Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M16(Γ0(6)).
|
Total |
New |
Old |
Modular forms
| 17 |
3 |
14 |
Cusp forms
| 13 |
3 |
10 |
Eisenstein series
| 4 |
0 |
4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 5 | 1 | 4 | | 4 | 1 | 3 | | 1 | 0 | 1 |
+ | − | − | | 4 | 0 | 4 | | 3 | 0 | 3 | | 1 | 0 | 1 |
− | + | − | | 4 | 1 | 3 | | 3 | 1 | 2 | | 1 | 0 | 1 |
− | − | + | | 4 | 1 | 3 | | 3 | 1 | 2 | | 1 | 0 | 1 |
Plus space | + | | 9 | 2 | 7 | | 7 | 2 | 5 | | 2 | 0 | 2 |
Minus space | − | | 8 | 1 | 7 | | 6 | 1 | 5 | | 2 | 0 | 2 |
Decomposition of S16new(Γ0(6)) into newform subspaces
Decomposition of S16old(Γ0(6)) into lower level spaces