Properties

Label 5994.2.a.bb.1.4
Level $5994$
Weight $2$
Character 5994.1
Self dual yes
Analytic conductor $47.862$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5994,2,Mod(1,5994)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5994, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5994.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5994 = 2 \cdot 3^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5994.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.8623309716\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 26x^{8} + 49x^{7} + 236x^{6} - 420x^{5} - 860x^{4} + 1461x^{3} + 993x^{2} - 1638x + 99 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 666)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.79044\) of defining polynomial
Character \(\chi\) \(=\) 5994.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.949474 q^{5} -4.04317 q^{7} +1.00000 q^{8} -0.949474 q^{10} -1.82314 q^{11} +2.65283 q^{13} -4.04317 q^{14} +1.00000 q^{16} +7.58372 q^{17} -5.40297 q^{19} -0.949474 q^{20} -1.82314 q^{22} +3.54317 q^{23} -4.09850 q^{25} +2.65283 q^{26} -4.04317 q^{28} +2.25294 q^{29} -5.23080 q^{31} +1.00000 q^{32} +7.58372 q^{34} +3.83888 q^{35} -1.00000 q^{37} -5.40297 q^{38} -0.949474 q^{40} -2.42733 q^{41} +9.79523 q^{43} -1.82314 q^{44} +3.54317 q^{46} +1.51051 q^{47} +9.34719 q^{49} -4.09850 q^{50} +2.65283 q^{52} -4.98930 q^{53} +1.73102 q^{55} -4.04317 q^{56} +2.25294 q^{58} -12.2070 q^{59} +1.61261 q^{61} -5.23080 q^{62} +1.00000 q^{64} -2.51879 q^{65} +9.03491 q^{67} +7.58372 q^{68} +3.83888 q^{70} -10.3584 q^{71} +2.93156 q^{73} -1.00000 q^{74} -5.40297 q^{76} +7.37124 q^{77} +9.64020 q^{79} -0.949474 q^{80} -2.42733 q^{82} +5.29091 q^{83} -7.20054 q^{85} +9.79523 q^{86} -1.82314 q^{88} +15.0956 q^{89} -10.7258 q^{91} +3.54317 q^{92} +1.51051 q^{94} +5.12997 q^{95} +9.33056 q^{97} +9.34719 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 10 q^{4} + q^{5} + q^{7} + 10 q^{8} + q^{10} + 3 q^{11} + 12 q^{13} + q^{14} + 10 q^{16} + 12 q^{17} + 24 q^{19} + q^{20} + 3 q^{22} + 3 q^{23} + 21 q^{25} + 12 q^{26} + q^{28} + 4 q^{29}+ \cdots + 35 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.949474 −0.424617 −0.212309 0.977203i \(-0.568098\pi\)
−0.212309 + 0.977203i \(0.568098\pi\)
\(6\) 0 0
\(7\) −4.04317 −1.52817 −0.764087 0.645114i \(-0.776810\pi\)
−0.764087 + 0.645114i \(0.776810\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.949474 −0.300250
\(11\) −1.82314 −0.549696 −0.274848 0.961488i \(-0.588628\pi\)
−0.274848 + 0.961488i \(0.588628\pi\)
\(12\) 0 0
\(13\) 2.65283 0.735762 0.367881 0.929873i \(-0.380083\pi\)
0.367881 + 0.929873i \(0.380083\pi\)
\(14\) −4.04317 −1.08058
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.58372 1.83932 0.919661 0.392714i \(-0.128464\pi\)
0.919661 + 0.392714i \(0.128464\pi\)
\(18\) 0 0
\(19\) −5.40297 −1.23953 −0.619763 0.784789i \(-0.712771\pi\)
−0.619763 + 0.784789i \(0.712771\pi\)
\(20\) −0.949474 −0.212309
\(21\) 0 0
\(22\) −1.82314 −0.388694
\(23\) 3.54317 0.738802 0.369401 0.929270i \(-0.379563\pi\)
0.369401 + 0.929270i \(0.379563\pi\)
\(24\) 0 0
\(25\) −4.09850 −0.819700
\(26\) 2.65283 0.520262
\(27\) 0 0
\(28\) −4.04317 −0.764087
\(29\) 2.25294 0.418360 0.209180 0.977877i \(-0.432921\pi\)
0.209180 + 0.977877i \(0.432921\pi\)
\(30\) 0 0
\(31\) −5.23080 −0.939479 −0.469739 0.882805i \(-0.655652\pi\)
−0.469739 + 0.882805i \(0.655652\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.58372 1.30060
\(35\) 3.83888 0.648889
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −5.40297 −0.876477
\(39\) 0 0
\(40\) −0.949474 −0.150125
\(41\) −2.42733 −0.379086 −0.189543 0.981872i \(-0.560701\pi\)
−0.189543 + 0.981872i \(0.560701\pi\)
\(42\) 0 0
\(43\) 9.79523 1.49376 0.746879 0.664959i \(-0.231551\pi\)
0.746879 + 0.664959i \(0.231551\pi\)
\(44\) −1.82314 −0.274848
\(45\) 0 0
\(46\) 3.54317 0.522412
\(47\) 1.51051 0.220331 0.110166 0.993913i \(-0.464862\pi\)
0.110166 + 0.993913i \(0.464862\pi\)
\(48\) 0 0
\(49\) 9.34719 1.33531
\(50\) −4.09850 −0.579615
\(51\) 0 0
\(52\) 2.65283 0.367881
\(53\) −4.98930 −0.685333 −0.342666 0.939457i \(-0.611330\pi\)
−0.342666 + 0.939457i \(0.611330\pi\)
\(54\) 0 0
\(55\) 1.73102 0.233411
\(56\) −4.04317 −0.540291
\(57\) 0 0
\(58\) 2.25294 0.295825
\(59\) −12.2070 −1.58922 −0.794611 0.607119i \(-0.792325\pi\)
−0.794611 + 0.607119i \(0.792325\pi\)
\(60\) 0 0
\(61\) 1.61261 0.206473 0.103236 0.994657i \(-0.467080\pi\)
0.103236 + 0.994657i \(0.467080\pi\)
\(62\) −5.23080 −0.664312
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.51879 −0.312417
\(66\) 0 0
\(67\) 9.03491 1.10379 0.551895 0.833913i \(-0.313905\pi\)
0.551895 + 0.833913i \(0.313905\pi\)
\(68\) 7.58372 0.919661
\(69\) 0 0
\(70\) 3.83888 0.458834
\(71\) −10.3584 −1.22932 −0.614658 0.788793i \(-0.710706\pi\)
−0.614658 + 0.788793i \(0.710706\pi\)
\(72\) 0 0
\(73\) 2.93156 0.343113 0.171557 0.985174i \(-0.445120\pi\)
0.171557 + 0.985174i \(0.445120\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −5.40297 −0.619763
\(77\) 7.37124 0.840031
\(78\) 0 0
\(79\) 9.64020 1.08461 0.542304 0.840182i \(-0.317552\pi\)
0.542304 + 0.840182i \(0.317552\pi\)
\(80\) −0.949474 −0.106154
\(81\) 0 0
\(82\) −2.42733 −0.268054
\(83\) 5.29091 0.580753 0.290376 0.956913i \(-0.406220\pi\)
0.290376 + 0.956913i \(0.406220\pi\)
\(84\) 0 0
\(85\) −7.20054 −0.781008
\(86\) 9.79523 1.05625
\(87\) 0 0
\(88\) −1.82314 −0.194347
\(89\) 15.0956 1.60013 0.800066 0.599912i \(-0.204798\pi\)
0.800066 + 0.599912i \(0.204798\pi\)
\(90\) 0 0
\(91\) −10.7258 −1.12437
\(92\) 3.54317 0.369401
\(93\) 0 0
\(94\) 1.51051 0.155798
\(95\) 5.12997 0.526324
\(96\) 0 0
\(97\) 9.33056 0.947375 0.473688 0.880693i \(-0.342923\pi\)
0.473688 + 0.880693i \(0.342923\pi\)
\(98\) 9.34719 0.944209
\(99\) 0 0
\(100\) −4.09850 −0.409850
\(101\) 7.69792 0.765972 0.382986 0.923754i \(-0.374896\pi\)
0.382986 + 0.923754i \(0.374896\pi\)
\(102\) 0 0
\(103\) 17.3840 1.71289 0.856446 0.516236i \(-0.172667\pi\)
0.856446 + 0.516236i \(0.172667\pi\)
\(104\) 2.65283 0.260131
\(105\) 0 0
\(106\) −4.98930 −0.484603
\(107\) 9.97908 0.964714 0.482357 0.875975i \(-0.339781\pi\)
0.482357 + 0.875975i \(0.339781\pi\)
\(108\) 0 0
\(109\) 7.02860 0.673218 0.336609 0.941644i \(-0.390720\pi\)
0.336609 + 0.941644i \(0.390720\pi\)
\(110\) 1.73102 0.165046
\(111\) 0 0
\(112\) −4.04317 −0.382043
\(113\) 12.7285 1.19740 0.598700 0.800973i \(-0.295684\pi\)
0.598700 + 0.800973i \(0.295684\pi\)
\(114\) 0 0
\(115\) −3.36414 −0.313708
\(116\) 2.25294 0.209180
\(117\) 0 0
\(118\) −12.2070 −1.12375
\(119\) −30.6622 −2.81080
\(120\) 0 0
\(121\) −7.67617 −0.697834
\(122\) 1.61261 0.145998
\(123\) 0 0
\(124\) −5.23080 −0.469739
\(125\) 8.63878 0.772676
\(126\) 0 0
\(127\) −2.00548 −0.177957 −0.0889786 0.996034i \(-0.528360\pi\)
−0.0889786 + 0.996034i \(0.528360\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −2.51879 −0.220912
\(131\) −5.60693 −0.489880 −0.244940 0.969538i \(-0.578768\pi\)
−0.244940 + 0.969538i \(0.578768\pi\)
\(132\) 0 0
\(133\) 21.8451 1.89421
\(134\) 9.03491 0.780498
\(135\) 0 0
\(136\) 7.58372 0.650298
\(137\) −6.11247 −0.522224 −0.261112 0.965309i \(-0.584089\pi\)
−0.261112 + 0.965309i \(0.584089\pi\)
\(138\) 0 0
\(139\) 9.39268 0.796677 0.398338 0.917239i \(-0.369587\pi\)
0.398338 + 0.917239i \(0.369587\pi\)
\(140\) 3.83888 0.324444
\(141\) 0 0
\(142\) −10.3584 −0.869258
\(143\) −4.83647 −0.404446
\(144\) 0 0
\(145\) −2.13911 −0.177643
\(146\) 2.93156 0.242618
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) 5.31790 0.435659 0.217830 0.975987i \(-0.430102\pi\)
0.217830 + 0.975987i \(0.430102\pi\)
\(150\) 0 0
\(151\) 4.07823 0.331882 0.165941 0.986136i \(-0.446934\pi\)
0.165941 + 0.986136i \(0.446934\pi\)
\(152\) −5.40297 −0.438238
\(153\) 0 0
\(154\) 7.37124 0.593992
\(155\) 4.96650 0.398919
\(156\) 0 0
\(157\) 22.3662 1.78502 0.892509 0.451029i \(-0.148943\pi\)
0.892509 + 0.451029i \(0.148943\pi\)
\(158\) 9.64020 0.766933
\(159\) 0 0
\(160\) −0.949474 −0.0750625
\(161\) −14.3256 −1.12902
\(162\) 0 0
\(163\) −3.87053 −0.303164 −0.151582 0.988445i \(-0.548437\pi\)
−0.151582 + 0.988445i \(0.548437\pi\)
\(164\) −2.42733 −0.189543
\(165\) 0 0
\(166\) 5.29091 0.410654
\(167\) 17.2998 1.33870 0.669349 0.742948i \(-0.266573\pi\)
0.669349 + 0.742948i \(0.266573\pi\)
\(168\) 0 0
\(169\) −5.96251 −0.458654
\(170\) −7.20054 −0.552256
\(171\) 0 0
\(172\) 9.79523 0.746879
\(173\) 10.2202 0.777029 0.388515 0.921443i \(-0.372988\pi\)
0.388515 + 0.921443i \(0.372988\pi\)
\(174\) 0 0
\(175\) 16.5709 1.25264
\(176\) −1.82314 −0.137424
\(177\) 0 0
\(178\) 15.0956 1.13146
\(179\) −21.1620 −1.58172 −0.790861 0.611995i \(-0.790367\pi\)
−0.790861 + 0.611995i \(0.790367\pi\)
\(180\) 0 0
\(181\) −9.76447 −0.725787 −0.362894 0.931831i \(-0.618211\pi\)
−0.362894 + 0.931831i \(0.618211\pi\)
\(182\) −10.7258 −0.795051
\(183\) 0 0
\(184\) 3.54317 0.261206
\(185\) 0.949474 0.0698067
\(186\) 0 0
\(187\) −13.8262 −1.01107
\(188\) 1.51051 0.110166
\(189\) 0 0
\(190\) 5.12997 0.372167
\(191\) 8.02147 0.580413 0.290206 0.956964i \(-0.406276\pi\)
0.290206 + 0.956964i \(0.406276\pi\)
\(192\) 0 0
\(193\) 12.2955 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(194\) 9.33056 0.669896
\(195\) 0 0
\(196\) 9.34719 0.667656
\(197\) 23.3938 1.66674 0.833370 0.552715i \(-0.186408\pi\)
0.833370 + 0.552715i \(0.186408\pi\)
\(198\) 0 0
\(199\) 9.00271 0.638185 0.319092 0.947724i \(-0.396622\pi\)
0.319092 + 0.947724i \(0.396622\pi\)
\(200\) −4.09850 −0.289808
\(201\) 0 0
\(202\) 7.69792 0.541624
\(203\) −9.10901 −0.639327
\(204\) 0 0
\(205\) 2.30469 0.160966
\(206\) 17.3840 1.21120
\(207\) 0 0
\(208\) 2.65283 0.183941
\(209\) 9.85034 0.681363
\(210\) 0 0
\(211\) 23.8522 1.64205 0.821025 0.570892i \(-0.193402\pi\)
0.821025 + 0.570892i \(0.193402\pi\)
\(212\) −4.98930 −0.342666
\(213\) 0 0
\(214\) 9.97908 0.682156
\(215\) −9.30031 −0.634276
\(216\) 0 0
\(217\) 21.1490 1.43569
\(218\) 7.02860 0.476037
\(219\) 0 0
\(220\) 1.73102 0.116705
\(221\) 20.1183 1.35330
\(222\) 0 0
\(223\) −10.7527 −0.720052 −0.360026 0.932942i \(-0.617232\pi\)
−0.360026 + 0.932942i \(0.617232\pi\)
\(224\) −4.04317 −0.270145
\(225\) 0 0
\(226\) 12.7285 0.846689
\(227\) 1.16889 0.0775819 0.0387910 0.999247i \(-0.487649\pi\)
0.0387910 + 0.999247i \(0.487649\pi\)
\(228\) 0 0
\(229\) 17.5125 1.15726 0.578628 0.815592i \(-0.303588\pi\)
0.578628 + 0.815592i \(0.303588\pi\)
\(230\) −3.36414 −0.221825
\(231\) 0 0
\(232\) 2.25294 0.147913
\(233\) 13.6563 0.894657 0.447328 0.894370i \(-0.352376\pi\)
0.447328 + 0.894370i \(0.352376\pi\)
\(234\) 0 0
\(235\) −1.43419 −0.0935565
\(236\) −12.2070 −0.794611
\(237\) 0 0
\(238\) −30.6622 −1.98754
\(239\) −20.0715 −1.29832 −0.649160 0.760652i \(-0.724879\pi\)
−0.649160 + 0.760652i \(0.724879\pi\)
\(240\) 0 0
\(241\) 3.04219 0.195964 0.0979822 0.995188i \(-0.468761\pi\)
0.0979822 + 0.995188i \(0.468761\pi\)
\(242\) −7.67617 −0.493443
\(243\) 0 0
\(244\) 1.61261 0.103236
\(245\) −8.87491 −0.566997
\(246\) 0 0
\(247\) −14.3331 −0.911996
\(248\) −5.23080 −0.332156
\(249\) 0 0
\(250\) 8.63878 0.546365
\(251\) −30.0821 −1.89877 −0.949383 0.314121i \(-0.898290\pi\)
−0.949383 + 0.314121i \(0.898290\pi\)
\(252\) 0 0
\(253\) −6.45968 −0.406117
\(254\) −2.00548 −0.125835
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −30.0228 −1.87277 −0.936384 0.350976i \(-0.885850\pi\)
−0.936384 + 0.350976i \(0.885850\pi\)
\(258\) 0 0
\(259\) 4.04317 0.251230
\(260\) −2.51879 −0.156209
\(261\) 0 0
\(262\) −5.60693 −0.346397
\(263\) 5.85068 0.360768 0.180384 0.983596i \(-0.442266\pi\)
0.180384 + 0.983596i \(0.442266\pi\)
\(264\) 0 0
\(265\) 4.73721 0.291004
\(266\) 21.8451 1.33941
\(267\) 0 0
\(268\) 9.03491 0.551895
\(269\) −13.2488 −0.807794 −0.403897 0.914804i \(-0.632345\pi\)
−0.403897 + 0.914804i \(0.632345\pi\)
\(270\) 0 0
\(271\) 28.1980 1.71290 0.856452 0.516227i \(-0.172664\pi\)
0.856452 + 0.516227i \(0.172664\pi\)
\(272\) 7.58372 0.459830
\(273\) 0 0
\(274\) −6.11247 −0.369268
\(275\) 7.47213 0.450586
\(276\) 0 0
\(277\) 16.5354 0.993513 0.496756 0.867890i \(-0.334524\pi\)
0.496756 + 0.867890i \(0.334524\pi\)
\(278\) 9.39268 0.563336
\(279\) 0 0
\(280\) 3.83888 0.229417
\(281\) 20.5622 1.22664 0.613319 0.789835i \(-0.289834\pi\)
0.613319 + 0.789835i \(0.289834\pi\)
\(282\) 0 0
\(283\) −28.6982 −1.70593 −0.852966 0.521967i \(-0.825199\pi\)
−0.852966 + 0.521967i \(0.825199\pi\)
\(284\) −10.3584 −0.614658
\(285\) 0 0
\(286\) −4.83647 −0.285986
\(287\) 9.81411 0.579308
\(288\) 0 0
\(289\) 40.5127 2.38310
\(290\) −2.13911 −0.125613
\(291\) 0 0
\(292\) 2.93156 0.171557
\(293\) −12.4437 −0.726969 −0.363484 0.931600i \(-0.618413\pi\)
−0.363484 + 0.931600i \(0.618413\pi\)
\(294\) 0 0
\(295\) 11.5903 0.674811
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 5.31790 0.308058
\(299\) 9.39941 0.543582
\(300\) 0 0
\(301\) −39.6037 −2.28272
\(302\) 4.07823 0.234676
\(303\) 0 0
\(304\) −5.40297 −0.309881
\(305\) −1.53113 −0.0876720
\(306\) 0 0
\(307\) 0.945546 0.0539652 0.0269826 0.999636i \(-0.491410\pi\)
0.0269826 + 0.999636i \(0.491410\pi\)
\(308\) 7.37124 0.420016
\(309\) 0 0
\(310\) 4.96650 0.282078
\(311\) −0.353447 −0.0200422 −0.0100211 0.999950i \(-0.503190\pi\)
−0.0100211 + 0.999950i \(0.503190\pi\)
\(312\) 0 0
\(313\) 13.2578 0.749376 0.374688 0.927151i \(-0.377750\pi\)
0.374688 + 0.927151i \(0.377750\pi\)
\(314\) 22.3662 1.26220
\(315\) 0 0
\(316\) 9.64020 0.542304
\(317\) 11.3256 0.636111 0.318055 0.948072i \(-0.396970\pi\)
0.318055 + 0.948072i \(0.396970\pi\)
\(318\) 0 0
\(319\) −4.10742 −0.229971
\(320\) −0.949474 −0.0530772
\(321\) 0 0
\(322\) −14.3256 −0.798335
\(323\) −40.9746 −2.27989
\(324\) 0 0
\(325\) −10.8726 −0.603104
\(326\) −3.87053 −0.214369
\(327\) 0 0
\(328\) −2.42733 −0.134027
\(329\) −6.10726 −0.336704
\(330\) 0 0
\(331\) −26.7870 −1.47235 −0.736174 0.676792i \(-0.763370\pi\)
−0.736174 + 0.676792i \(0.763370\pi\)
\(332\) 5.29091 0.290376
\(333\) 0 0
\(334\) 17.2998 0.946603
\(335\) −8.57841 −0.468689
\(336\) 0 0
\(337\) −20.0579 −1.09262 −0.546310 0.837583i \(-0.683968\pi\)
−0.546310 + 0.837583i \(0.683968\pi\)
\(338\) −5.96251 −0.324318
\(339\) 0 0
\(340\) −7.20054 −0.390504
\(341\) 9.53646 0.516428
\(342\) 0 0
\(343\) −9.49008 −0.512416
\(344\) 9.79523 0.528124
\(345\) 0 0
\(346\) 10.2202 0.549443
\(347\) −16.2126 −0.870335 −0.435168 0.900349i \(-0.643311\pi\)
−0.435168 + 0.900349i \(0.643311\pi\)
\(348\) 0 0
\(349\) −17.3932 −0.931038 −0.465519 0.885038i \(-0.654132\pi\)
−0.465519 + 0.885038i \(0.654132\pi\)
\(350\) 16.5709 0.885753
\(351\) 0 0
\(352\) −1.82314 −0.0971735
\(353\) −12.6778 −0.674772 −0.337386 0.941366i \(-0.609543\pi\)
−0.337386 + 0.941366i \(0.609543\pi\)
\(354\) 0 0
\(355\) 9.83503 0.521989
\(356\) 15.0956 0.800066
\(357\) 0 0
\(358\) −21.1620 −1.11845
\(359\) −15.4716 −0.816560 −0.408280 0.912857i \(-0.633871\pi\)
−0.408280 + 0.912857i \(0.633871\pi\)
\(360\) 0 0
\(361\) 10.1920 0.536423
\(362\) −9.76447 −0.513209
\(363\) 0 0
\(364\) −10.7258 −0.562186
\(365\) −2.78344 −0.145692
\(366\) 0 0
\(367\) −17.9237 −0.935611 −0.467805 0.883832i \(-0.654955\pi\)
−0.467805 + 0.883832i \(0.654955\pi\)
\(368\) 3.54317 0.184700
\(369\) 0 0
\(370\) 0.949474 0.0493608
\(371\) 20.1726 1.04731
\(372\) 0 0
\(373\) −20.8143 −1.07772 −0.538862 0.842394i \(-0.681146\pi\)
−0.538862 + 0.842394i \(0.681146\pi\)
\(374\) −13.8262 −0.714933
\(375\) 0 0
\(376\) 1.51051 0.0778988
\(377\) 5.97666 0.307814
\(378\) 0 0
\(379\) −24.4311 −1.25494 −0.627472 0.778639i \(-0.715910\pi\)
−0.627472 + 0.778639i \(0.715910\pi\)
\(380\) 5.12997 0.263162
\(381\) 0 0
\(382\) 8.02147 0.410414
\(383\) 17.3044 0.884216 0.442108 0.896962i \(-0.354231\pi\)
0.442108 + 0.896962i \(0.354231\pi\)
\(384\) 0 0
\(385\) −6.99880 −0.356692
\(386\) 12.2955 0.625825
\(387\) 0 0
\(388\) 9.33056 0.473688
\(389\) −5.49088 −0.278399 −0.139199 0.990264i \(-0.544453\pi\)
−0.139199 + 0.990264i \(0.544453\pi\)
\(390\) 0 0
\(391\) 26.8704 1.35889
\(392\) 9.34719 0.472104
\(393\) 0 0
\(394\) 23.3938 1.17856
\(395\) −9.15312 −0.460543
\(396\) 0 0
\(397\) 26.3543 1.32269 0.661343 0.750084i \(-0.269987\pi\)
0.661343 + 0.750084i \(0.269987\pi\)
\(398\) 9.00271 0.451265
\(399\) 0 0
\(400\) −4.09850 −0.204925
\(401\) −30.3957 −1.51789 −0.758945 0.651154i \(-0.774285\pi\)
−0.758945 + 0.651154i \(0.774285\pi\)
\(402\) 0 0
\(403\) −13.8764 −0.691233
\(404\) 7.69792 0.382986
\(405\) 0 0
\(406\) −9.10901 −0.452072
\(407\) 1.82314 0.0903695
\(408\) 0 0
\(409\) 2.75587 0.136269 0.0681345 0.997676i \(-0.478295\pi\)
0.0681345 + 0.997676i \(0.478295\pi\)
\(410\) 2.30469 0.113820
\(411\) 0 0
\(412\) 17.3840 0.856446
\(413\) 49.3551 2.42861
\(414\) 0 0
\(415\) −5.02358 −0.246598
\(416\) 2.65283 0.130066
\(417\) 0 0
\(418\) 9.85034 0.481796
\(419\) −27.7422 −1.35529 −0.677647 0.735387i \(-0.737000\pi\)
−0.677647 + 0.735387i \(0.737000\pi\)
\(420\) 0 0
\(421\) −18.9114 −0.921686 −0.460843 0.887482i \(-0.652453\pi\)
−0.460843 + 0.887482i \(0.652453\pi\)
\(422\) 23.8522 1.16111
\(423\) 0 0
\(424\) −4.98930 −0.242302
\(425\) −31.0819 −1.50769
\(426\) 0 0
\(427\) −6.52003 −0.315526
\(428\) 9.97908 0.482357
\(429\) 0 0
\(430\) −9.30031 −0.448501
\(431\) −38.0148 −1.83111 −0.915555 0.402192i \(-0.868248\pi\)
−0.915555 + 0.402192i \(0.868248\pi\)
\(432\) 0 0
\(433\) −36.4405 −1.75122 −0.875609 0.483021i \(-0.839539\pi\)
−0.875609 + 0.483021i \(0.839539\pi\)
\(434\) 21.1490 1.01518
\(435\) 0 0
\(436\) 7.02860 0.336609
\(437\) −19.1436 −0.915763
\(438\) 0 0
\(439\) 21.3279 1.01793 0.508963 0.860789i \(-0.330029\pi\)
0.508963 + 0.860789i \(0.330029\pi\)
\(440\) 1.73102 0.0825231
\(441\) 0 0
\(442\) 20.1183 0.956930
\(443\) 8.11476 0.385544 0.192772 0.981244i \(-0.438252\pi\)
0.192772 + 0.981244i \(0.438252\pi\)
\(444\) 0 0
\(445\) −14.3329 −0.679444
\(446\) −10.7527 −0.509154
\(447\) 0 0
\(448\) −4.04317 −0.191022
\(449\) −11.0770 −0.522757 −0.261378 0.965236i \(-0.584177\pi\)
−0.261378 + 0.965236i \(0.584177\pi\)
\(450\) 0 0
\(451\) 4.42536 0.208382
\(452\) 12.7285 0.598700
\(453\) 0 0
\(454\) 1.16889 0.0548587
\(455\) 10.1839 0.477428
\(456\) 0 0
\(457\) 18.4871 0.864788 0.432394 0.901685i \(-0.357669\pi\)
0.432394 + 0.901685i \(0.357669\pi\)
\(458\) 17.5125 0.818304
\(459\) 0 0
\(460\) −3.36414 −0.156854
\(461\) 13.6124 0.633991 0.316996 0.948427i \(-0.397326\pi\)
0.316996 + 0.948427i \(0.397326\pi\)
\(462\) 0 0
\(463\) −7.87343 −0.365909 −0.182955 0.983121i \(-0.558566\pi\)
−0.182955 + 0.983121i \(0.558566\pi\)
\(464\) 2.25294 0.104590
\(465\) 0 0
\(466\) 13.6563 0.632618
\(467\) 7.42635 0.343650 0.171825 0.985127i \(-0.445034\pi\)
0.171825 + 0.985127i \(0.445034\pi\)
\(468\) 0 0
\(469\) −36.5297 −1.68678
\(470\) −1.43419 −0.0661544
\(471\) 0 0
\(472\) −12.2070 −0.561875
\(473\) −17.8580 −0.821114
\(474\) 0 0
\(475\) 22.1441 1.01604
\(476\) −30.6622 −1.40540
\(477\) 0 0
\(478\) −20.0715 −0.918050
\(479\) −24.5363 −1.12109 −0.560546 0.828123i \(-0.689409\pi\)
−0.560546 + 0.828123i \(0.689409\pi\)
\(480\) 0 0
\(481\) −2.65283 −0.120959
\(482\) 3.04219 0.138568
\(483\) 0 0
\(484\) −7.67617 −0.348917
\(485\) −8.85912 −0.402272
\(486\) 0 0
\(487\) 22.7588 1.03130 0.515650 0.856800i \(-0.327551\pi\)
0.515650 + 0.856800i \(0.327551\pi\)
\(488\) 1.61261 0.0729992
\(489\) 0 0
\(490\) −8.87491 −0.400928
\(491\) 34.1327 1.54039 0.770193 0.637811i \(-0.220160\pi\)
0.770193 + 0.637811i \(0.220160\pi\)
\(492\) 0 0
\(493\) 17.0856 0.769499
\(494\) −14.3331 −0.644878
\(495\) 0 0
\(496\) −5.23080 −0.234870
\(497\) 41.8808 1.87861
\(498\) 0 0
\(499\) 40.5029 1.81316 0.906580 0.422033i \(-0.138683\pi\)
0.906580 + 0.422033i \(0.138683\pi\)
\(500\) 8.63878 0.386338
\(501\) 0 0
\(502\) −30.0821 −1.34263
\(503\) 2.32706 0.103758 0.0518792 0.998653i \(-0.483479\pi\)
0.0518792 + 0.998653i \(0.483479\pi\)
\(504\) 0 0
\(505\) −7.30897 −0.325245
\(506\) −6.45968 −0.287168
\(507\) 0 0
\(508\) −2.00548 −0.0889786
\(509\) −1.67955 −0.0744448 −0.0372224 0.999307i \(-0.511851\pi\)
−0.0372224 + 0.999307i \(0.511851\pi\)
\(510\) 0 0
\(511\) −11.8528 −0.524337
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −30.0228 −1.32425
\(515\) −16.5056 −0.727324
\(516\) 0 0
\(517\) −2.75387 −0.121115
\(518\) 4.04317 0.177647
\(519\) 0 0
\(520\) −2.51879 −0.110456
\(521\) −14.0917 −0.617370 −0.308685 0.951164i \(-0.599889\pi\)
−0.308685 + 0.951164i \(0.599889\pi\)
\(522\) 0 0
\(523\) 14.8457 0.649159 0.324580 0.945858i \(-0.394777\pi\)
0.324580 + 0.945858i \(0.394777\pi\)
\(524\) −5.60693 −0.244940
\(525\) 0 0
\(526\) 5.85068 0.255102
\(527\) −39.6689 −1.72800
\(528\) 0 0
\(529\) −10.4460 −0.454172
\(530\) 4.73721 0.205771
\(531\) 0 0
\(532\) 21.8451 0.947105
\(533\) −6.43929 −0.278917
\(534\) 0 0
\(535\) −9.47487 −0.409634
\(536\) 9.03491 0.390249
\(537\) 0 0
\(538\) −13.2488 −0.571197
\(539\) −17.0412 −0.734017
\(540\) 0 0
\(541\) −25.4514 −1.09424 −0.547120 0.837054i \(-0.684276\pi\)
−0.547120 + 0.837054i \(0.684276\pi\)
\(542\) 28.1980 1.21121
\(543\) 0 0
\(544\) 7.58372 0.325149
\(545\) −6.67347 −0.285860
\(546\) 0 0
\(547\) −40.3821 −1.72662 −0.863308 0.504678i \(-0.831611\pi\)
−0.863308 + 0.504678i \(0.831611\pi\)
\(548\) −6.11247 −0.261112
\(549\) 0 0
\(550\) 7.47213 0.318613
\(551\) −12.1726 −0.518568
\(552\) 0 0
\(553\) −38.9769 −1.65747
\(554\) 16.5354 0.702520
\(555\) 0 0
\(556\) 9.39268 0.398338
\(557\) 14.3391 0.607568 0.303784 0.952741i \(-0.401750\pi\)
0.303784 + 0.952741i \(0.401750\pi\)
\(558\) 0 0
\(559\) 25.9851 1.09905
\(560\) 3.83888 0.162222
\(561\) 0 0
\(562\) 20.5622 0.867364
\(563\) 4.16081 0.175357 0.0876785 0.996149i \(-0.472055\pi\)
0.0876785 + 0.996149i \(0.472055\pi\)
\(564\) 0 0
\(565\) −12.0854 −0.508437
\(566\) −28.6982 −1.20628
\(567\) 0 0
\(568\) −10.3584 −0.434629
\(569\) −14.1606 −0.593645 −0.296822 0.954933i \(-0.595927\pi\)
−0.296822 + 0.954933i \(0.595927\pi\)
\(570\) 0 0
\(571\) −6.79736 −0.284461 −0.142230 0.989834i \(-0.545427\pi\)
−0.142230 + 0.989834i \(0.545427\pi\)
\(572\) −4.83647 −0.202223
\(573\) 0 0
\(574\) 9.81411 0.409633
\(575\) −14.5217 −0.605596
\(576\) 0 0
\(577\) 42.6431 1.77526 0.887628 0.460561i \(-0.152352\pi\)
0.887628 + 0.460561i \(0.152352\pi\)
\(578\) 40.5127 1.68511
\(579\) 0 0
\(580\) −2.13911 −0.0888215
\(581\) −21.3920 −0.887491
\(582\) 0 0
\(583\) 9.09617 0.376725
\(584\) 2.93156 0.121309
\(585\) 0 0
\(586\) −12.4437 −0.514045
\(587\) −2.93783 −0.121257 −0.0606286 0.998160i \(-0.519311\pi\)
−0.0606286 + 0.998160i \(0.519311\pi\)
\(588\) 0 0
\(589\) 28.2618 1.16451
\(590\) 11.5903 0.477164
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 7.58214 0.311361 0.155681 0.987807i \(-0.450243\pi\)
0.155681 + 0.987807i \(0.450243\pi\)
\(594\) 0 0
\(595\) 29.1130 1.19352
\(596\) 5.31790 0.217830
\(597\) 0 0
\(598\) 9.39941 0.384371
\(599\) 12.4825 0.510021 0.255011 0.966938i \(-0.417921\pi\)
0.255011 + 0.966938i \(0.417921\pi\)
\(600\) 0 0
\(601\) 25.7914 1.05205 0.526027 0.850468i \(-0.323681\pi\)
0.526027 + 0.850468i \(0.323681\pi\)
\(602\) −39.6037 −1.61413
\(603\) 0 0
\(604\) 4.07823 0.165941
\(605\) 7.28832 0.296312
\(606\) 0 0
\(607\) 41.7117 1.69303 0.846513 0.532368i \(-0.178698\pi\)
0.846513 + 0.532368i \(0.178698\pi\)
\(608\) −5.40297 −0.219119
\(609\) 0 0
\(610\) −1.53113 −0.0619935
\(611\) 4.00713 0.162111
\(612\) 0 0
\(613\) −17.2841 −0.698099 −0.349049 0.937104i \(-0.613495\pi\)
−0.349049 + 0.937104i \(0.613495\pi\)
\(614\) 0.945546 0.0381591
\(615\) 0 0
\(616\) 7.37124 0.296996
\(617\) 33.3670 1.34330 0.671651 0.740867i \(-0.265585\pi\)
0.671651 + 0.740867i \(0.265585\pi\)
\(618\) 0 0
\(619\) 29.6455 1.19155 0.595776 0.803150i \(-0.296844\pi\)
0.595776 + 0.803150i \(0.296844\pi\)
\(620\) 4.96650 0.199460
\(621\) 0 0
\(622\) −0.353447 −0.0141719
\(623\) −61.0341 −2.44528
\(624\) 0 0
\(625\) 12.2902 0.491608
\(626\) 13.2578 0.529889
\(627\) 0 0
\(628\) 22.3662 0.892509
\(629\) −7.58372 −0.302383
\(630\) 0 0
\(631\) 1.45670 0.0579903 0.0289952 0.999580i \(-0.490769\pi\)
0.0289952 + 0.999580i \(0.490769\pi\)
\(632\) 9.64020 0.383467
\(633\) 0 0
\(634\) 11.3256 0.449798
\(635\) 1.90415 0.0755637
\(636\) 0 0
\(637\) 24.7965 0.982473
\(638\) −4.10742 −0.162614
\(639\) 0 0
\(640\) −0.949474 −0.0375312
\(641\) −3.92506 −0.155031 −0.0775154 0.996991i \(-0.524699\pi\)
−0.0775154 + 0.996991i \(0.524699\pi\)
\(642\) 0 0
\(643\) −24.8996 −0.981943 −0.490971 0.871176i \(-0.663358\pi\)
−0.490971 + 0.871176i \(0.663358\pi\)
\(644\) −14.3256 −0.564508
\(645\) 0 0
\(646\) −40.9746 −1.61212
\(647\) 2.56819 0.100966 0.0504829 0.998725i \(-0.483924\pi\)
0.0504829 + 0.998725i \(0.483924\pi\)
\(648\) 0 0
\(649\) 22.2551 0.873590
\(650\) −10.8726 −0.426459
\(651\) 0 0
\(652\) −3.87053 −0.151582
\(653\) 0.768873 0.0300883 0.0150442 0.999887i \(-0.495211\pi\)
0.0150442 + 0.999887i \(0.495211\pi\)
\(654\) 0 0
\(655\) 5.32363 0.208012
\(656\) −2.42733 −0.0947714
\(657\) 0 0
\(658\) −6.10726 −0.238086
\(659\) 9.64449 0.375696 0.187848 0.982198i \(-0.439849\pi\)
0.187848 + 0.982198i \(0.439849\pi\)
\(660\) 0 0
\(661\) −3.86806 −0.150450 −0.0752250 0.997167i \(-0.523968\pi\)
−0.0752250 + 0.997167i \(0.523968\pi\)
\(662\) −26.7870 −1.04111
\(663\) 0 0
\(664\) 5.29091 0.205327
\(665\) −20.7413 −0.804314
\(666\) 0 0
\(667\) 7.98254 0.309085
\(668\) 17.2998 0.669349
\(669\) 0 0
\(670\) −8.57841 −0.331413
\(671\) −2.94000 −0.113497
\(672\) 0 0
\(673\) 40.2074 1.54988 0.774940 0.632035i \(-0.217780\pi\)
0.774940 + 0.632035i \(0.217780\pi\)
\(674\) −20.0579 −0.772600
\(675\) 0 0
\(676\) −5.96251 −0.229327
\(677\) −17.4762 −0.671665 −0.335832 0.941922i \(-0.609018\pi\)
−0.335832 + 0.941922i \(0.609018\pi\)
\(678\) 0 0
\(679\) −37.7250 −1.44775
\(680\) −7.20054 −0.276128
\(681\) 0 0
\(682\) 9.53646 0.365170
\(683\) 7.05834 0.270080 0.135040 0.990840i \(-0.456884\pi\)
0.135040 + 0.990840i \(0.456884\pi\)
\(684\) 0 0
\(685\) 5.80363 0.221745
\(686\) −9.49008 −0.362333
\(687\) 0 0
\(688\) 9.79523 0.373440
\(689\) −13.2357 −0.504242
\(690\) 0 0
\(691\) 18.8279 0.716246 0.358123 0.933674i \(-0.383417\pi\)
0.358123 + 0.933674i \(0.383417\pi\)
\(692\) 10.2202 0.388515
\(693\) 0 0
\(694\) −16.2126 −0.615420
\(695\) −8.91810 −0.338283
\(696\) 0 0
\(697\) −18.4082 −0.697260
\(698\) −17.3932 −0.658344
\(699\) 0 0
\(700\) 16.5709 0.626322
\(701\) 35.9910 1.35936 0.679681 0.733507i \(-0.262118\pi\)
0.679681 + 0.733507i \(0.262118\pi\)
\(702\) 0 0
\(703\) 5.40297 0.203777
\(704\) −1.82314 −0.0687121
\(705\) 0 0
\(706\) −12.6778 −0.477136
\(707\) −31.1240 −1.17054
\(708\) 0 0
\(709\) −19.3572 −0.726976 −0.363488 0.931599i \(-0.618414\pi\)
−0.363488 + 0.931599i \(0.618414\pi\)
\(710\) 9.83503 0.369102
\(711\) 0 0
\(712\) 15.0956 0.565732
\(713\) −18.5336 −0.694088
\(714\) 0 0
\(715\) 4.59210 0.171735
\(716\) −21.1620 −0.790861
\(717\) 0 0
\(718\) −15.4716 −0.577395
\(719\) −0.921503 −0.0343663 −0.0171831 0.999852i \(-0.505470\pi\)
−0.0171831 + 0.999852i \(0.505470\pi\)
\(720\) 0 0
\(721\) −70.2862 −2.61760
\(722\) 10.1920 0.379308
\(723\) 0 0
\(724\) −9.76447 −0.362894
\(725\) −9.23367 −0.342930
\(726\) 0 0
\(727\) −37.7887 −1.40151 −0.700753 0.713404i \(-0.747152\pi\)
−0.700753 + 0.713404i \(0.747152\pi\)
\(728\) −10.7258 −0.397525
\(729\) 0 0
\(730\) −2.78344 −0.103020
\(731\) 74.2843 2.74750
\(732\) 0 0
\(733\) 40.3737 1.49124 0.745619 0.666373i \(-0.232154\pi\)
0.745619 + 0.666373i \(0.232154\pi\)
\(734\) −17.9237 −0.661577
\(735\) 0 0
\(736\) 3.54317 0.130603
\(737\) −16.4719 −0.606750
\(738\) 0 0
\(739\) 40.9013 1.50458 0.752290 0.658832i \(-0.228949\pi\)
0.752290 + 0.658832i \(0.228949\pi\)
\(740\) 0.949474 0.0349033
\(741\) 0 0
\(742\) 20.1726 0.740558
\(743\) −35.1813 −1.29068 −0.645338 0.763897i \(-0.723283\pi\)
−0.645338 + 0.763897i \(0.723283\pi\)
\(744\) 0 0
\(745\) −5.04920 −0.184989
\(746\) −20.8143 −0.762066
\(747\) 0 0
\(748\) −13.8262 −0.505534
\(749\) −40.3471 −1.47425
\(750\) 0 0
\(751\) 31.5323 1.15063 0.575315 0.817932i \(-0.304879\pi\)
0.575315 + 0.817932i \(0.304879\pi\)
\(752\) 1.51051 0.0550828
\(753\) 0 0
\(754\) 5.97666 0.217657
\(755\) −3.87217 −0.140923
\(756\) 0 0
\(757\) −21.9828 −0.798980 −0.399490 0.916738i \(-0.630813\pi\)
−0.399490 + 0.916738i \(0.630813\pi\)
\(758\) −24.4311 −0.887379
\(759\) 0 0
\(760\) 5.12997 0.186084
\(761\) 0.722838 0.0262029 0.0131014 0.999914i \(-0.495830\pi\)
0.0131014 + 0.999914i \(0.495830\pi\)
\(762\) 0 0
\(763\) −28.4178 −1.02879
\(764\) 8.02147 0.290206
\(765\) 0 0
\(766\) 17.3044 0.625235
\(767\) −32.3832 −1.16929
\(768\) 0 0
\(769\) 5.21208 0.187952 0.0939761 0.995574i \(-0.470042\pi\)
0.0939761 + 0.995574i \(0.470042\pi\)
\(770\) −6.99880 −0.252219
\(771\) 0 0
\(772\) 12.2955 0.442525
\(773\) −14.8217 −0.533100 −0.266550 0.963821i \(-0.585884\pi\)
−0.266550 + 0.963821i \(0.585884\pi\)
\(774\) 0 0
\(775\) 21.4384 0.770091
\(776\) 9.33056 0.334948
\(777\) 0 0
\(778\) −5.49088 −0.196858
\(779\) 13.1148 0.469886
\(780\) 0 0
\(781\) 18.8848 0.675751
\(782\) 26.8704 0.960883
\(783\) 0 0
\(784\) 9.34719 0.333828
\(785\) −21.2361 −0.757950
\(786\) 0 0
\(787\) 24.4344 0.870992 0.435496 0.900191i \(-0.356573\pi\)
0.435496 + 0.900191i \(0.356573\pi\)
\(788\) 23.3938 0.833370
\(789\) 0 0
\(790\) −9.15312 −0.325653
\(791\) −51.4636 −1.82983
\(792\) 0 0
\(793\) 4.27796 0.151915
\(794\) 26.3543 0.935280
\(795\) 0 0
\(796\) 9.00271 0.319092
\(797\) −2.52142 −0.0893134 −0.0446567 0.999002i \(-0.514219\pi\)
−0.0446567 + 0.999002i \(0.514219\pi\)
\(798\) 0 0
\(799\) 11.4553 0.405260
\(800\) −4.09850 −0.144904
\(801\) 0 0
\(802\) −30.3957 −1.07331
\(803\) −5.34464 −0.188608
\(804\) 0 0
\(805\) 13.6018 0.479400
\(806\) −13.8764 −0.488775
\(807\) 0 0
\(808\) 7.69792 0.270812
\(809\) −15.8013 −0.555543 −0.277771 0.960647i \(-0.589596\pi\)
−0.277771 + 0.960647i \(0.589596\pi\)
\(810\) 0 0
\(811\) −8.96155 −0.314683 −0.157341 0.987544i \(-0.550292\pi\)
−0.157341 + 0.987544i \(0.550292\pi\)
\(812\) −9.10901 −0.319663
\(813\) 0 0
\(814\) 1.82314 0.0639009
\(815\) 3.67497 0.128729
\(816\) 0 0
\(817\) −52.9233 −1.85155
\(818\) 2.75587 0.0963567
\(819\) 0 0
\(820\) 2.30469 0.0804832
\(821\) −47.9438 −1.67325 −0.836625 0.547777i \(-0.815474\pi\)
−0.836625 + 0.547777i \(0.815474\pi\)
\(822\) 0 0
\(823\) 29.0381 1.01220 0.506102 0.862473i \(-0.331086\pi\)
0.506102 + 0.862473i \(0.331086\pi\)
\(824\) 17.3840 0.605599
\(825\) 0 0
\(826\) 49.3551 1.71728
\(827\) 21.6384 0.752442 0.376221 0.926530i \(-0.377223\pi\)
0.376221 + 0.926530i \(0.377223\pi\)
\(828\) 0 0
\(829\) 47.7197 1.65737 0.828687 0.559712i \(-0.189088\pi\)
0.828687 + 0.559712i \(0.189088\pi\)
\(830\) −5.02358 −0.174371
\(831\) 0 0
\(832\) 2.65283 0.0919703
\(833\) 70.8864 2.45607
\(834\) 0 0
\(835\) −16.4257 −0.568435
\(836\) 9.85034 0.340681
\(837\) 0 0
\(838\) −27.7422 −0.958338
\(839\) −24.4739 −0.844932 −0.422466 0.906379i \(-0.638835\pi\)
−0.422466 + 0.906379i \(0.638835\pi\)
\(840\) 0 0
\(841\) −23.9243 −0.824975
\(842\) −18.9114 −0.651730
\(843\) 0 0
\(844\) 23.8522 0.821025
\(845\) 5.66124 0.194753
\(846\) 0 0
\(847\) 31.0360 1.06641
\(848\) −4.98930 −0.171333
\(849\) 0 0
\(850\) −31.0819 −1.06610
\(851\) −3.54317 −0.121458
\(852\) 0 0
\(853\) −33.2211 −1.13747 −0.568735 0.822521i \(-0.692567\pi\)
−0.568735 + 0.822521i \(0.692567\pi\)
\(854\) −6.52003 −0.223111
\(855\) 0 0
\(856\) 9.97908 0.341078
\(857\) 26.1000 0.891560 0.445780 0.895143i \(-0.352926\pi\)
0.445780 + 0.895143i \(0.352926\pi\)
\(858\) 0 0
\(859\) −10.8040 −0.368627 −0.184314 0.982867i \(-0.559006\pi\)
−0.184314 + 0.982867i \(0.559006\pi\)
\(860\) −9.30031 −0.317138
\(861\) 0 0
\(862\) −38.0148 −1.29479
\(863\) 53.9732 1.83727 0.918634 0.395110i \(-0.129294\pi\)
0.918634 + 0.395110i \(0.129294\pi\)
\(864\) 0 0
\(865\) −9.70383 −0.329940
\(866\) −36.4405 −1.23830
\(867\) 0 0
\(868\) 21.1490 0.717843
\(869\) −17.5754 −0.596205
\(870\) 0 0
\(871\) 23.9681 0.812127
\(872\) 7.02860 0.238019
\(873\) 0 0
\(874\) −19.1436 −0.647542
\(875\) −34.9280 −1.18078
\(876\) 0 0
\(877\) −36.8411 −1.24404 −0.622018 0.783003i \(-0.713687\pi\)
−0.622018 + 0.783003i \(0.713687\pi\)
\(878\) 21.3279 0.719782
\(879\) 0 0
\(880\) 1.73102 0.0583527
\(881\) −9.98724 −0.336479 −0.168239 0.985746i \(-0.553808\pi\)
−0.168239 + 0.985746i \(0.553808\pi\)
\(882\) 0 0
\(883\) 14.4722 0.487029 0.243514 0.969897i \(-0.421700\pi\)
0.243514 + 0.969897i \(0.421700\pi\)
\(884\) 20.1183 0.676651
\(885\) 0 0
\(886\) 8.11476 0.272621
\(887\) 51.9741 1.74512 0.872559 0.488508i \(-0.162459\pi\)
0.872559 + 0.488508i \(0.162459\pi\)
\(888\) 0 0
\(889\) 8.10847 0.271949
\(890\) −14.3329 −0.480440
\(891\) 0 0
\(892\) −10.7527 −0.360026
\(893\) −8.16126 −0.273106
\(894\) 0 0
\(895\) 20.0928 0.671627
\(896\) −4.04317 −0.135073
\(897\) 0 0
\(898\) −11.0770 −0.369645
\(899\) −11.7847 −0.393041
\(900\) 0 0
\(901\) −37.8374 −1.26055
\(902\) 4.42536 0.147348
\(903\) 0 0
\(904\) 12.7285 0.423345
\(905\) 9.27110 0.308182
\(906\) 0 0
\(907\) 36.9710 1.22760 0.613801 0.789461i \(-0.289640\pi\)
0.613801 + 0.789461i \(0.289640\pi\)
\(908\) 1.16889 0.0387910
\(909\) 0 0
\(910\) 10.1839 0.337592
\(911\) 5.80919 0.192467 0.0962335 0.995359i \(-0.469320\pi\)
0.0962335 + 0.995359i \(0.469320\pi\)
\(912\) 0 0
\(913\) −9.64605 −0.319238
\(914\) 18.4871 0.611498
\(915\) 0 0
\(916\) 17.5125 0.578628
\(917\) 22.6698 0.748621
\(918\) 0 0
\(919\) −44.1079 −1.45499 −0.727493 0.686115i \(-0.759315\pi\)
−0.727493 + 0.686115i \(0.759315\pi\)
\(920\) −3.36414 −0.110913
\(921\) 0 0
\(922\) 13.6124 0.448299
\(923\) −27.4791 −0.904485
\(924\) 0 0
\(925\) 4.09850 0.134758
\(926\) −7.87343 −0.258737
\(927\) 0 0
\(928\) 2.25294 0.0739563
\(929\) −14.0254 −0.460159 −0.230080 0.973172i \(-0.573899\pi\)
−0.230080 + 0.973172i \(0.573899\pi\)
\(930\) 0 0
\(931\) −50.5025 −1.65515
\(932\) 13.6563 0.447328
\(933\) 0 0
\(934\) 7.42635 0.242997
\(935\) 13.1276 0.429317
\(936\) 0 0
\(937\) −26.5435 −0.867138 −0.433569 0.901120i \(-0.642746\pi\)
−0.433569 + 0.901120i \(0.642746\pi\)
\(938\) −36.5297 −1.19274
\(939\) 0 0
\(940\) −1.43419 −0.0467782
\(941\) 15.4165 0.502562 0.251281 0.967914i \(-0.419148\pi\)
0.251281 + 0.967914i \(0.419148\pi\)
\(942\) 0 0
\(943\) −8.60045 −0.280069
\(944\) −12.2070 −0.397305
\(945\) 0 0
\(946\) −17.8580 −0.580615
\(947\) −12.5592 −0.408119 −0.204060 0.978958i \(-0.565414\pi\)
−0.204060 + 0.978958i \(0.565414\pi\)
\(948\) 0 0
\(949\) 7.77693 0.252450
\(950\) 22.1441 0.718448
\(951\) 0 0
\(952\) −30.6622 −0.993768
\(953\) 41.9349 1.35841 0.679203 0.733951i \(-0.262326\pi\)
0.679203 + 0.733951i \(0.262326\pi\)
\(954\) 0 0
\(955\) −7.61617 −0.246453
\(956\) −20.0715 −0.649160
\(957\) 0 0
\(958\) −24.5363 −0.792732
\(959\) 24.7137 0.798049
\(960\) 0 0
\(961\) −3.63877 −0.117380
\(962\) −2.65283 −0.0855306
\(963\) 0 0
\(964\) 3.04219 0.0979822
\(965\) −11.6743 −0.375808
\(966\) 0 0
\(967\) 7.33982 0.236033 0.118016 0.993012i \(-0.462346\pi\)
0.118016 + 0.993012i \(0.462346\pi\)
\(968\) −7.67617 −0.246722
\(969\) 0 0
\(970\) −8.85912 −0.284449
\(971\) 9.43859 0.302899 0.151449 0.988465i \(-0.451606\pi\)
0.151449 + 0.988465i \(0.451606\pi\)
\(972\) 0 0
\(973\) −37.9762 −1.21746
\(974\) 22.7588 0.729239
\(975\) 0 0
\(976\) 1.61261 0.0516182
\(977\) 43.2930 1.38507 0.692533 0.721386i \(-0.256495\pi\)
0.692533 + 0.721386i \(0.256495\pi\)
\(978\) 0 0
\(979\) −27.5214 −0.879587
\(980\) −8.87491 −0.283499
\(981\) 0 0
\(982\) 34.1327 1.08922
\(983\) 46.3782 1.47923 0.739617 0.673028i \(-0.235007\pi\)
0.739617 + 0.673028i \(0.235007\pi\)
\(984\) 0 0
\(985\) −22.2118 −0.707727
\(986\) 17.0856 0.544118
\(987\) 0 0
\(988\) −14.3331 −0.455998
\(989\) 34.7061 1.10359
\(990\) 0 0
\(991\) 56.1550 1.78382 0.891911 0.452211i \(-0.149365\pi\)
0.891911 + 0.452211i \(0.149365\pi\)
\(992\) −5.23080 −0.166078
\(993\) 0 0
\(994\) 41.8808 1.32838
\(995\) −8.54783 −0.270984
\(996\) 0 0
\(997\) 39.1868 1.24106 0.620529 0.784184i \(-0.286918\pi\)
0.620529 + 0.784184i \(0.286918\pi\)
\(998\) 40.5029 1.28210
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5994.2.a.bb.1.4 10
3.2 odd 2 5994.2.a.ba.1.7 10
9.2 odd 6 1998.2.e.e.1333.4 20
9.4 even 3 666.2.e.e.223.9 20
9.5 odd 6 1998.2.e.e.667.4 20
9.7 even 3 666.2.e.e.445.9 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.e.e.223.9 20 9.4 even 3
666.2.e.e.445.9 yes 20 9.7 even 3
1998.2.e.e.667.4 20 9.5 odd 6
1998.2.e.e.1333.4 20 9.2 odd 6
5994.2.a.ba.1.7 10 3.2 odd 2
5994.2.a.bb.1.4 10 1.1 even 1 trivial