(0.720042\pi\)
\(282\) 0 0
\(283\) 5.32308e8 1.39608 0.698040 0.716058i \(-0.254056\pi\)
0.698040 + 0.716058i \(0.254056\pi\)
\(284\) 0 0
\(285\) −4.52907e8 −1.15892
\(286\) 0 0
\(287\) −9.58343e7 −0.239295
\(288\) 0 0
\(289\) 1.02386e9 2.49515
\(290\) 0 0
\(291\) −3.69047e8 −0.877923
\(292\) 0 0
\(293\) −2.15803e8 −0.501211 −0.250606 0.968089i \(-0.580630\pi\)
−0.250606 + 0.968089i \(0.580630\pi\)
\(294\) 0 0
\(295\) −9.14140e7 −0.207317
\(296\) 0 0
\(297\) 1.63525e9 3.62190
\(298\) 0 0
\(299\) 4.26143e7 0.0921947
\(300\) 0 0
\(301\) −7.74272e8 −1.63648
\(302\) 0 0
\(303\) −4.70116e6 −0.00970859
\(304\) 0 0
\(305\) −3.11443e8 −0.628535
\(306\) 0 0
\(307\) 5.97092e8 1.17776 0.588881 0.808220i \(-0.299569\pi\)
0.588881 + 0.808220i \(0.299569\pi\)
\(308\) 0 0
\(309\) −8.08543e8 −1.55901
\(310\) 0 0
\(311\) −2.38042e8 −0.448738 −0.224369 0.974504i \(-0.572032\pi\)
−0.224369 + 0.974504i \(0.572032\pi\)
\(312\) 0 0
\(313\) 3.27112e8 0.602964 0.301482 0.953472i \(-0.402519\pi\)
0.301482 + 0.953472i \(0.402519\pi\)
\(314\) 0 0
\(315\) 7.64507e8 1.37814
\(316\) 0 0
\(317\) −8.33077e8 −1.46885 −0.734426 0.678689i \(-0.762548\pi\)
−0.734426 + 0.678689i \(0.762548\pi\)
\(318\) 0 0
\(319\) 3.10659e8 0.535817
\(320\) 0 0
\(321\) 2.10784e6 0.00355688
\(322\) 0 0
\(323\) 1.41871e9 2.34253
\(324\) 0 0
\(325\) 6.33944e7 0.102437
\(326\) 0 0
\(327\) 8.00551e8 1.26611
\(328\) 0 0
\(329\) 9.49934e8 1.47064
\(330\) 0 0
\(331\) 4.86383e8 0.737192 0.368596 0.929590i \(-0.379839\pi\)
0.368596 + 0.929590i \(0.379839\pi\)
\(332\) 0 0
\(333\) −3.06736e8 −0.455208
\(334\) 0 0
\(335\) 1.07058e6 0.00155583
\(336\) 0 0
\(337\) −9.74289e8 −1.38670 −0.693351 0.720600i \(-0.743867\pi\)
−0.693351 + 0.720600i \(0.743867\pi\)
\(338\) 0 0
\(339\) 2.15007e9 2.99747
\(340\) 0 0
\(341\) 1.02469e9 1.39944
\(342\) 0 0
\(343\) −7.09401e8 −0.949210
\(344\) 0 0
\(345\) 4.90801e8 0.643486
\(346\) 0 0
\(347\) −8.61556e8 −1.10696 −0.553478 0.832864i \(-0.686700\pi\)
−0.553478 + 0.832864i \(0.686700\pi\)
\(348\) 0 0
\(349\) 1.30969e9 1.64923 0.824613 0.565697i \(-0.191393\pi\)
0.824613 + 0.565697i \(0.191393\pi\)
\(350\) 0 0
\(351\) 3.68688e8 0.455076
\(352\) 0 0
\(353\) −8.77420e8 −1.06169 −0.530843 0.847470i \(-0.678125\pi\)
−0.530843 + 0.847470i \(0.678125\pi\)
\(354\) 0 0
\(355\) 1.44199e8 0.171066
\(356\) 0 0
\(357\) −3.25967e9 −3.79171
\(358\) 0 0
\(359\) −1.49791e9 −1.70866 −0.854331 0.519729i \(-0.826033\pi\)
−0.854331 + 0.519729i \(0.826033\pi\)
\(360\) 0 0
\(361\) 5.09528e8 0.570023
\(362\) 0 0
\(363\) −1.98751e8 −0.218090
\(364\) 0 0
\(365\) 1.90401e7 0.0204948
\(366\) 0 0
\(367\) 1.40720e9 1.48602 0.743008 0.669283i \(-0.233398\pi\)
0.743008 + 0.669283i \(0.233398\pi\)
\(368\) 0 0
\(369\) −6.12131e8 −0.634237
\(370\) 0 0
\(371\) 1.33124e9 1.35347
\(372\) 0 0
\(373\) −6.79783e8 −0.678249 −0.339125 0.940741i \(-0.610131\pi\)
−0.339125 + 0.940741i \(0.610131\pi\)
\(374\) 0 0
\(375\) 1.67464e9 1.63988
\(376\) 0 0
\(377\) 7.00421e7 0.0673231
\(378\) 0 0
\(379\) −1.91260e9 −1.80462 −0.902310 0.431087i \(-0.858130\pi\)
−0.902310 + 0.431087i \(0.858130\pi\)
\(380\) 0 0
\(381\) −2.75127e6 −0.00254857
\(382\) 0 0
\(383\) −1.45283e9 −1.32135 −0.660676 0.750671i \(-0.729730\pi\)
−0.660676 + 0.750671i \(0.729730\pi\)
\(384\) 0 0
\(385\) −5.87780e8 −0.524931
\(386\) 0 0
\(387\) −4.94558e9 −4.33739
\(388\) 0 0
\(389\) −9.78824e8 −0.843104 −0.421552 0.906804i \(-0.638514\pi\)
−0.421552 + 0.906804i \(0.638514\pi\)
\(390\) 0 0
\(391\) −1.53742e9 −1.30069
\(392\) 0 0
\(393\) 1.16137e9 0.965154
\(394\) 0 0
\(395\) 1.12414e8 0.0917760
\(396\) 0 0
\(397\) −1.37188e9 −1.10039 −0.550197 0.835035i \(-0.685447\pi\)
−0.550197 + 0.835035i \(0.685447\pi\)
\(398\) 0 0
\(399\) −3.22449e9 −2.54130
\(400\) 0 0
\(401\) 3.44789e8 0.267022 0.133511 0.991047i \(-0.457375\pi\)
0.133511 + 0.991047i \(0.457375\pi\)
\(402\) 0 0
\(403\) 2.31030e8 0.175833
\(404\) 0 0
\(405\) 2.48271e9 1.85709
\(406\) 0 0
\(407\) 2.35829e8 0.173387
\(408\) 0 0
\(409\) 5.43183e8 0.392568 0.196284 0.980547i \(-0.437113\pi\)
0.196284 + 0.980547i \(0.437113\pi\)
\(410\) 0 0
\(411\) 4.04089e9 2.87099
\(412\) 0 0
\(413\) −6.50825e8 −0.454610
\(414\) 0 0
\(415\) 1.10945e9 0.761972
\(416\) 0 0
\(417\) 3.05506e8 0.206321
\(418\) 0 0
\(419\) −2.19669e9 −1.45888 −0.729439 0.684046i \(-0.760219\pi\)
−0.729439 + 0.684046i \(0.760219\pi\)
\(420\) 0 0
\(421\) 1.69532e9 1.10730 0.553650 0.832749i \(-0.313234\pi\)
0.553650 + 0.832749i \(0.313234\pi\)
\(422\) 0 0
\(423\) 6.06759e9 3.89785
\(424\) 0 0
\(425\) −2.28711e9 −1.44519
\(426\) 0 0
\(427\) −2.21733e9 −1.37827
\(428\) 0 0
\(429\) −4.43704e8 −0.271327
\(430\) 0 0
\(431\) 6.19918e8 0.372962 0.186481 0.982459i \(-0.440292\pi\)
0.186481 + 0.982459i \(0.440292\pi\)
\(432\) 0 0
\(433\) 2.69875e9 1.59755 0.798777 0.601627i \(-0.205481\pi\)
0.798777 + 0.601627i \(0.205481\pi\)
\(434\) 0 0
\(435\) 8.06695e8 0.469891
\(436\) 0 0
\(437\) −1.52082e9 −0.871752
\(438\) 0 0
\(439\) 1.55515e9 0.877297 0.438648 0.898659i \(-0.355457\pi\)
0.438648 + 0.898659i \(0.355457\pi\)
\(440\) 0 0
\(441\) 4.55858e8 0.253101
\(442\) 0 0
\(443\) −9.06288e8 −0.495283 −0.247641 0.968852i \(-0.579655\pi\)
−0.247641 + 0.968852i \(0.579655\pi\)
\(444\) 0 0
\(445\) 1.10455e9 0.594188
\(446\) 0 0
\(447\) 3.41018e9 1.80593
\(448\) 0 0
\(449\) 4.68202e8 0.244102 0.122051 0.992524i \(-0.461053\pi\)
0.122051 + 0.992524i \(0.461053\pi\)
\(450\) 0 0
\(451\) 4.70627e8 0.241579
\(452\) 0 0
\(453\) −6.95771e9 −3.51660
\(454\) 0 0
\(455\) −1.32522e8 −0.0659553
\(456\) 0 0
\(457\) −6.95216e8 −0.340732 −0.170366 0.985381i \(-0.554495\pi\)
−0.170366 + 0.985381i \(0.554495\pi\)
\(458\) 0 0
\(459\) −1.33013e10 −6.42023
\(460\) 0 0
\(461\) 4.09996e8 0.194906 0.0974532 0.995240i \(-0.468930\pi\)
0.0974532 + 0.995240i \(0.468930\pi\)
\(462\) 0 0
\(463\) 1.35529e9 0.634600 0.317300 0.948325i \(-0.397224\pi\)
0.317300 + 0.948325i \(0.397224\pi\)
\(464\) 0 0
\(465\) 2.66084e9 1.22725
\(466\) 0 0
\(467\) 7.26978e8 0.330303 0.165151 0.986268i \(-0.447189\pi\)
0.165151 + 0.986268i \(0.447189\pi\)
\(468\) 0 0
\(469\) 7.62204e6 0.00341167
\(470\) 0 0
\(471\) 3.47886e9 1.53414
\(472\) 0 0
\(473\) 3.80233e9 1.65210
\(474\) 0 0
\(475\) −2.26242e9 −0.968603
\(476\) 0 0
\(477\) 8.50316e9 3.58729
\(478\) 0 0
\(479\) −2.16041e9 −0.898175 −0.449087 0.893488i \(-0.648251\pi\)
−0.449087 + 0.893488i \(0.648251\pi\)
\(480\) 0 0
\(481\) 5.31708e7 0.0217854
\(482\) 0 0
\(483\) 3.49428e9 1.41105
\(484\) 0 0
\(485\) 5.41295e8 0.215446
\(486\) 0 0
\(487\) 9.09190e7 0.0356700 0.0178350 0.999841i \(-0.494323\pi\)
0.0178350 + 0.999841i \(0.494323\pi\)
\(488\) 0 0
\(489\) 3.82072e9 1.47762
\(490\) 0 0
\(491\) 4.35917e9 1.66195 0.830976 0.556308i \(-0.187782\pi\)
0.830976 + 0.556308i \(0.187782\pi\)
\(492\) 0 0
\(493\) −2.52694e9 −0.949798
\(494\) 0 0
\(495\) −3.75437e9 −1.39130
\(496\) 0 0
\(497\) 1.02663e9 0.375118
\(498\) 0 0
\(499\) −3.39355e9 −1.22265 −0.611326 0.791379i \(-0.709364\pi\)
−0.611326 + 0.791379i \(0.709364\pi\)
\(500\) 0 0
\(501\) −9.85094e9 −3.49982
\(502\) 0 0
\(503\) −4.26413e9 −1.49397 −0.746986 0.664840i \(-0.768500\pi\)
−0.746986 + 0.664840i \(0.768500\pi\)
\(504\) 0 0
\(505\) 6.89537e6 0.00238253
\(506\) 0 0
\(507\) 5.59683e9 1.90728
\(508\) 0 0
\(509\) −4.85962e9 −1.63339 −0.816695 0.577070i \(-0.804196\pi\)
−0.816695 + 0.577070i \(0.804196\pi\)
\(510\) 0 0
\(511\) 1.35557e8 0.0449415
\(512\) 0 0
\(513\) −1.31577e10 −4.30299
\(514\) 0 0
\(515\) 1.18592e9 0.382587
\(516\) 0 0
\(517\) −4.66498e9 −1.48468
\(518\) 0 0
\(519\) 3.21550e9 1.00963
\(520\) 0 0
\(521\) 4.97824e8 0.154221 0.0771106 0.997023i \(-0.475431\pi\)
0.0771106 + 0.997023i \(0.475431\pi\)
\(522\) 0 0
\(523\) −3.00519e9 −0.918579 −0.459289 0.888287i \(-0.651896\pi\)
−0.459289 + 0.888287i \(0.651896\pi\)
\(524\) 0 0
\(525\) 5.19820e9 1.56782
\(526\) 0 0
\(527\) −8.33500e9 −2.48067
\(528\) 0 0
\(529\) −1.75676e9 −0.515961
\(530\) 0 0
\(531\) −4.15707e9 −1.20492
\(532\) 0 0
\(533\) 1.06109e8 0.0303534
\(534\) 0 0
\(535\) −3.09164e6 −0.000872873 0
\(536\) 0 0
\(537\) 3.88201e9 1.08180
\(538\) 0 0
\(539\) −3.50479e8 −0.0964055
\(540\) 0 0
\(541\) −2.61020e9 −0.708734 −0.354367 0.935106i \(-0.615304\pi\)
−0.354367 + 0.935106i \(0.615304\pi\)
\(542\) 0 0
\(543\) 6.39498e9 1.71411
\(544\) 0 0
\(545\) −1.17420e9 −0.310709
\(546\) 0 0
\(547\) −6.31955e8 −0.165094 −0.0825468 0.996587i \(-0.526305\pi\)
−0.0825468 + 0.996587i \(0.526305\pi\)
\(548\) 0 0
\(549\) −1.41629e10 −3.65301
\(550\) 0 0
\(551\) −2.49967e9 −0.636578
\(552\) 0 0
\(553\) 8.00333e8 0.201248
\(554\) 0 0
\(555\) 6.12383e8 0.152054
\(556\) 0 0
\(557\) 3.22387e9 0.790468 0.395234 0.918580i \(-0.370663\pi\)
0.395234 + 0.918580i \(0.370663\pi\)
\(558\) 0 0
\(559\) 8.57284e8 0.207579
\(560\) 0 0
\(561\) 1.60077e10 3.82790
\(562\) 0 0
\(563\) −3.75859e9 −0.887658 −0.443829 0.896112i \(-0.646380\pi\)
−0.443829 + 0.896112i \(0.646380\pi\)
\(564\) 0 0
\(565\) −3.15359e9 −0.735589
\(566\) 0 0
\(567\) 1.76757e10 4.07227
\(568\) 0 0
\(569\) 3.16154e8 0.0719459 0.0359730 0.999353i \(-0.488547\pi\)
0.0359730 + 0.999353i \(0.488547\pi\)
\(570\) 0 0
\(571\) −5.14375e9 −1.15625 −0.578127 0.815947i \(-0.696216\pi\)
−0.578127 + 0.815947i \(0.696216\pi\)
\(572\) 0 0
\(573\) 1.17816e10 2.61614
\(574\) 0 0
\(575\) 2.45172e9 0.537815
\(576\) 0 0
\(577\) 2.95737e8 0.0640900 0.0320450 0.999486i \(-0.489798\pi\)
0.0320450 + 0.999486i \(0.489798\pi\)
\(578\) 0 0
\(579\) −4.62582e9 −0.990408
\(580\) 0 0
\(581\) 7.89876e9 1.67087
\(582\) 0 0
\(583\) −6.53753e9 −1.36639
\(584\) 0 0
\(585\) −8.46472e8 −0.174810
\(586\) 0 0
\(587\) −1.01541e9 −0.207209 −0.103604 0.994619i \(-0.533038\pi\)
−0.103604 + 0.994619i \(0.533038\pi\)
\(588\) 0 0
\(589\) −8.24502e9 −1.66260
\(590\) 0 0
\(591\) 1.64069e8 0.0326942
\(592\) 0 0
\(593\) −3.96291e9 −0.780409 −0.390205 0.920728i \(-0.627596\pi\)
−0.390205 + 0.920728i \(0.627596\pi\)
\(594\) 0 0
\(595\) 4.78108e9 0.930500
\(596\) 0 0
\(597\) 4.32063e9 0.831068
\(598\) 0 0
\(599\) −9.42097e9 −1.79103 −0.895513 0.445036i \(-0.853191\pi\)
−0.895513 + 0.445036i \(0.853191\pi\)
\(600\) 0 0
\(601\) 3.58702e8 0.0674021 0.0337010 0.999432i \(-0.489271\pi\)
0.0337010 + 0.999432i \(0.489271\pi\)
\(602\) 0 0
\(603\) 4.86849e7 0.00904240
\(604\) 0 0
\(605\) 2.91515e8 0.0535202
\(606\) 0 0
\(607\) −6.29066e9 −1.14166 −0.570829 0.821069i \(-0.693378\pi\)
−0.570829 + 0.821069i \(0.693378\pi\)
\(608\) 0 0
\(609\) 5.74330e9 1.03039
\(610\) 0 0
\(611\) −1.05178e9 −0.186544
\(612\) 0 0
\(613\) 3.78212e9 0.663168 0.331584 0.943426i \(-0.392417\pi\)
0.331584 + 0.943426i \(0.392417\pi\)
\(614\) 0 0
\(615\) 1.22209e9 0.211855
\(616\) 0 0
\(617\) −2.05900e9 −0.352905 −0.176452 0.984309i \(-0.556462\pi\)
−0.176452 + 0.984309i \(0.556462\pi\)
\(618\) 0 0
\(619\) −1.93114e9 −0.327263 −0.163632 0.986522i \(-0.552321\pi\)
−0.163632 + 0.986522i \(0.552321\pi\)
\(620\) 0 0
\(621\) 1.42587e10 2.38923
\(622\) 0 0
\(623\) 7.86386e9 1.30295
\(624\) 0 0
\(625\) 2.26190e9 0.370590
\(626\) 0 0
\(627\) 1.58349e10 2.56555
\(628\) 0 0
\(629\) −1.91827e9 −0.307349
\(630\) 0 0
\(631\) −1.64426e9 −0.260537 −0.130268 0.991479i \(-0.541584\pi\)
−0.130268 + 0.991479i \(0.541584\pi\)
\(632\) 0 0
\(633\) −4.58307e9 −0.718197
\(634\) 0 0
\(635\) 4.03539e6 0.000625429 0
\(636\) 0 0
\(637\) −7.90201e7 −0.0121129
\(638\) 0 0
\(639\) 6.55750e9 0.994226
\(640\) 0 0
\(641\) −1.79601e9 −0.269344 −0.134672 0.990890i \(-0.542998\pi\)
−0.134672 + 0.990890i \(0.542998\pi\)
\(642\) 0 0
\(643\) −6.06484e9 −0.899666 −0.449833 0.893113i \(-0.648516\pi\)
−0.449833 + 0.893113i \(0.648516\pi\)
\(644\) 0 0
\(645\) 9.87359e9 1.44883
\(646\) 0 0
\(647\) 8.83053e9 1.28180 0.640902 0.767622i \(-0.278560\pi\)
0.640902 + 0.767622i \(0.278560\pi\)
\(648\) 0 0
\(649\) 3.19610e9 0.458949
\(650\) 0 0
\(651\) 1.89440e10 2.69115
\(652\) 0 0
\(653\) 1.00013e10 1.40560 0.702800 0.711388i \(-0.251933\pi\)
0.702800 + 0.711388i \(0.251933\pi\)
\(654\) 0 0
\(655\) −1.70342e9 −0.236852
\(656\) 0 0
\(657\) 8.65852e8 0.119115
\(658\) 0 0
\(659\) 4.00313e9 0.544880 0.272440 0.962173i \(-0.412169\pi\)
0.272440 + 0.962173i \(0.412169\pi\)
\(660\) 0 0
\(661\) 1.12552e10 1.51582 0.757910 0.652359i \(-0.226221\pi\)
0.757910 + 0.652359i \(0.226221\pi\)
\(662\) 0 0
\(663\) 3.60915e9 0.480958
\(664\) 0 0
\(665\) 4.72947e9 0.623644
\(666\) 0 0
\(667\) 2.70881e9 0.353459
\(668\) 0 0
\(669\) 1.22097e10 1.57657
\(670\) 0 0
\(671\) 1.08890e10 1.39142
\(672\) 0 0
\(673\) −1.10405e10 −1.39616 −0.698080 0.716020i \(-0.745962\pi\)
−0.698080 + 0.716020i \(0.745962\pi\)
\(674\) 0 0
\(675\) 2.12116e10 2.65467
\(676\) 0 0
\(677\) −5.08333e9 −0.629634 −0.314817 0.949152i \(-0.601943\pi\)
−0.314817 + 0.949152i \(0.601943\pi\)
\(678\) 0 0
\(679\) 3.85377e9 0.472434
\(680\) 0 0
\(681\) 1.65712e10 2.01067
\(682\) 0 0
\(683\) 4.62507e9 0.555451 0.277725 0.960661i \(-0.410419\pi\)
0.277725 + 0.960661i \(0.410419\pi\)
\(684\) 0 0
\(685\) −5.92692e9 −0.704551
\(686\) 0 0
\(687\) −1.41366e10 −1.66340
\(688\) 0 0
\(689\) −1.47397e9 −0.171681
\(690\) 0 0
\(691\) 1.38457e10 1.59640 0.798200 0.602393i \(-0.205786\pi\)
0.798200 + 0.602393i \(0.205786\pi\)
\(692\) 0 0
\(693\) −2.67294e10 −3.05086
\(694\) 0 0
\(695\) −4.48096e8 −0.0506319
\(696\) 0 0
\(697\) −3.82815e9 −0.428227
\(698\) 0 0
\(699\) −6.19597e9 −0.686181
\(700\) 0 0
\(701\) 1.30053e10 1.42596 0.712980 0.701184i \(-0.247345\pi\)
0.712980 + 0.701184i \(0.247345\pi\)
\(702\) 0 0
\(703\) −1.89756e9 −0.205993
\(704\) 0 0
\(705\) −1.21136e10 −1.30201
\(706\) 0 0
\(707\) 4.90918e7 0.00522446
\(708\) 0 0
\(709\) −1.83890e10 −1.93774 −0.968872 0.247564i \(-0.920370\pi\)
−0.968872 + 0.247564i \(0.920370\pi\)
\(710\) 0 0
\(711\) 5.11203e9 0.533396
\(712\) 0 0
\(713\) 8.93488e9 0.923157
\(714\) 0 0
\(715\) 6.50797e8 0.0665847
\(716\) 0 0
\(717\) −1.45181e10 −1.47093
\(718\) 0 0
\(719\) −1.56639e9 −0.157162 −0.0785811 0.996908i \(-0.525039\pi\)
−0.0785811 + 0.996908i \(0.525039\pi\)
\(720\) 0 0
\(721\) 8.44319e9 0.838945
\(722\) 0 0
\(723\) −2.23848e10 −2.20277
\(724\) 0 0
\(725\) 4.02972e9 0.392728
\(726\) 0 0
\(727\) 1.22967e10 1.18691 0.593456 0.804867i \(-0.297763\pi\)
0.593456 + 0.804867i \(0.297763\pi\)
\(728\) 0 0
\(729\) 4.31633e10 4.12637
\(730\) 0 0
\(731\) −3.09287e10 −2.92854
\(732\) 0 0
\(733\) −8.41188e9 −0.788913 −0.394456 0.918915i \(-0.629067\pi\)
−0.394456 + 0.918915i \(0.629067\pi\)
\(734\) 0 0
\(735\) −9.10097e8 −0.0845439
\(736\) 0 0
\(737\) −3.74307e7 −0.00344422
\(738\) 0 0
\(739\) −4.83992e9 −0.441147 −0.220573 0.975370i \(-0.570793\pi\)
−0.220573 + 0.975370i \(0.570793\pi\)
\(740\) 0 0
\(741\) 3.57019e9 0.322350
\(742\) 0 0
\(743\) −5.87021e8 −0.0525040 −0.0262520 0.999655i \(-0.508357\pi\)
−0.0262520 + 0.999655i \(0.508357\pi\)
\(744\) 0 0
\(745\) −5.00184e9 −0.443182
\(746\) 0 0
\(747\) 5.04524e10 4.42854
\(748\) 0 0
\(749\) −2.20111e7 −0.00191406
\(750\) 0 0
\(751\) 2.24897e9 0.193751 0.0968753 0.995297i \(-0.469115\pi\)
0.0968753 + 0.995297i \(0.469115\pi\)
\(752\) 0 0
\(753\) −3.47514e10 −2.96613
\(754\) 0 0
\(755\) 1.02051e10 0.862986
\(756\) 0 0
\(757\) −1.99556e10 −1.67197 −0.835985 0.548752i \(-0.815103\pi\)
−0.835985 + 0.548752i \(0.815103\pi\)
\(758\) 0 0
\(759\) −1.71598e10 −1.42452
\(760\) 0 0
\(761\) −5.23703e9 −0.430764 −0.215382 0.976530i \(-0.569100\pi\)
−0.215382 + 0.976530i \(0.569100\pi\)
\(762\) 0 0
\(763\) −8.35974e9 −0.681329
\(764\) 0 0
\(765\) 3.05386e10 2.46623
\(766\) 0 0
\(767\) 7.20602e8 0.0576649
\(768\) 0 0
\(769\) −7.11248e9 −0.564000 −0.282000 0.959414i \(-0.590998\pi\)
−0.282000 + 0.959414i \(0.590998\pi\)
\(770\) 0 0
\(771\) −1.16324e10 −0.914070
\(772\) 0 0
\(773\) 5.47777e9 0.426556 0.213278 0.976992i \(-0.431586\pi\)
0.213278 + 0.976992i \(0.431586\pi\)
\(774\) 0 0
\(775\) 1.32918e10 1.02572
\(776\) 0 0
\(777\) 4.35988e9 0.333427
\(778\) 0 0
\(779\) −3.78682e9 −0.287008
\(780\) 0 0
\(781\) −5.04163e9 −0.378698
\(782\) 0 0
\(783\) 2.34359e10 1.74468
\(784\) 0 0
\(785\) −5.10257e9 −0.376483
\(786\) 0 0
\(787\) 1.97867e10 1.44698 0.723488 0.690337i \(-0.242538\pi\)
0.723488 + 0.690337i \(0.242538\pi\)
\(788\) 0 0
\(789\) 1.39584e10 1.01173
\(790\) 0 0
\(791\) −2.24521e10 −1.61302
\(792\) 0 0
\(793\) 2.45506e9 0.174826
\(794\) 0 0
\(795\) −1.69761e10 −1.19827
\(796\) 0 0
\(797\) −1.91992e10 −1.34332 −0.671661 0.740859i \(-0.734419\pi\)
−0.671661 + 0.740859i \(0.734419\pi\)
\(798\) 0 0
\(799\) 3.79456e10 2.63177
\(800\) 0 0
\(801\) 5.02295e10 3.45338
\(802\) 0 0
\(803\) −6.65697e8 −0.0453704
\(804\) 0 0
\(805\) −5.12518e9 −0.346277
\(806\) 0 0
\(807\) −3.82467e10 −2.56175
\(808\) 0 0
\(809\) 9.47189e8 0.0628951 0.0314476 0.999505i \(-0.489988\pi\)
0.0314476 + 0.999505i \(0.489988\pi\)
\(810\) 0 0
\(811\) 1.41110e9 0.0928931 0.0464466 0.998921i \(-0.485210\pi\)
0.0464466 + 0.998921i \(0.485210\pi\)
\(812\) 0 0
\(813\) 4.56486e10 2.97928
\(814\) 0 0
\(815\) −5.60398e9 −0.362614
\(816\) 0 0
\(817\) −3.05948e10 −1.96278
\(818\) 0 0
\(819\) −6.02649e9 −0.383328
\(820\) 0 0
\(821\) 2.01870e7 0.00127313 0.000636563 1.00000i \(-0.499797\pi\)
0.000636563 1.00000i \(0.499797\pi\)
\(822\) 0 0
\(823\) 2.14990e9 0.134437 0.0672185 0.997738i \(-0.478588\pi\)
0.0672185 + 0.997738i \(0.478588\pi\)
\(824\) 0 0
\(825\) −2.55275e10 −1.58278
\(826\) 0 0
\(827\) −1.71093e10 −1.05187 −0.525937 0.850524i \(-0.676285\pi\)
−0.525937 + 0.850524i \(0.676285\pi\)
\(828\) 0 0
\(829\) −7.25127e8 −0.0442052 −0.0221026 0.999756i \(-0.507036\pi\)
−0.0221026 + 0.999756i \(0.507036\pi\)
\(830\) 0 0
\(831\) −2.90527e10 −1.75623
\(832\) 0 0
\(833\) 2.85085e9 0.170890
\(834\) 0 0
\(835\) 1.44487e10 0.858869
\(836\) 0 0
\(837\) 7.73023e10 4.55673
\(838\) 0 0
\(839\) −1.09113e9 −0.0637839 −0.0318920 0.999491i \(-0.510153\pi\)
−0.0318920 + 0.999491i \(0.510153\pi\)
\(840\) 0 0
\(841\) −1.27976e10 −0.741895
\(842\) 0 0
\(843\) 4.30558e10 2.47534
\(844\) 0 0
\(845\) −8.20908e9 −0.468054
\(846\) 0 0
\(847\) 2.07545e9 0.117360
\(848\) 0 0
\(849\) −4.83277e10 −2.71031
\(850\) 0 0
\(851\) 2.05633e9 0.114377
\(852\) 0 0
\(853\) 1.53367e10 0.846076 0.423038 0.906112i \(-0.360964\pi\)
0.423038 + 0.906112i \(0.360964\pi\)
\(854\) 0 0
\(855\) 3.02089e10 1.65293
\(856\) 0 0
\(857\) −1.85211e10 −1.00516 −0.502578 0.864532i \(-0.667615\pi\)
−0.502578 + 0.864532i \(0.667615\pi\)
\(858\) 0 0
\(859\) 8.76910e6 0.000472040 0 0.000236020 1.00000i \(-0.499925\pi\)
0.000236020 1.00000i \(0.499925\pi\)
\(860\) 0 0
\(861\) 8.70070e9 0.464561
\(862\) 0 0
\(863\) 1.82668e10 0.967443 0.483721 0.875222i \(-0.339285\pi\)
0.483721 + 0.875222i \(0.339285\pi\)
\(864\) 0 0
\(865\) −4.71628e9 −0.247767
\(866\) 0 0
\(867\) −9.29549e10 −4.84402
\(868\) 0 0
\(869\) −3.93031e9 −0.203169
\(870\) 0 0
\(871\) −8.43922e6 −0.000432752 0
\(872\) 0 0
\(873\) 2.46155e10 1.25216
\(874\) 0 0
\(875\) −1.74874e10 −0.882466
\(876\) 0 0
\(877\) −2.99806e10 −1.50086 −0.750432 0.660948i \(-0.770154\pi\)
−0.750432 + 0.660948i \(0.770154\pi\)
\(878\) 0 0
\(879\) 1.95925e10 0.973037
\(880\) 0 0
\(881\) 3.82446e8 0.0188432 0.00942160 0.999956i \(-0.497001\pi\)
0.00942160 + 0.999956i \(0.497001\pi\)
\(882\) 0 0
\(883\) 5.12232e9 0.250382 0.125191 0.992133i \(-0.460046\pi\)
0.125191 + 0.992133i \(0.460046\pi\)
\(884\) 0 0
\(885\) 8.29939e9 0.402480
\(886\) 0 0
\(887\) −2.34581e10 −1.12865 −0.564326 0.825552i \(-0.690864\pi\)
−0.564326 + 0.825552i \(0.690864\pi\)
\(888\) 0 0
\(889\) 2.87301e7 0.00137145
\(890\) 0 0
\(891\) −8.68028e10 −4.11114
\(892\) 0 0
\(893\) 3.75360e10 1.76387
\(894\) 0 0
\(895\) −5.69389e9 −0.265478
\(896\) 0 0
\(897\) −3.86891e9 −0.178984
\(898\) 0 0
\(899\) 1.46856e10 0.674115
\(900\) 0 0
\(901\) 5.31771e10 2.42208
\(902\) 0 0
\(903\) 7.02954e10 3.17702
\(904\) 0 0
\(905\) −9.37975e9 −0.420650
\(906\) 0 0
\(907\) −2.54092e10 −1.13075 −0.565373 0.824835i \(-0.691268\pi\)
−0.565373 + 0.824835i \(0.691268\pi\)
\(908\) 0 0
\(909\) 3.13568e8 0.0138471
\(910\) 0 0
\(911\) −7.96177e9 −0.348895 −0.174448 0.984666i \(-0.555814\pi\)
−0.174448 + 0.984666i \(0.555814\pi\)
\(912\) 0 0
\(913\) −3.87896e10 −1.68682
\(914\) 0 0
\(915\) 2.82756e10 1.22022
\(916\) 0 0
\(917\) −1.21276e10 −0.519375
\(918\) 0 0
\(919\) −2.30253e10 −0.978588 −0.489294 0.872119i \(-0.662746\pi\)
−0.489294 + 0.872119i \(0.662746\pi\)
\(920\) 0 0
\(921\) −5.42094e10 −2.28647
\(922\) 0 0
\(923\) −1.13670e9 −0.0475817
\(924\) 0 0
\(925\) 3.05906e9 0.127084
\(926\) 0 0
\(927\) 5.39299e10 2.22357
\(928\) 0 0
\(929\) 3.32878e10 1.36217 0.681083 0.732206i \(-0.261509\pi\)
0.681083 + 0.732206i \(0.261509\pi\)
\(930\) 0 0
\(931\) 2.82007e9 0.114535
\(932\) 0 0
\(933\) 2.16116e10 0.871167
\(934\) 0 0
\(935\) −2.34791e10 −0.939380
\(936\) 0 0
\(937\) 1.77970e10 0.706737 0.353369 0.935484i \(-0.385036\pi\)
0.353369 + 0.935484i \(0.385036\pi\)
\(938\) 0 0
\(939\) −2.96982e10 −1.17058
\(940\) 0 0
\(941\) −3.32182e10 −1.29961 −0.649803 0.760102i \(-0.725149\pi\)
−0.649803 + 0.760102i \(0.725149\pi\)
\(942\) 0 0
\(943\) 4.10367e9 0.159361
\(944\) 0 0
\(945\) −4.43417e10 −1.70923
\(946\) 0 0
\(947\) −1.50372e10 −0.575364 −0.287682 0.957726i \(-0.592885\pi\)
−0.287682 + 0.957726i \(0.592885\pi\)
\(948\) 0 0
\(949\) −1.50090e8 −0.00570059
\(950\) 0 0
\(951\) 7.56342e10 2.85159
\(952\) 0 0
\(953\) −1.27447e10 −0.476983 −0.238492 0.971145i \(-0.576653\pi\)
−0.238492 + 0.971145i \(0.576653\pi\)
\(954\) 0 0
\(955\) −1.72804e10 −0.642012
\(956\) 0 0
\(957\) −2.82044e10 −1.04022
\(958\) 0 0
\(959\) −4.21969e10 −1.54496
\(960\) 0 0
\(961\) 2.09272e10 0.760640
\(962\) 0 0
\(963\) −1.40593e8 −0.00507308
\(964\) 0 0
\(965\) 6.78486e9 0.243050
\(966\) 0 0
\(967\) −2.50300e10 −0.890161 −0.445080 0.895491i \(-0.646825\pi\)
−0.445080 + 0.895491i \(0.646825\pi\)
\(968\) 0 0
\(969\) −1.28804e11 −4.54773
\(970\) 0 0
\(971\) −1.01634e10 −0.356265 −0.178132 0.984007i \(-0.557006\pi\)
−0.178132 + 0.984007i \(0.557006\pi\)
\(972\) 0 0
\(973\) −3.19024e9 −0.111027
\(974\) 0 0
\(975\) −5.75551e9 −0.198869
\(976\) 0 0
\(977\) 3.59483e10 1.23324 0.616620 0.787261i \(-0.288502\pi\)
0.616620 + 0.787261i \(0.288502\pi\)
\(978\) 0 0
\(979\) −3.86182e10 −1.31538
\(980\) 0 0
\(981\) −5.33969e10 −1.80582
\(982\) 0 0
\(983\) −2.69073e10 −0.903510 −0.451755 0.892142i \(-0.649202\pi\)
−0.451755 + 0.892142i \(0.649202\pi\)
\(984\) 0 0
\(985\) −2.40646e8 −0.00802328
\(986\) 0 0
\(987\) −8.62435e10 −2.85507
\(988\) 0 0
\(989\) 3.31547e10 1.08983
\(990\) 0 0
\(991\) 1.91531e10 0.625147 0.312573 0.949894i \(-0.398809\pi\)
0.312573 + 0.949894i \(0.398809\pi\)
\(992\) 0 0
\(993\) −4.41582e10 −1.43116
\(994\) 0 0
\(995\) −6.33722e9 −0.203947
\(996\) 0 0
\(997\) −2.26750e10 −0.724625 −0.362313 0.932057i \(-0.618013\pi\)
−0.362313 + 0.932057i \(0.618013\pi\)
\(998\) 0 0
\(999\) 1.77908e10 0.564569
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.8.a.c.1.1 6
4.3 odd 2 74.8.a.c.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.6 6 4.3 odd 2
592.8.a.c.1.1 6 1.1 even 1 trivial