Properties

Label 60.12.a.a
Level $60$
Weight $12$
Character orbit 60.a
Self dual yes
Analytic conductor $46.101$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,12,Mod(1,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 60.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1005908336\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{26929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 6732 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 120\sqrt{26929}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 243 q^{3} - 3125 q^{5} + ( - \beta - 5908) q^{7} + 59049 q^{9} + (32 \beta + 276936) q^{11} + ( - 19 \beta + 506450) q^{13} + 759375 q^{15} + ( - 479 \beta + 262782) q^{17} + (691 \beta + 3800060) q^{19}+ \cdots + (1889568 \beta + 16352793864) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 486 q^{3} - 6250 q^{5} - 11816 q^{7} + 118098 q^{9} + 553872 q^{11} + 1012900 q^{13} + 1518750 q^{15} + 525564 q^{17} + 7600120 q^{19} + 2871288 q^{21} + 6875616 q^{23} + 19531250 q^{25} - 28697814 q^{27}+ \cdots + 32705587728 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
82.5503
−81.5503
0 −243.000 0 −3125.00 0 −25600.1 0 59049.0 0
1.2 0 −243.000 0 −3125.00 0 13784.1 0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 60.12.a.a 2
3.b odd 2 1 180.12.a.e 2
4.b odd 2 1 240.12.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.12.a.a 2 1.a even 1 1 trivial
180.12.a.e 2 3.b odd 2 1
240.12.a.n 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 11816T_{7} - 352873136 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(60))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 243)^{2} \) Copy content Toggle raw display
$5$ \( (T + 3125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 11816 T - 352873136 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 320390714304 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 116503888900 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 88903025942076 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 170715980222000 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 116390445155136 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 55\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 84\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 39\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 48\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 16\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 11\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 28\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 61\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 20\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
show more
show less