Properties

Label 6.28.a.b
Level $6$
Weight $28$
Character orbit 6.a
Self dual yes
Analytic conductor $27.711$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,28,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.7113344903\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8192 q^{2} - 1594323 q^{3} + 67108864 q^{4} + 2904255750 q^{5} - 13060694016 q^{6} - 493494294832 q^{7} + 549755813888 q^{8} + 2541865828329 q^{9} + 23791663104000 q^{10} - 20157692940660 q^{11} - 106993205379072 q^{12}+ \cdots - 51\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8192.00 −1.59432e6 6.71089e7 2.90426e9 −1.30607e10 −4.93494e11 5.49756e11 2.54187e12 2.37917e13
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.28.a.b 1
3.b odd 2 1 18.28.a.a 1
4.b odd 2 1 48.28.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.28.a.b 1 1.a even 1 1 trivial
18.28.a.a 1 3.b odd 2 1
48.28.a.c 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 2904255750 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(6))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8192 \) Copy content Toggle raw display
$3$ \( T + 1594323 \) Copy content Toggle raw display
$5$ \( T - 2904255750 \) Copy content Toggle raw display
$7$ \( T + 493494294832 \) Copy content Toggle raw display
$11$ \( T + 20157692940660 \) Copy content Toggle raw display
$13$ \( T - 1313545153005254 \) Copy content Toggle raw display
$17$ \( T + 62\!\cdots\!62 \) Copy content Toggle raw display
$19$ \( T + 17\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T + 26\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T + 62\!\cdots\!54 \) Copy content Toggle raw display
$31$ \( T + 17\!\cdots\!52 \) Copy content Toggle raw display
$37$ \( T - 18\!\cdots\!46 \) Copy content Toggle raw display
$41$ \( T - 81\!\cdots\!54 \) Copy content Toggle raw display
$43$ \( T + 89\!\cdots\!88 \) Copy content Toggle raw display
$47$ \( T - 22\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T + 18\!\cdots\!02 \) Copy content Toggle raw display
$59$ \( T + 25\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T + 92\!\cdots\!90 \) Copy content Toggle raw display
$67$ \( T - 84\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T - 11\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T - 16\!\cdots\!34 \) Copy content Toggle raw display
$79$ \( T + 20\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T - 59\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T + 84\!\cdots\!38 \) Copy content Toggle raw display
$97$ \( T - 11\!\cdots\!46 \) Copy content Toggle raw display
show more
show less