Properties

Label 6.16.a
Level $6$
Weight $16$
Character orbit 6.a
Rep. character $\chi_{6}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $16$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_0(6))\).

Total New Old
Modular forms 17 3 14
Cusp forms 13 3 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(1\)

Trace form

\( 3 q + 128 q^{2} - 2187 q^{3} + 49152 q^{4} - 351654 q^{5} + 279936 q^{6} - 247368 q^{7} + 2097152 q^{8} + 14348907 q^{9} + 35497728 q^{10} + 54814524 q^{11} - 35831808 q^{12} + 236812146 q^{13} - 550077440 q^{14}+ \cdots + 262176169041756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_0(6))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
6.16.a.a 6.a 1.a $1$ $8.562$ \(\Q\) None 6.16.a.a \(-128\) \(-2187\) \(-314490\) \(2025056\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{7}q^{2}-3^{7}q^{3}+2^{14}q^{4}-314490q^{5}+\cdots\)
6.16.a.b 6.a 1.a $1$ $8.562$ \(\Q\) None 6.16.a.b \(128\) \(-2187\) \(-114810\) \(-3034528\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{7}q^{2}-3^{7}q^{3}+2^{14}q^{4}-114810q^{5}+\cdots\)
6.16.a.c 6.a 1.a $1$ $8.562$ \(\Q\) None 6.16.a.c \(128\) \(2187\) \(77646\) \(762104\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{7}q^{2}+3^{7}q^{3}+2^{14}q^{4}+77646q^{5}+\cdots\)

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_0(6))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_0(6)) \simeq \) \(S_{16}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)