Properties

Label 6.20.a.c
Level $6$
Weight $20$
Character orbit 6.a
Self dual yes
Analytic conductor $13.729$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,20,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 20, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 20);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.7290017934\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 512 q^{2} + 19683 q^{3} + 262144 q^{4} + 1953390 q^{5} + 10077696 q^{6} + 40488776 q^{7} + 134217728 q^{8} + 387420489 q^{9} + 1000135680 q^{10} + 1916860452 q^{11} + 5159780352 q^{12} + 3132480182 q^{13}+ \cdots + 74\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
512.000 19683.0 262144. 1.95339e6 1.00777e7 4.04888e7 1.34218e8 3.87420e8 1.00014e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.20.a.c 1
3.b odd 2 1 18.20.a.a 1
4.b odd 2 1 48.20.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.20.a.c 1 1.a even 1 1 trivial
18.20.a.a 1 3.b odd 2 1
48.20.a.b 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 1953390 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(6))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 512 \) Copy content Toggle raw display
$3$ \( T - 19683 \) Copy content Toggle raw display
$5$ \( T - 1953390 \) Copy content Toggle raw display
$7$ \( T - 40488776 \) Copy content Toggle raw display
$11$ \( T - 1916860452 \) Copy content Toggle raw display
$13$ \( T - 3132480182 \) Copy content Toggle raw display
$17$ \( T - 607659965586 \) Copy content Toggle raw display
$19$ \( T - 2507511106460 \) Copy content Toggle raw display
$23$ \( T + 13588841327928 \) Copy content Toggle raw display
$29$ \( T + 95129927516010 \) Copy content Toggle raw display
$31$ \( T + 128131172993488 \) Copy content Toggle raw display
$37$ \( T + 306931332936994 \) Copy content Toggle raw display
$41$ \( T - 1928507793837402 \) Copy content Toggle raw display
$43$ \( T + 6036474006185788 \) Copy content Toggle raw display
$47$ \( T + 2205402168106704 \) Copy content Toggle raw display
$53$ \( T - 30\!\cdots\!62 \) Copy content Toggle raw display
$59$ \( T - 51\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T + 62\!\cdots\!98 \) Copy content Toggle raw display
$67$ \( T + 13\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T + 13\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T + 33\!\cdots\!78 \) Copy content Toggle raw display
$79$ \( T - 16\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T - 33\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T + 20\!\cdots\!90 \) Copy content Toggle raw display
$97$ \( T + 28\!\cdots\!54 \) Copy content Toggle raw display
show more
show less