Defining parameters
Level: | \( N \) | \(=\) | \( 6 = 2 \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 16 \) |
Character orbit: | \([\chi]\) | \(=\) | 6.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_0(6))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17 | 3 | 14 |
Cusp forms | 13 | 3 | 10 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_0(6))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
6.16.a.a | $1$ | $8.562$ | \(\Q\) | None | \(-128\) | \(-2187\) | \(-314490\) | \(2025056\) | $+$ | $+$ | \(q-2^{7}q^{2}-3^{7}q^{3}+2^{14}q^{4}-314490q^{5}+\cdots\) | |
6.16.a.b | $1$ | $8.562$ | \(\Q\) | None | \(128\) | \(-2187\) | \(-114810\) | \(-3034528\) | $-$ | $+$ | \(q+2^{7}q^{2}-3^{7}q^{3}+2^{14}q^{4}-114810q^{5}+\cdots\) | |
6.16.a.c | $1$ | $8.562$ | \(\Q\) | None | \(128\) | \(2187\) | \(77646\) | \(762104\) | $-$ | $-$ | \(q+2^{7}q^{2}+3^{7}q^{3}+2^{14}q^{4}+77646q^{5}+\cdots\) |
Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_0(6))\) into lower level spaces
\( S_{16}^{\mathrm{old}}(\Gamma_0(6)) \simeq \) \(S_{16}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)