Properties

Label 60.4.i.b.53.1
Level $60$
Weight $4$
Character 60.53
Analytic conductor $3.540$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,4,Mod(17,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.17");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 60.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54011460034\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.370150560000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 131x^{4} + 705x^{2} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.1
Root \(2.52950 + 2.26556i\) of defining polynomial
Character \(\chi\) \(=\) 60.53
Dual form 60.4.i.b.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.05899 - 1.18601i) q^{3} +(8.06226 + 7.74597i) q^{5} +(-16.2450 + 16.2450i) q^{7} +(24.1868 + 12.0000i) q^{9} +70.9789i q^{11} +(2.51000 + 2.51000i) q^{13} +(-31.6001 - 48.7487i) q^{15} +(-24.8194 - 24.8194i) q^{17} -114.450i q^{19} +(101.450 - 62.9166i) q^{21} +(-45.7657 + 45.7657i) q^{23} +(5.00000 + 124.900i) q^{25} +(-108.129 - 89.3936i) q^{27} +42.0477 q^{29} +193.800 q^{31} +(84.1815 - 359.081i) q^{33} +(-256.805 + 5.13815i) q^{35} +(-37.4100 + 37.4100i) q^{37} +(-9.72120 - 15.6750i) q^{39} +245.341i q^{41} +(-171.065 - 171.065i) q^{43} +(102.048 + 284.097i) q^{45} +(253.487 + 253.487i) q^{47} -184.800i q^{49} +(96.1249 + 154.997i) q^{51} +(224.794 - 224.794i) q^{53} +(-549.800 + 572.250i) q^{55} +(-135.739 + 579.001i) q^{57} +225.743 q^{59} +183.800 q^{61} +(-587.854 + 197.974i) q^{63} +(0.793892 + 39.6787i) q^{65} +(316.205 - 316.205i) q^{67} +(285.807 - 177.250i) q^{69} -225.898i q^{71} +(349.980 + 349.980i) q^{73} +(122.837 - 637.798i) q^{75} +(-1153.05 - 1153.05i) q^{77} -323.750i q^{79} +(441.000 + 580.483i) q^{81} +(553.837 - 553.837i) q^{83} +(-7.85014 - 392.350i) q^{85} +(-212.719 - 49.8689i) q^{87} -351.886 q^{89} -81.5500 q^{91} +(-980.432 - 229.848i) q^{93} +(886.526 - 922.725i) q^{95} +(-114.920 + 114.920i) q^{97} +(-851.746 + 1716.75i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 80 q^{7} + 120 q^{13} - 120 q^{15} + 312 q^{21} + 40 q^{25} - 448 q^{31} - 600 q^{33} + 600 q^{37} + 480 q^{43} + 1560 q^{45} - 480 q^{51} - 2400 q^{55} - 1560 q^{57} - 528 q^{61} - 960 q^{63} + 2080 q^{67}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/60\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(41\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.05899 1.18601i −0.973603 0.228247i
\(4\) 0 0
\(5\) 8.06226 + 7.74597i 0.721110 + 0.692820i
\(6\) 0 0
\(7\) −16.2450 + 16.2450i −0.877147 + 0.877147i −0.993239 0.116091i \(-0.962964\pi\)
0.116091 + 0.993239i \(0.462964\pi\)
\(8\) 0 0
\(9\) 24.1868 + 12.0000i 0.895806 + 0.444444i
\(10\) 0 0
\(11\) 70.9789i 1.94554i 0.231774 + 0.972770i \(0.425547\pi\)
−0.231774 + 0.972770i \(0.574453\pi\)
\(12\) 0 0
\(13\) 2.51000 + 2.51000i 0.0535500 + 0.0535500i 0.733375 0.679825i \(-0.237944\pi\)
−0.679825 + 0.733375i \(0.737944\pi\)
\(14\) 0 0
\(15\) −31.6001 48.7487i −0.543941 0.839123i
\(16\) 0 0
\(17\) −24.8194 24.8194i −0.354093 0.354093i 0.507537 0.861630i \(-0.330556\pi\)
−0.861630 + 0.507537i \(0.830556\pi\)
\(18\) 0 0
\(19\) 114.450i 1.38193i −0.722889 0.690964i \(-0.757186\pi\)
0.722889 0.690964i \(-0.242814\pi\)
\(20\) 0 0
\(21\) 101.450 62.9166i 1.05420 0.653787i
\(22\) 0 0
\(23\) −45.7657 + 45.7657i −0.414905 + 0.414905i −0.883443 0.468538i \(-0.844781\pi\)
0.468538 + 0.883443i \(0.344781\pi\)
\(24\) 0 0
\(25\) 5.00000 + 124.900i 0.0400000 + 0.999200i
\(26\) 0 0
\(27\) −108.129 89.3936i −0.770717 0.637178i
\(28\) 0 0
\(29\) 42.0477 0.269244 0.134622 0.990897i \(-0.457018\pi\)
0.134622 + 0.990897i \(0.457018\pi\)
\(30\) 0 0
\(31\) 193.800 1.12282 0.561411 0.827537i \(-0.310259\pi\)
0.561411 + 0.827537i \(0.310259\pi\)
\(32\) 0 0
\(33\) 84.1815 359.081i 0.444064 1.89418i
\(34\) 0 0
\(35\) −256.805 + 5.13815i −1.24023 + 0.0248144i
\(36\) 0 0
\(37\) −37.4100 + 37.4100i −0.166221 + 0.166221i −0.785316 0.619095i \(-0.787499\pi\)
0.619095 + 0.785316i \(0.287499\pi\)
\(38\) 0 0
\(39\) −9.72120 15.6750i −0.0399138 0.0643591i
\(40\) 0 0
\(41\) 245.341i 0.934531i 0.884117 + 0.467265i \(0.154761\pi\)
−0.884117 + 0.467265i \(0.845239\pi\)
\(42\) 0 0
\(43\) −171.065 171.065i −0.606678 0.606678i 0.335398 0.942076i \(-0.391129\pi\)
−0.942076 + 0.335398i \(0.891129\pi\)
\(44\) 0 0
\(45\) 102.048 + 284.097i 0.338055 + 0.941126i
\(46\) 0 0
\(47\) 253.487 + 253.487i 0.786699 + 0.786699i 0.980951 0.194253i \(-0.0622282\pi\)
−0.194253 + 0.980951i \(0.562228\pi\)
\(48\) 0 0
\(49\) 184.800i 0.538775i
\(50\) 0 0
\(51\) 96.1249 + 154.997i 0.263925 + 0.425567i
\(52\) 0 0
\(53\) 224.794 224.794i 0.582601 0.582601i −0.353016 0.935617i \(-0.614844\pi\)
0.935617 + 0.353016i \(0.114844\pi\)
\(54\) 0 0
\(55\) −549.800 + 572.250i −1.34791 + 1.40295i
\(56\) 0 0
\(57\) −135.739 + 579.001i −0.315421 + 1.34545i
\(58\) 0 0
\(59\) 225.743 0.498123 0.249062 0.968488i \(-0.419878\pi\)
0.249062 + 0.968488i \(0.419878\pi\)
\(60\) 0 0
\(61\) 183.800 0.385790 0.192895 0.981219i \(-0.438212\pi\)
0.192895 + 0.981219i \(0.438212\pi\)
\(62\) 0 0
\(63\) −587.854 + 197.974i −1.17560 + 0.395911i
\(64\) 0 0
\(65\) 0.793892 + 39.6787i 0.00151493 + 0.0757160i
\(66\) 0 0
\(67\) 316.205 316.205i 0.576576 0.576576i −0.357382 0.933958i \(-0.616331\pi\)
0.933958 + 0.357382i \(0.116331\pi\)
\(68\) 0 0
\(69\) 285.807 177.250i 0.498654 0.309252i
\(70\) 0 0
\(71\) 225.898i 0.377594i −0.982016 0.188797i \(-0.939541\pi\)
0.982016 0.188797i \(-0.0604588\pi\)
\(72\) 0 0
\(73\) 349.980 + 349.980i 0.561124 + 0.561124i 0.929627 0.368503i \(-0.120129\pi\)
−0.368503 + 0.929627i \(0.620129\pi\)
\(74\) 0 0
\(75\) 122.837 637.798i 0.189120 0.981954i
\(76\) 0 0
\(77\) −1153.05 1153.05i −1.70652 1.70652i
\(78\) 0 0
\(79\) 323.750i 0.461073i −0.973064 0.230536i \(-0.925952\pi\)
0.973064 0.230536i \(-0.0740480\pi\)
\(80\) 0 0
\(81\) 441.000 + 580.483i 0.604938 + 0.796272i
\(82\) 0 0
\(83\) 553.837 553.837i 0.732427 0.732427i −0.238673 0.971100i \(-0.576712\pi\)
0.971100 + 0.238673i \(0.0767123\pi\)
\(84\) 0 0
\(85\) −7.85014 392.350i −0.0100173 0.500663i
\(86\) 0 0
\(87\) −212.719 49.8689i −0.262137 0.0614541i
\(88\) 0 0
\(89\) −351.886 −0.419100 −0.209550 0.977798i \(-0.567200\pi\)
−0.209550 + 0.977798i \(0.567200\pi\)
\(90\) 0 0
\(91\) −81.5500 −0.0939425
\(92\) 0 0
\(93\) −980.432 229.848i −1.09318 0.256281i
\(94\) 0 0
\(95\) 886.526 922.725i 0.957428 0.996522i
\(96\) 0 0
\(97\) −114.920 + 114.920i −0.120292 + 0.120292i −0.764690 0.644398i \(-0.777108\pi\)
0.644398 + 0.764690i \(0.277108\pi\)
\(98\) 0 0
\(99\) −851.746 + 1716.75i −0.864684 + 1.74283i
\(100\) 0 0
\(101\) 942.478i 0.928515i −0.885700 0.464258i \(-0.846321\pi\)
0.885700 0.464258i \(-0.153679\pi\)
\(102\) 0 0
\(103\) 1156.00 + 1156.00i 1.10587 + 1.10587i 0.993688 + 0.112182i \(0.0357839\pi\)
0.112182 + 0.993688i \(0.464216\pi\)
\(104\) 0 0
\(105\) 1305.27 + 278.578i 1.21315 + 0.258919i
\(106\) 0 0
\(107\) 899.565 + 899.565i 0.812750 + 0.812750i 0.985045 0.172296i \(-0.0551184\pi\)
−0.172296 + 0.985045i \(0.555118\pi\)
\(108\) 0 0
\(109\) 1366.70i 1.20097i −0.799635 0.600487i \(-0.794974\pi\)
0.799635 0.600487i \(-0.205026\pi\)
\(110\) 0 0
\(111\) 233.625 144.888i 0.199772 0.123893i
\(112\) 0 0
\(113\) −1450.08 + 1450.08i −1.20718 + 1.20718i −0.235249 + 0.971935i \(0.575590\pi\)
−0.971935 + 0.235249i \(0.924410\pi\)
\(114\) 0 0
\(115\) −723.475 + 14.4753i −0.586647 + 0.0117376i
\(116\) 0 0
\(117\) 30.5888 + 90.8289i 0.0241704 + 0.0717704i
\(118\) 0 0
\(119\) 806.381 0.621183
\(120\) 0 0
\(121\) −3707.00 −2.78512
\(122\) 0 0
\(123\) 290.976 1241.18i 0.213304 0.909862i
\(124\) 0 0
\(125\) −927.160 + 1045.71i −0.663421 + 0.748246i
\(126\) 0 0
\(127\) 1318.21 1318.21i 0.921044 0.921044i −0.0760589 0.997103i \(-0.524234\pi\)
0.997103 + 0.0760589i \(0.0242337\pi\)
\(128\) 0 0
\(129\) 662.532 + 1068.30i 0.452191 + 0.729136i
\(130\) 0 0
\(131\) 535.737i 0.357310i 0.983912 + 0.178655i \(0.0571745\pi\)
−0.983912 + 0.178655i \(0.942825\pi\)
\(132\) 0 0
\(133\) 1859.24 + 1859.24i 1.21215 + 1.21215i
\(134\) 0 0
\(135\) −179.321 1558.27i −0.114322 0.993444i
\(136\) 0 0
\(137\) 1893.99 + 1893.99i 1.18112 + 1.18112i 0.979453 + 0.201672i \(0.0646373\pi\)
0.201672 + 0.979453i \(0.435363\pi\)
\(138\) 0 0
\(139\) 2069.75i 1.26298i 0.775385 + 0.631489i \(0.217556\pi\)
−0.775385 + 0.631489i \(0.782444\pi\)
\(140\) 0 0
\(141\) −981.750 1583.02i −0.586370 0.945494i
\(142\) 0 0
\(143\) −178.157 + 178.157i −0.104184 + 0.104184i
\(144\) 0 0
\(145\) 339.000 + 325.700i 0.194154 + 0.186537i
\(146\) 0 0
\(147\) −219.174 + 934.901i −0.122974 + 0.524553i
\(148\) 0 0
\(149\) −2099.66 −1.15444 −0.577218 0.816590i \(-0.695862\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(150\) 0 0
\(151\) −665.800 −0.358821 −0.179411 0.983774i \(-0.557419\pi\)
−0.179411 + 0.983774i \(0.557419\pi\)
\(152\) 0 0
\(153\) −302.468 898.132i −0.159824 0.474573i
\(154\) 0 0
\(155\) 1562.46 + 1501.17i 0.809679 + 0.777914i
\(156\) 0 0
\(157\) 937.530 937.530i 0.476580 0.476580i −0.427456 0.904036i \(-0.640590\pi\)
0.904036 + 0.427456i \(0.140590\pi\)
\(158\) 0 0
\(159\) −1403.84 + 870.625i −0.700200 + 0.434245i
\(160\) 0 0
\(161\) 1486.93i 0.727866i
\(162\) 0 0
\(163\) −506.165 506.165i −0.243226 0.243226i 0.574957 0.818184i \(-0.305019\pi\)
−0.818184 + 0.574957i \(0.805019\pi\)
\(164\) 0 0
\(165\) 3460.13 2242.94i 1.63255 1.05826i
\(166\) 0 0
\(167\) −1318.81 1318.81i −0.611096 0.611096i 0.332136 0.943232i \(-0.392231\pi\)
−0.943232 + 0.332136i \(0.892231\pi\)
\(168\) 0 0
\(169\) 2184.40i 0.994265i
\(170\) 0 0
\(171\) 1373.40 2768.18i 0.614190 1.23794i
\(172\) 0 0
\(173\) 381.909 381.909i 0.167838 0.167838i −0.618190 0.786028i \(-0.712134\pi\)
0.786028 + 0.618190i \(0.212134\pi\)
\(174\) 0 0
\(175\) −2110.22 1947.77i −0.911531 0.841360i
\(176\) 0 0
\(177\) −1142.03 267.733i −0.484974 0.113695i
\(178\) 0 0
\(179\) −3400.04 −1.41973 −0.709863 0.704340i \(-0.751243\pi\)
−0.709863 + 0.704340i \(0.751243\pi\)
\(180\) 0 0
\(181\) 1713.60 0.703706 0.351853 0.936055i \(-0.385552\pi\)
0.351853 + 0.936055i \(0.385552\pi\)
\(182\) 0 0
\(183\) −929.842 217.988i −0.375606 0.0880554i
\(184\) 0 0
\(185\) −591.385 + 11.8324i −0.235024 + 0.00470237i
\(186\) 0 0
\(187\) 1761.65 1761.65i 0.688902 0.688902i
\(188\) 0 0
\(189\) 3208.75 304.350i 1.23493 0.117133i
\(190\) 0 0
\(191\) 3489.07i 1.32178i 0.750483 + 0.660890i \(0.229821\pi\)
−0.750483 + 0.660890i \(0.770179\pi\)
\(192\) 0 0
\(193\) 2574.56 + 2574.56i 0.960212 + 0.960212i 0.999238 0.0390264i \(-0.0124256\pi\)
−0.0390264 + 0.999238i \(0.512426\pi\)
\(194\) 0 0
\(195\) 43.0429 201.676i 0.0158070 0.0740631i
\(196\) 0 0
\(197\) −1793.29 1793.29i −0.648561 0.648561i 0.304084 0.952645i \(-0.401650\pi\)
−0.952645 + 0.304084i \(0.901650\pi\)
\(198\) 0 0
\(199\) 1529.65i 0.544894i 0.962171 + 0.272447i \(0.0878330\pi\)
−0.962171 + 0.272447i \(0.912167\pi\)
\(200\) 0 0
\(201\) −1974.70 + 1224.66i −0.692958 + 0.429754i
\(202\) 0 0
\(203\) −683.065 + 683.065i −0.236166 + 0.236166i
\(204\) 0 0
\(205\) −1900.40 + 1978.00i −0.647462 + 0.673900i
\(206\) 0 0
\(207\) −1656.11 + 557.737i −0.556077 + 0.187272i
\(208\) 0 0
\(209\) 8123.53 2.68859
\(210\) 0 0
\(211\) −487.401 −0.159024 −0.0795119 0.996834i \(-0.525336\pi\)
−0.0795119 + 0.996834i \(0.525336\pi\)
\(212\) 0 0
\(213\) −267.917 + 1142.82i −0.0861848 + 0.367627i
\(214\) 0 0
\(215\) −54.1063 2704.23i −0.0171629 0.857801i
\(216\) 0 0
\(217\) −3148.28 + 3148.28i −0.984881 + 0.984881i
\(218\) 0 0
\(219\) −1355.47 2185.62i −0.418237 0.674387i
\(220\) 0 0
\(221\) 124.593i 0.0379233i
\(222\) 0 0
\(223\) −1777.01 1777.01i −0.533622 0.533622i 0.388026 0.921648i \(-0.373157\pi\)
−0.921648 + 0.388026i \(0.873157\pi\)
\(224\) 0 0
\(225\) −1377.87 + 3080.93i −0.408256 + 0.912867i
\(226\) 0 0
\(227\) 2347.93 + 2347.93i 0.686509 + 0.686509i 0.961459 0.274949i \(-0.0886611\pi\)
−0.274949 + 0.961459i \(0.588661\pi\)
\(228\) 0 0
\(229\) 3684.30i 1.06317i −0.847006 0.531584i \(-0.821597\pi\)
0.847006 0.531584i \(-0.178403\pi\)
\(230\) 0 0
\(231\) 4465.75 + 7200.80i 1.27197 + 2.05099i
\(232\) 0 0
\(233\) −870.550 + 870.550i −0.244771 + 0.244771i −0.818821 0.574050i \(-0.805372\pi\)
0.574050 + 0.818821i \(0.305372\pi\)
\(234\) 0 0
\(235\) 80.1756 + 4007.17i 0.0222556 + 1.11234i
\(236\) 0 0
\(237\) −383.970 + 1637.85i −0.105239 + 0.448902i
\(238\) 0 0
\(239\) −1783.12 −0.482597 −0.241298 0.970451i \(-0.577573\pi\)
−0.241298 + 0.970451i \(0.577573\pi\)
\(240\) 0 0
\(241\) 3303.40 0.882949 0.441474 0.897274i \(-0.354456\pi\)
0.441474 + 0.897274i \(0.354456\pi\)
\(242\) 0 0
\(243\) −1542.56 3459.69i −0.407223 0.913329i
\(244\) 0 0
\(245\) 1431.45 1489.90i 0.373274 0.388516i
\(246\) 0 0
\(247\) 287.270 287.270i 0.0740022 0.0740022i
\(248\) 0 0
\(249\) −3458.71 + 2145.00i −0.880268 + 0.545919i
\(250\) 0 0
\(251\) 1449.19i 0.364431i −0.983259 0.182215i \(-0.941673\pi\)
0.983259 0.182215i \(-0.0583268\pi\)
\(252\) 0 0
\(253\) −3248.40 3248.40i −0.807214 0.807214i
\(254\) 0 0
\(255\) −425.616 + 1994.21i −0.104522 + 0.489733i
\(256\) 0 0
\(257\) −1530.38 1530.38i −0.371449 0.371449i 0.496556 0.868005i \(-0.334598\pi\)
−0.868005 + 0.496556i \(0.834598\pi\)
\(258\) 0 0
\(259\) 1215.45i 0.291600i
\(260\) 0 0
\(261\) 1017.00 + 504.573i 0.241190 + 0.119664i
\(262\) 0 0
\(263\) 5005.90 5005.90i 1.17368 1.17368i 0.192349 0.981327i \(-0.438389\pi\)
0.981327 0.192349i \(-0.0616106\pi\)
\(264\) 0 0
\(265\) 3553.60 71.1004i 0.823758 0.0164818i
\(266\) 0 0
\(267\) 1780.19 + 417.340i 0.408037 + 0.0956584i
\(268\) 0 0
\(269\) 1939.65 0.439639 0.219819 0.975541i \(-0.429453\pi\)
0.219819 + 0.975541i \(0.429453\pi\)
\(270\) 0 0
\(271\) 938.999 0.210480 0.105240 0.994447i \(-0.466439\pi\)
0.105240 + 0.994447i \(0.466439\pi\)
\(272\) 0 0
\(273\) 412.561 + 96.7189i 0.0914627 + 0.0214421i
\(274\) 0 0
\(275\) −8865.26 + 354.894i −1.94398 + 0.0778216i
\(276\) 0 0
\(277\) −4495.57 + 4495.57i −0.975136 + 0.975136i −0.999698 0.0245626i \(-0.992181\pi\)
0.0245626 + 0.999698i \(0.492181\pi\)
\(278\) 0 0
\(279\) 4687.39 + 2325.60i 1.00583 + 0.499032i
\(280\) 0 0
\(281\) 351.513i 0.0746246i −0.999304 0.0373123i \(-0.988120\pi\)
0.999304 0.0373123i \(-0.0118796\pi\)
\(282\) 0 0
\(283\) −1031.47 1031.47i −0.216658 0.216658i 0.590430 0.807089i \(-0.298958\pi\)
−0.807089 + 0.590430i \(0.798958\pi\)
\(284\) 0 0
\(285\) −5579.28 + 3616.63i −1.15961 + 0.751687i
\(286\) 0 0
\(287\) −3985.56 3985.56i −0.819721 0.819721i
\(288\) 0 0
\(289\) 3681.00i 0.749237i
\(290\) 0 0
\(291\) 717.675 445.083i 0.144573 0.0896606i
\(292\) 0 0
\(293\) 5035.56 5035.56i 1.00403 1.00403i 0.00403640 0.999992i \(-0.498715\pi\)
0.999992 0.00403640i \(-0.00128483\pi\)
\(294\) 0 0
\(295\) 1820.00 + 1748.60i 0.359202 + 0.345110i
\(296\) 0 0
\(297\) 6345.05 7674.84i 1.23965 1.49946i
\(298\) 0 0
\(299\) −229.744 −0.0444363
\(300\) 0 0
\(301\) 5557.90 1.06429
\(302\) 0 0
\(303\) −1117.79 + 4767.99i −0.211931 + 0.904005i
\(304\) 0 0
\(305\) 1481.84 + 1423.71i 0.278197 + 0.267283i
\(306\) 0 0
\(307\) 4076.20 4076.20i 0.757789 0.757789i −0.218130 0.975920i \(-0.569996\pi\)
0.975920 + 0.218130i \(0.0699958\pi\)
\(308\) 0 0
\(309\) −4477.19 7219.25i −0.824266 1.32909i
\(310\) 0 0
\(311\) 7036.15i 1.28290i −0.767163 0.641452i \(-0.778332\pi\)
0.767163 0.641452i \(-0.221668\pi\)
\(312\) 0 0
\(313\) −830.740 830.740i −0.150020 0.150020i 0.628107 0.778127i \(-0.283830\pi\)
−0.778127 + 0.628107i \(0.783830\pi\)
\(314\) 0 0
\(315\) −6272.93 2957.38i −1.12203 0.528982i
\(316\) 0 0
\(317\) 2049.10 + 2049.10i 0.363056 + 0.363056i 0.864937 0.501881i \(-0.167358\pi\)
−0.501881 + 0.864937i \(0.667358\pi\)
\(318\) 0 0
\(319\) 2984.50i 0.523824i
\(320\) 0 0
\(321\) −3484.00 5617.78i −0.605788 0.976804i
\(322\) 0 0
\(323\) −2840.57 + 2840.57i −0.489331 + 0.489331i
\(324\) 0 0
\(325\) −300.949 + 326.049i −0.0513651 + 0.0556491i
\(326\) 0 0
\(327\) −1620.92 + 6914.12i −0.274119 + 1.16927i
\(328\) 0 0
\(329\) −8235.78 −1.38010
\(330\) 0 0
\(331\) 363.000 0.0602789 0.0301394 0.999546i \(-0.490405\pi\)
0.0301394 + 0.999546i \(0.490405\pi\)
\(332\) 0 0
\(333\) −1353.75 + 455.907i −0.222777 + 0.0750256i
\(334\) 0 0
\(335\) 4998.64 100.013i 0.815238 0.0163113i
\(336\) 0 0
\(337\) −2287.12 + 2287.12i −0.369696 + 0.369696i −0.867366 0.497671i \(-0.834189\pi\)
0.497671 + 0.867366i \(0.334189\pi\)
\(338\) 0 0
\(339\) 9055.73 5616.12i 1.45085 0.899782i
\(340\) 0 0
\(341\) 13755.7i 2.18450i
\(342\) 0 0
\(343\) −2569.96 2569.96i −0.404562 0.404562i
\(344\) 0 0
\(345\) 3677.22 + 784.816i 0.573840 + 0.122473i
\(346\) 0 0
\(347\) 4355.82 + 4355.82i 0.673869 + 0.673869i 0.958606 0.284737i \(-0.0919063\pi\)
−0.284737 + 0.958606i \(0.591906\pi\)
\(348\) 0 0
\(349\) 8217.50i 1.26038i 0.776441 + 0.630190i \(0.217023\pi\)
−0.776441 + 0.630190i \(0.782977\pi\)
\(350\) 0 0
\(351\) −47.0249 495.781i −0.00715101 0.0753927i
\(352\) 0 0
\(353\) −3373.66 + 3373.66i −0.508673 + 0.508673i −0.914119 0.405446i \(-0.867116\pi\)
0.405446 + 0.914119i \(0.367116\pi\)
\(354\) 0 0
\(355\) 1749.80 1821.25i 0.261605 0.272287i
\(356\) 0 0
\(357\) −4079.47 956.373i −0.604786 0.141783i
\(358\) 0 0
\(359\) 4939.81 0.726220 0.363110 0.931746i \(-0.381715\pi\)
0.363110 + 0.931746i \(0.381715\pi\)
\(360\) 0 0
\(361\) −6239.80 −0.909724
\(362\) 0 0
\(363\) 18753.7 + 4396.53i 2.71161 + 0.635697i
\(364\) 0 0
\(365\) 110.696 + 5532.56i 0.0158742 + 0.793391i
\(366\) 0 0
\(367\) −4599.54 + 4599.54i −0.654208 + 0.654208i −0.954003 0.299796i \(-0.903082\pi\)
0.299796 + 0.954003i \(0.403082\pi\)
\(368\) 0 0
\(369\) −2944.09 + 5934.00i −0.415347 + 0.837159i
\(370\) 0 0
\(371\) 7303.57i 1.02205i
\(372\) 0 0
\(373\) −5559.59 5559.59i −0.771755 0.771755i 0.206658 0.978413i \(-0.433741\pi\)
−0.978413 + 0.206658i \(0.933741\pi\)
\(374\) 0 0
\(375\) 5930.71 4190.60i 0.816694 0.577071i
\(376\) 0 0
\(377\) 105.540 + 105.540i 0.0144180 + 0.0144180i
\(378\) 0 0
\(379\) 9794.15i 1.32742i 0.747991 + 0.663709i \(0.231019\pi\)
−0.747991 + 0.663709i \(0.768981\pi\)
\(380\) 0 0
\(381\) −8232.25 + 5105.42i −1.10696 + 0.686506i
\(382\) 0 0
\(383\) −9135.79 + 9135.79i −1.21884 + 1.21884i −0.250805 + 0.968038i \(0.580695\pi\)
−0.968038 + 0.250805i \(0.919305\pi\)
\(384\) 0 0
\(385\) −364.700 18227.7i −0.0482775 2.41291i
\(386\) 0 0
\(387\) −2084.73 6190.29i −0.273831 0.813101i
\(388\) 0 0
\(389\) 6803.55 0.886771 0.443385 0.896331i \(-0.353777\pi\)
0.443385 + 0.896331i \(0.353777\pi\)
\(390\) 0 0
\(391\) 2271.75 0.293830
\(392\) 0 0
\(393\) 635.388 2710.29i 0.0815549 0.347878i
\(394\) 0 0
\(395\) 2507.76 2610.16i 0.319440 0.332484i
\(396\) 0 0
\(397\) 3213.53 3213.53i 0.406253 0.406253i −0.474177 0.880430i \(-0.657254\pi\)
0.880430 + 0.474177i \(0.157254\pi\)
\(398\) 0 0
\(399\) −7200.80 11610.9i −0.903487 1.45683i
\(400\) 0 0
\(401\) 7126.29i 0.887456i −0.896161 0.443728i \(-0.853656\pi\)
0.896161 0.443728i \(-0.146344\pi\)
\(402\) 0 0
\(403\) 486.439 + 486.439i 0.0601271 + 0.0601271i
\(404\) 0 0
\(405\) −940.943 + 8095.97i −0.115446 + 0.993314i
\(406\) 0 0
\(407\) −2655.32 2655.32i −0.323389 0.323389i
\(408\) 0 0
\(409\) 6060.40i 0.732683i 0.930480 + 0.366341i \(0.119390\pi\)
−0.930480 + 0.366341i \(0.880610\pi\)
\(410\) 0 0
\(411\) −7335.37 11827.9i −0.880358 1.41954i
\(412\) 0 0
\(413\) −3667.20 + 3667.20i −0.436927 + 0.436927i
\(414\) 0 0
\(415\) 8755.17 175.174i 1.03560 0.0207203i
\(416\) 0 0
\(417\) 2454.74 10470.8i 0.288271 1.22964i
\(418\) 0 0
\(419\) −3345.71 −0.390093 −0.195046 0.980794i \(-0.562486\pi\)
−0.195046 + 0.980794i \(0.562486\pi\)
\(420\) 0 0
\(421\) 7671.00 0.888032 0.444016 0.896019i \(-0.353553\pi\)
0.444016 + 0.896019i \(0.353553\pi\)
\(422\) 0 0
\(423\) 3089.18 + 9172.87i 0.355086 + 1.05437i
\(424\) 0 0
\(425\) 2975.84 3224.03i 0.339646 0.367973i
\(426\) 0 0
\(427\) −2985.83 + 2985.83i −0.338394 + 0.338394i
\(428\) 0 0
\(429\) 1112.59 690.000i 0.125213 0.0776539i
\(430\) 0 0
\(431\) 10347.5i 1.15643i −0.815884 0.578215i \(-0.803749\pi\)
0.815884 0.578215i \(-0.196251\pi\)
\(432\) 0 0
\(433\) 9546.16 + 9546.16i 1.05949 + 1.05949i 0.998115 + 0.0613748i \(0.0195485\pi\)
0.0613748 + 0.998115i \(0.480452\pi\)
\(434\) 0 0
\(435\) −1328.71 2049.77i −0.146453 0.225929i
\(436\) 0 0
\(437\) 5237.89 + 5237.89i 0.573369 + 0.573369i
\(438\) 0 0
\(439\) 4907.95i 0.533585i −0.963754 0.266792i \(-0.914036\pi\)
0.963754 0.266792i \(-0.0859638\pi\)
\(440\) 0 0
\(441\) 2217.60 4469.71i 0.239456 0.482638i
\(442\) 0 0
\(443\) −2995.75 + 2995.75i −0.321292 + 0.321292i −0.849263 0.527970i \(-0.822953\pi\)
0.527970 + 0.849263i \(0.322953\pi\)
\(444\) 0 0
\(445\) −2837.00 2725.70i −0.302217 0.290361i
\(446\) 0 0
\(447\) 10622.2 + 2490.21i 1.12396 + 0.263497i
\(448\) 0 0
\(449\) −13875.5 −1.45841 −0.729205 0.684295i \(-0.760110\pi\)
−0.729205 + 0.684295i \(0.760110\pi\)
\(450\) 0 0
\(451\) −17414.0 −1.81817
\(452\) 0 0
\(453\) 3368.28 + 789.644i 0.349350 + 0.0819000i
\(454\) 0 0
\(455\) −657.477 631.684i −0.0677429 0.0650853i
\(456\) 0 0
\(457\) 2544.54 2544.54i 0.260456 0.260456i −0.564783 0.825239i \(-0.691040\pi\)
0.825239 + 0.564783i \(0.191040\pi\)
\(458\) 0 0
\(459\) 464.990 + 4902.37i 0.0472852 + 0.498525i
\(460\) 0 0
\(461\) 10977.0i 1.10900i −0.832183 0.554502i \(-0.812909\pi\)
0.832183 0.554502i \(-0.187091\pi\)
\(462\) 0 0
\(463\) −5370.90 5370.90i −0.539107 0.539107i 0.384159 0.923267i \(-0.374491\pi\)
−0.923267 + 0.384159i \(0.874491\pi\)
\(464\) 0 0
\(465\) −6124.10 9447.49i −0.610749 0.942187i
\(466\) 0 0
\(467\) −3265.83 3265.83i −0.323607 0.323607i 0.526542 0.850149i \(-0.323488\pi\)
−0.850149 + 0.526542i \(0.823488\pi\)
\(468\) 0 0
\(469\) 10273.5i 1.01148i
\(470\) 0 0
\(471\) −5854.87 + 3631.04i −0.572778 + 0.355222i
\(472\) 0 0
\(473\) 12142.0 12142.0i 1.18032 1.18032i
\(474\) 0 0
\(475\) 14294.8 572.250i 1.38082 0.0552771i
\(476\) 0 0
\(477\) 8134.58 2739.52i 0.780832 0.262964i
\(478\) 0 0
\(479\) −6609.07 −0.630430 −0.315215 0.949020i \(-0.602077\pi\)
−0.315215 + 0.949020i \(0.602077\pi\)
\(480\) 0 0
\(481\) −187.798 −0.0178022
\(482\) 0 0
\(483\) −1763.51 + 7522.36i −0.166133 + 0.708652i
\(484\) 0 0
\(485\) −1816.68 + 36.3482i −0.170085 + 0.00340306i
\(486\) 0 0
\(487\) 9393.55 9393.55i 0.874051 0.874051i −0.118860 0.992911i \(-0.537924\pi\)
0.992911 + 0.118860i \(0.0379241\pi\)
\(488\) 0 0
\(489\) 1960.37 + 3161.00i 0.181290 + 0.292322i
\(490\) 0 0
\(491\) 7629.90i 0.701289i 0.936509 + 0.350644i \(0.114037\pi\)
−0.936509 + 0.350644i \(0.885963\pi\)
\(492\) 0 0
\(493\) −1043.60 1043.60i −0.0953373 0.0953373i
\(494\) 0 0
\(495\) −20164.9 + 7243.28i −1.83100 + 0.657699i
\(496\) 0 0
\(497\) 3669.72 + 3669.72i 0.331206 + 0.331206i
\(498\) 0 0
\(499\) 6245.25i 0.560272i −0.959960 0.280136i \(-0.909620\pi\)
0.959960 0.280136i \(-0.0903795\pi\)
\(500\) 0 0
\(501\) 5107.75 + 8236.00i 0.455484 + 0.734445i
\(502\) 0 0
\(503\) 12908.8 12908.8i 1.14429 1.14429i 0.156631 0.987657i \(-0.449937\pi\)
0.987657 0.156631i \(-0.0500633\pi\)
\(504\) 0 0
\(505\) 7300.40 7598.50i 0.643294 0.669562i
\(506\) 0 0
\(507\) −2590.71 + 11050.9i −0.226938 + 0.968019i
\(508\) 0 0
\(509\) 9172.99 0.798793 0.399396 0.916778i \(-0.369220\pi\)
0.399396 + 0.916778i \(0.369220\pi\)
\(510\) 0 0
\(511\) −11370.8 −0.984377
\(512\) 0 0
\(513\) −10231.1 + 12375.3i −0.880534 + 1.06507i
\(514\) 0 0
\(515\) 365.634 + 18274.4i 0.0312850 + 1.56362i
\(516\) 0 0
\(517\) −17992.2 + 17992.2i −1.53055 + 1.53055i
\(518\) 0 0
\(519\) −2385.02 + 1479.13i −0.201716 + 0.125099i
\(520\) 0 0
\(521\) 7584.85i 0.637809i −0.947787 0.318904i \(-0.896685\pi\)
0.947787 0.318904i \(-0.103315\pi\)
\(522\) 0 0
\(523\) −14806.3 14806.3i −1.23792 1.23792i −0.960849 0.277072i \(-0.910636\pi\)
−0.277072 0.960849i \(-0.589364\pi\)
\(524\) 0 0
\(525\) 8365.53 + 12356.5i 0.695432 + 1.02720i
\(526\) 0 0
\(527\) −4809.99 4809.99i −0.397583 0.397583i
\(528\) 0 0
\(529\) 7978.00i 0.655708i
\(530\) 0 0
\(531\) 5460.00 + 2708.92i 0.446222 + 0.221388i
\(532\) 0 0
\(533\) −615.806 + 615.806i −0.0500441 + 0.0500441i
\(534\) 0 0
\(535\) 284.524 + 14220.5i 0.0229926 + 1.14917i
\(536\) 0 0
\(537\) 17200.8 + 4032.47i 1.38225 + 0.324048i
\(538\) 0 0
\(539\) 13116.9 1.04821
\(540\) 0 0
\(541\) 9344.00 0.742569 0.371284 0.928519i \(-0.378917\pi\)
0.371284 + 0.928519i \(0.378917\pi\)
\(542\) 0 0
\(543\) −8669.09 2032.34i −0.685131 0.160619i
\(544\) 0 0
\(545\) 10586.4 11018.7i 0.832059 0.866034i
\(546\) 0 0
\(547\) −7494.24 + 7494.24i −0.585796 + 0.585796i −0.936490 0.350694i \(-0.885946\pi\)
0.350694 + 0.936490i \(0.385946\pi\)
\(548\) 0 0
\(549\) 4445.53 + 2205.60i 0.345593 + 0.171462i
\(550\) 0 0
\(551\) 4812.36i 0.372075i
\(552\) 0 0
\(553\) 5259.32 + 5259.32i 0.404429 + 0.404429i
\(554\) 0 0
\(555\) 3005.85 + 641.527i 0.229894 + 0.0490654i
\(556\) 0 0
\(557\) 5195.51 + 5195.51i 0.395226 + 0.395226i 0.876545 0.481319i \(-0.159842\pi\)
−0.481319 + 0.876545i \(0.659842\pi\)
\(558\) 0 0
\(559\) 858.747i 0.0649752i
\(560\) 0 0
\(561\) −11001.5 + 6822.84i −0.827957 + 0.513477i
\(562\) 0 0
\(563\) −6566.25 + 6566.25i −0.491536 + 0.491536i −0.908790 0.417254i \(-0.862992\pi\)
0.417254 + 0.908790i \(0.362992\pi\)
\(564\) 0 0
\(565\) −22923.1 + 458.646i −1.70687 + 0.0341512i
\(566\) 0 0
\(567\) −16594.0 2265.89i −1.22907 0.167828i
\(568\) 0 0
\(569\) −11468.7 −0.844982 −0.422491 0.906367i \(-0.638844\pi\)
−0.422491 + 0.906367i \(0.638844\pi\)
\(570\) 0 0
\(571\) 21325.8 1.56297 0.781486 0.623923i \(-0.214462\pi\)
0.781486 + 0.623923i \(0.214462\pi\)
\(572\) 0 0
\(573\) 4138.06 17651.2i 0.301693 1.28689i
\(574\) 0 0
\(575\) −5944.97 5487.31i −0.431169 0.397977i
\(576\) 0 0
\(577\) 8094.88 8094.88i 0.584046 0.584046i −0.351967 0.936012i \(-0.614487\pi\)
0.936012 + 0.351967i \(0.114487\pi\)
\(578\) 0 0
\(579\) −9971.23 16078.1i −0.715700 1.15403i
\(580\) 0 0
\(581\) 17994.1i 1.28489i
\(582\) 0 0
\(583\) 15955.6 + 15955.6i 1.13347 + 1.13347i
\(584\) 0 0
\(585\) −456.943 + 969.227i −0.0322945 + 0.0685001i
\(586\) 0 0
\(587\) −9466.34 9466.34i −0.665618 0.665618i 0.291081 0.956699i \(-0.405985\pi\)
−0.956699 + 0.291081i \(0.905985\pi\)
\(588\) 0 0
\(589\) 22180.4i 1.55166i
\(590\) 0 0
\(591\) 6945.37 + 11199.1i 0.483409 + 0.779473i
\(592\) 0 0
\(593\) −5827.84 + 5827.84i −0.403576 + 0.403576i −0.879491 0.475915i \(-0.842117\pi\)
0.475915 + 0.879491i \(0.342117\pi\)
\(594\) 0 0
\(595\) 6501.25 + 6246.20i 0.447942 + 0.430368i
\(596\) 0 0
\(597\) 1814.18 7738.48i 0.124371 0.530511i
\(598\) 0 0
\(599\) 23869.0 1.62815 0.814074 0.580761i \(-0.197245\pi\)
0.814074 + 0.580761i \(0.197245\pi\)
\(600\) 0 0
\(601\) 13301.0 0.902760 0.451380 0.892332i \(-0.350932\pi\)
0.451380 + 0.892332i \(0.350932\pi\)
\(602\) 0 0
\(603\) 11442.4 3853.52i 0.772756 0.260244i
\(604\) 0 0
\(605\) −29886.8 28714.3i −2.00838 1.92959i
\(606\) 0 0
\(607\) 6018.61 6018.61i 0.402451 0.402451i −0.476645 0.879096i \(-0.658147\pi\)
0.879096 + 0.476645i \(0.158147\pi\)
\(608\) 0 0
\(609\) 4265.74 2645.50i 0.283837 0.176028i
\(610\) 0 0
\(611\) 1272.51i 0.0842554i
\(612\) 0 0
\(613\) −13054.9 13054.9i −0.860165 0.860165i 0.131192 0.991357i \(-0.458120\pi\)
−0.991357 + 0.131192i \(0.958120\pi\)
\(614\) 0 0
\(615\) 11960.0 7752.79i 0.784187 0.508330i
\(616\) 0 0
\(617\) −15767.6 15767.6i −1.02882 1.02882i −0.999572 0.0292434i \(-0.990690\pi\)
−0.0292434 0.999572i \(-0.509310\pi\)
\(618\) 0 0
\(619\) 11641.0i 0.755886i −0.925829 0.377943i \(-0.876632\pi\)
0.925829 0.377943i \(-0.123368\pi\)
\(620\) 0 0
\(621\) 9039.74 857.421i 0.584142 0.0554060i
\(622\) 0 0
\(623\) 5716.39 5716.39i 0.367612 0.367612i
\(624\) 0 0
\(625\) −15575.0 + 1249.00i −0.996800 + 0.0799360i
\(626\) 0 0
\(627\) −41096.9 9634.57i −2.61762 0.613664i
\(628\) 0 0
\(629\) 1856.98 0.117715
\(630\) 0 0
\(631\) −10510.6 −0.663107 −0.331553 0.943436i \(-0.607573\pi\)
−0.331553 + 0.943436i \(0.607573\pi\)
\(632\) 0 0
\(633\) 2465.75 + 578.061i 0.154826 + 0.0362968i
\(634\) 0 0
\(635\) 20838.6 416.940i 1.30229 0.0260563i
\(636\) 0 0
\(637\) 463.849 463.849i 0.0288514 0.0288514i
\(638\) 0 0
\(639\) 2710.78 5463.75i 0.167820 0.338251i
\(640\) 0 0
\(641\) 2236.47i 0.137808i 0.997623 + 0.0689042i \(0.0219503\pi\)
−0.997623 + 0.0689042i \(0.978050\pi\)
\(642\) 0 0
\(643\) −8648.84 8648.84i −0.530446 0.530446i 0.390259 0.920705i \(-0.372386\pi\)
−0.920705 + 0.390259i \(0.872386\pi\)
\(644\) 0 0
\(645\) −2933.52 + 13744.9i −0.179081 + 0.839075i
\(646\) 0 0
\(647\) 18663.5 + 18663.5i 1.13406 + 1.13406i 0.989496 + 0.144563i \(0.0461777\pi\)
0.144563 + 0.989496i \(0.453822\pi\)
\(648\) 0 0
\(649\) 16023.0i 0.969118i
\(650\) 0 0
\(651\) 19661.0 12193.2i 1.18368 0.734087i
\(652\) 0 0
\(653\) −8326.62 + 8326.62i −0.498998 + 0.498998i −0.911126 0.412128i \(-0.864786\pi\)
0.412128 + 0.911126i \(0.364786\pi\)
\(654\) 0 0
\(655\) −4149.80 + 4319.25i −0.247551 + 0.257660i
\(656\) 0 0
\(657\) 4265.13 + 12664.6i 0.253270 + 0.752047i
\(658\) 0 0
\(659\) −15781.2 −0.932849 −0.466425 0.884561i \(-0.654458\pi\)
−0.466425 + 0.884561i \(0.654458\pi\)
\(660\) 0 0
\(661\) 32891.0 1.93542 0.967709 0.252070i \(-0.0811113\pi\)
0.967709 + 0.252070i \(0.0811113\pi\)
\(662\) 0 0
\(663\) −147.769 + 630.317i −0.00865590 + 0.0369223i
\(664\) 0 0
\(665\) 588.061 + 29391.3i 0.0342918 + 1.71390i
\(666\) 0 0
\(667\) −1924.34 + 1924.34i −0.111711 + 0.111711i
\(668\) 0 0
\(669\) 6882.35 + 11097.5i 0.397738 + 0.641334i
\(670\) 0 0
\(671\) 13045.9i 0.750569i
\(672\) 0 0
\(673\) −3966.52 3966.52i −0.227189 0.227189i 0.584329 0.811517i \(-0.301358\pi\)
−0.811517 + 0.584329i \(0.801358\pi\)
\(674\) 0 0
\(675\) 10624.6 13952.2i 0.605839 0.795587i
\(676\) 0 0
\(677\) −16422.8 16422.8i −0.932320 0.932320i 0.0655303 0.997851i \(-0.479126\pi\)
−0.997851 + 0.0655303i \(0.979126\pi\)
\(678\) 0 0
\(679\) 3733.75i 0.211028i
\(680\) 0 0
\(681\) −9093.50 14662.8i −0.511694 0.825082i
\(682\) 0 0
\(683\) 8812.97 8812.97i 0.493732 0.493732i −0.415748 0.909480i \(-0.636480\pi\)
0.909480 + 0.415748i \(0.136480\pi\)
\(684\) 0 0
\(685\) 599.051 + 29940.5i 0.0334139 + 1.67003i
\(686\) 0 0
\(687\) −4369.61 + 18638.8i −0.242665 + 1.03510i
\(688\) 0 0
\(689\) 1128.47 0.0623966
\(690\) 0 0
\(691\) −157.000 −0.00864334 −0.00432167 0.999991i \(-0.501376\pi\)
−0.00432167 + 0.999991i \(0.501376\pi\)
\(692\) 0 0
\(693\) −14052.0 41725.2i −0.770260 2.28717i
\(694\) 0 0
\(695\) −16032.2 + 16686.9i −0.875016 + 0.910746i
\(696\) 0 0
\(697\) 6089.20 6089.20i 0.330911 0.330911i
\(698\) 0 0
\(699\) 5436.58 3371.63i 0.294178 0.182441i
\(700\) 0 0
\(701\) 26772.3i 1.44248i 0.692686 + 0.721239i \(0.256427\pi\)
−0.692686 + 0.721239i \(0.743573\pi\)
\(702\) 0 0
\(703\) 4281.57 + 4281.57i 0.229705 + 0.229705i
\(704\) 0 0
\(705\) 4346.93 20367.3i 0.232220 1.08805i
\(706\) 0 0
\(707\) 15310.5 + 15310.5i 0.814445 + 0.814445i
\(708\) 0 0
\(709\) 28613.5i 1.51566i −0.652453 0.757830i \(-0.726260\pi\)
0.652453 0.757830i \(-0.273740\pi\)
\(710\) 0 0
\(711\) 3885.00 7830.47i 0.204921 0.413032i
\(712\) 0 0
\(713\) −8869.39 + 8869.39i −0.465865 + 0.465865i
\(714\) 0 0
\(715\) −2816.35 + 56.3495i −0.147308 + 0.00294735i
\(716\) 0 0
\(717\) 9020.80 + 2114.80i 0.469858 + 0.110151i
\(718\) 0 0
\(719\) 4772.86 0.247563 0.123781 0.992310i \(-0.460498\pi\)
0.123781 + 0.992310i \(0.460498\pi\)
\(720\) 0 0
\(721\) −37558.6 −1.94002
\(722\) 0 0
\(723\) −16711.9 3917.86i −0.859642 0.201531i
\(724\) 0 0
\(725\) 210.239 + 5251.76i 0.0107697 + 0.269028i
\(726\) 0 0
\(727\) −8584.64 + 8584.64i −0.437946 + 0.437946i −0.891320 0.453374i \(-0.850220\pi\)
0.453374 + 0.891320i \(0.350220\pi\)
\(728\) 0 0
\(729\) 3700.58 + 19332.0i 0.188009 + 0.982167i
\(730\) 0 0
\(731\) 8491.44i 0.429641i
\(732\) 0 0
\(733\) 22656.0 + 22656.0i 1.14164 + 1.14164i 0.988151 + 0.153485i \(0.0490498\pi\)
0.153485 + 0.988151i \(0.450950\pi\)
\(734\) 0 0
\(735\) −9008.75 + 5839.70i −0.452099 + 0.293062i
\(736\) 0 0
\(737\) 22443.9 + 22443.9i 1.12175 + 1.12175i
\(738\) 0 0
\(739\) 12918.7i 0.643063i 0.946899 + 0.321532i \(0.104198\pi\)
−0.946899 + 0.321532i \(0.895802\pi\)
\(740\) 0 0
\(741\) −1794.00 + 1112.59i −0.0889396 + 0.0551580i
\(742\) 0 0
\(743\) 14755.7 14755.7i 0.728581 0.728581i −0.241756 0.970337i \(-0.577723\pi\)
0.970337 + 0.241756i \(0.0777234\pi\)
\(744\) 0 0
\(745\) −16928.0 16263.9i −0.832475 0.799816i
\(746\) 0 0
\(747\) 20041.6 6749.48i 0.981636 0.330590i
\(748\) 0 0
\(749\) −29226.9 −1.42580
\(750\) 0 0
\(751\) −30369.0 −1.47561 −0.737803 0.675016i \(-0.764137\pi\)
−0.737803 + 0.675016i \(0.764137\pi\)
\(752\) 0 0
\(753\) −1718.75 + 7331.45i −0.0831803 + 0.354811i
\(754\) 0 0
\(755\) −5367.85 5157.26i −0.258750 0.248599i
\(756\) 0 0
\(757\) 8724.03 8724.03i 0.418864 0.418864i −0.465948 0.884812i \(-0.654287\pi\)
0.884812 + 0.465948i \(0.154287\pi\)
\(758\) 0 0
\(759\) 12581.0 + 20286.2i 0.601662 + 0.970150i
\(760\) 0 0
\(761\) 739.375i 0.0352199i 0.999845 + 0.0176099i \(0.00560570\pi\)
−0.999845 + 0.0176099i \(0.994394\pi\)
\(762\) 0 0
\(763\) 22202.0 + 22202.0i 1.05343 + 1.05343i
\(764\) 0 0
\(765\) 4518.33 9583.88i 0.213543 0.452949i
\(766\) 0 0
\(767\) 566.616 + 566.616i 0.0266745 + 0.0266745i
\(768\) 0 0
\(769\) 15935.6i 0.747272i −0.927575 0.373636i \(-0.878111\pi\)
0.927575 0.373636i \(-0.121889\pi\)
\(770\) 0 0
\(771\) 5927.13 + 9557.20i 0.276861 + 0.446426i
\(772\) 0 0
\(773\) 7830.30 7830.30i 0.364342 0.364342i −0.501067 0.865409i \(-0.667059\pi\)
0.865409 + 0.501067i \(0.167059\pi\)
\(774\) 0 0
\(775\) 969.000 + 24205.6i 0.0449129 + 1.12192i
\(776\) 0 0
\(777\) −1441.53 + 6148.95i −0.0665569 + 0.283903i
\(778\) 0 0
\(779\) 28079.2 1.29145
\(780\) 0 0
\(781\) 16034.0 0.734624
\(782\) 0 0
\(783\) −4546.56 3758.80i −0.207511 0.171556i
\(784\) 0 0
\(785\) 14820.7 296.532i 0.673851 0.0134824i
\(786\) 0 0
\(787\) 17343.4 17343.4i 0.785547 0.785547i −0.195214 0.980761i \(-0.562540\pi\)
0.980761 + 0.195214i \(0.0625401\pi\)
\(788\) 0 0
\(789\) −31261.8 + 19387.7i −1.41058 + 0.874806i
\(790\) 0 0
\(791\) 47113.0i 2.11776i
\(792\) 0 0
\(793\) 461.339 + 461.339i 0.0206590 + 0.0206590i
\(794\) 0 0
\(795\) −18062.0 3854.90i −0.805775 0.171974i
\(796\) 0 0
\(797\) −4065.57 4065.57i −0.180690 0.180690i 0.610967 0.791656i \(-0.290781\pi\)
−0.791656 + 0.610967i \(0.790781\pi\)
\(798\) 0 0
\(799\) 12582.8i 0.557129i
\(800\) 0 0
\(801\) −8511.00 4222.64i −0.375432 0.186267i
\(802\) 0 0
\(803\) −24841.2 + 24841.2i −1.09169 + 1.09169i
\(804\) 0 0
\(805\) 11517.7 11988.0i 0.504280 0.524871i
\(806\) 0 0
\(807\) −9812.69 2300.44i −0.428034 0.100346i
\(808\) 0 0
\(809\) −7547.89 −0.328022 −0.164011 0.986459i \(-0.552443\pi\)
−0.164011 + 0.986459i \(0.552443\pi\)
\(810\) 0 0
\(811\) −17579.0 −0.761137 −0.380568 0.924753i \(-0.624272\pi\)
−0.380568 + 0.924753i \(0.624272\pi\)
\(812\) 0 0
\(813\) −4750.39 1113.66i −0.204924 0.0480415i
\(814\) 0 0
\(815\) −160.095 8001.57i −0.00688086 0.343905i
\(816\) 0 0
\(817\) −19578.4 + 19578.4i −0.838385 + 0.838385i
\(818\) 0 0
\(819\) −1972.43 978.600i −0.0841543 0.0417522i
\(820\) 0 0
\(821\) 42229.0i 1.79513i −0.440880 0.897566i \(-0.645333\pi\)
0.440880 0.897566i \(-0.354667\pi\)
\(822\) 0 0
\(823\) 1972.69 + 1972.69i 0.0835523 + 0.0835523i 0.747648 0.664095i \(-0.231183\pi\)
−0.664095 + 0.747648i \(0.731183\pi\)
\(824\) 0 0
\(825\) 45270.2 + 8718.85i 1.91043 + 0.367941i
\(826\) 0 0
\(827\) −24544.6 24544.6i −1.03204 1.03204i −0.999469 0.0325753i \(-0.989629\pi\)
−0.0325753 0.999469i \(-0.510371\pi\)
\(828\) 0 0
\(829\) 26627.5i 1.11557i −0.829984 0.557787i \(-0.811651\pi\)
0.829984 0.557787i \(-0.188349\pi\)
\(830\) 0 0
\(831\) 28074.8 17411.3i 1.17197 0.726823i
\(832\) 0 0
\(833\) −4586.61 + 4586.61i −0.190776 + 0.190776i
\(834\) 0 0
\(835\) −417.129 20848.1i −0.0172879 0.864047i
\(836\) 0 0
\(837\) −20955.3 17324.5i −0.865378 0.715438i
\(838\) 0 0
\(839\) −27271.0 −1.12217 −0.561085 0.827758i \(-0.689616\pi\)
−0.561085 + 0.827758i \(0.689616\pi\)
\(840\) 0 0
\(841\) −22621.0 −0.927508
\(842\) 0 0
\(843\) −416.897 + 1778.30i −0.0170329 + 0.0726548i
\(844\) 0 0
\(845\) 16920.3 17611.2i 0.688847 0.716975i
\(846\) 0 0
\(847\) 60220.2 60220.2i 2.44296 2.44296i
\(848\) 0 0
\(849\) 3994.85 + 6441.50i 0.161487 + 0.260391i
\(850\) 0 0
\(851\) 3424.19i 0.137931i
\(852\) 0 0
\(853\) 13559.8 + 13559.8i 0.544290 + 0.544290i 0.924783 0.380494i \(-0.124246\pi\)
−0.380494 + 0.924783i \(0.624246\pi\)
\(854\) 0 0
\(855\) 32514.9 11679.4i 1.30057 0.467168i
\(856\) 0 0
\(857\) −14012.4 14012.4i −0.558521 0.558521i 0.370365 0.928886i \(-0.379233\pi\)
−0.928886 + 0.370365i \(0.879233\pi\)
\(858\) 0 0
\(859\) 30507.7i 1.21177i 0.795552 + 0.605885i \(0.207181\pi\)
−0.795552 + 0.605885i \(0.792819\pi\)
\(860\) 0 0
\(861\) 15436.0 + 24889.8i 0.610984 + 0.985182i
\(862\) 0 0
\(863\) −12023.0 + 12023.0i −0.474237 + 0.474237i −0.903283 0.429046i \(-0.858850\pi\)
0.429046 + 0.903283i \(0.358850\pi\)
\(864\) 0 0
\(865\) 6037.30 120.794i 0.237311 0.00474813i
\(866\) 0 0
\(867\) −4365.69 + 18622.1i −0.171011 + 0.729459i
\(868\) 0 0
\(869\) 22979.4 0.897035
\(870\) 0 0
\(871\) 1587.35 0.0617513
\(872\) 0 0
\(873\) −4158.58 + 1400.50i −0.161222 + 0.0542954i
\(874\) 0 0
\(875\) −1925.78 32049.2i −0.0744036 1.23824i
\(876\) 0 0
\(877\) −31093.1 + 31093.1i −1.19719 + 1.19719i −0.222189 + 0.975004i \(0.571320\pi\)
−0.975004 + 0.222189i \(0.928680\pi\)
\(878\) 0 0
\(879\) −31447.0 + 19502.6i −1.20669 + 0.748358i
\(880\) 0 0
\(881\) 2943.72i 0.112573i 0.998415 + 0.0562863i \(0.0179260\pi\)
−0.998415 + 0.0562863i \(0.982074\pi\)
\(882\) 0 0
\(883\) 13065.6 + 13065.6i 0.497954 + 0.497954i 0.910801 0.412847i \(-0.135465\pi\)
−0.412847 + 0.910801i \(0.635465\pi\)
\(884\) 0 0
\(885\) −7133.51 11004.7i −0.270950 0.417987i
\(886\) 0 0
\(887\) 17997.6 + 17997.6i 0.681284 + 0.681284i 0.960289 0.279006i \(-0.0900048\pi\)
−0.279006 + 0.960289i \(0.590005\pi\)
\(888\) 0 0
\(889\) 42828.8i 1.61578i
\(890\) 0 0
\(891\) −41202.0 + 31301.7i −1.54918 + 1.17693i
\(892\) 0 0
\(893\) 29011.5 29011.5i 1.08716 1.08716i
\(894\) 0 0
\(895\) −27412.0 26336.6i −1.02378 0.983615i
\(896\) 0 0
\(897\) 1162.27 + 272.478i 0.0432633 + 0.0101425i
\(898\) 0 0
\(899\) 8148.85 0.302313
\(900\) 0 0
\(901\) −11158.5 −0.412590
\(902\) 0 0
\(903\) −28117.4 6591.71i −1.03620 0.242922i
\(904\) 0 0
\(905\) 13815.5 + 13273.5i 0.507450 + 0.487542i
\(906\) 0 0
\(907\) −7878.94 + 7878.94i −0.288441 + 0.288441i −0.836464 0.548023i \(-0.815381\pi\)
0.548023 + 0.836464i \(0.315381\pi\)
\(908\) 0 0
\(909\) 11309.7 22795.5i 0.412673 0.831770i
\(910\) 0 0
\(911\) 29902.5i 1.08750i 0.839247 + 0.543751i \(0.182996\pi\)
−0.839247 + 0.543751i \(0.817004\pi\)
\(912\) 0 0
\(913\) 39310.7 + 39310.7i 1.42497 + 1.42497i
\(914\) 0 0
\(915\) −5808.10 8960.00i −0.209847 0.323725i
\(916\) 0 0
\(917\) −8703.04 8703.04i −0.313413 0.313413i
\(918\) 0 0
\(919\) 11226.3i 0.402963i −0.979492 0.201482i \(-0.935424\pi\)
0.979492 0.201482i \(-0.0645756\pi\)
\(920\) 0 0
\(921\) −25455.9 + 15787.1i −0.910749 + 0.564823i
\(922\) 0 0
\(923\) 567.005 567.005i 0.0202202 0.0202202i
\(924\) 0 0
\(925\) −4859.55 4485.45i −0.172736 0.159439i
\(926\) 0 0
\(927\) 14088.0 + 41832.1i 0.499147 + 1.48214i
\(928\) 0 0
\(929\) 34890.0 1.23219 0.616094 0.787672i \(-0.288714\pi\)
0.616094 + 0.787672i \(0.288714\pi\)
\(930\) 0 0
\(931\) −21150.3 −0.744548
\(932\) 0 0
\(933\) −8344.93 + 35595.8i −0.292819 + 1.24904i
\(934\) 0 0
\(935\) 27848.6 557.194i 0.974059 0.0194890i
\(936\) 0 0
\(937\) 26125.6 26125.6i 0.910870 0.910870i −0.0854704 0.996341i \(-0.527239\pi\)
0.996341 + 0.0854704i \(0.0272393\pi\)
\(938\) 0 0
\(939\) 3217.44 + 5187.97i 0.111818 + 0.180301i
\(940\) 0 0
\(941\) 38049.6i 1.31815i −0.752077 0.659076i \(-0.770948\pi\)
0.752077 0.659076i \(-0.229052\pi\)
\(942\) 0 0
\(943\) −11228.2 11228.2i −0.387741 0.387741i
\(944\) 0 0
\(945\) 28227.2 + 22401.1i 0.971674 + 0.771119i
\(946\) 0 0
\(947\) 1231.74 + 1231.74i 0.0422663 + 0.0422663i 0.727924 0.685658i \(-0.240485\pi\)
−0.685658 + 0.727924i \(0.740485\pi\)
\(948\) 0 0
\(949\) 1756.90i 0.0600964i
\(950\) 0 0
\(951\) −7936.12 12796.6i −0.270606 0.436339i
\(952\) 0 0
\(953\) −5889.16 + 5889.16i −0.200177 + 0.200177i −0.800076 0.599899i \(-0.795207\pi\)
0.599899 + 0.800076i \(0.295207\pi\)
\(954\) 0 0
\(955\) −27026.2 + 28129.8i −0.915756 + 0.953149i
\(956\) 0 0
\(957\) 3539.64 15098.6i 0.119561 0.509997i
\(958\) 0 0
\(959\) −61535.6 −2.07204
\(960\) 0 0
\(961\) 7767.41 0.260730
\(962\) 0 0
\(963\) 10962.8 + 32552.3i 0.366844 + 1.08929i
\(964\) 0 0
\(965\) 814.310 + 40699.2i 0.0271643 + 1.35767i
\(966\) 0 0
\(967\) −15844.1 + 15844.1i −0.526899 + 0.526899i −0.919646 0.392747i \(-0.871525\pi\)
0.392747 + 0.919646i \(0.371525\pi\)
\(968\) 0 0
\(969\) 17739.4 11001.5i 0.588102 0.364726i
\(970\) 0 0
\(971\) 6706.59i 0.221653i 0.993840 + 0.110826i \(0.0353497\pi\)
−0.993840 + 0.110826i \(0.964650\pi\)
\(972\) 0 0
\(973\) −33623.1 33623.1i −1.10782 1.10782i
\(974\) 0 0
\(975\) 1909.20 1292.55i 0.0627110 0.0424562i
\(976\) 0 0
\(977\) 40695.5 + 40695.5i 1.33261 + 1.33261i 0.903025 + 0.429588i \(0.141341\pi\)
0.429588 + 0.903025i \(0.358659\pi\)
\(978\) 0 0
\(979\) 24976.5i 0.815375i
\(980\) 0 0
\(981\) 16400.4 33056.1i 0.533766 1.07584i
\(982\) 0 0
\(983\) −35928.4 + 35928.4i −1.16576 + 1.16576i −0.182563 + 0.983194i \(0.558439\pi\)
−0.983194 + 0.182563i \(0.941561\pi\)
\(984\) 0 0
\(985\) −567.201 28348.7i −0.0183477 0.917020i
\(986\) 0 0
\(987\) 41664.7 + 9767.70i 1.34367 + 0.315004i
\(988\) 0 0
\(989\) 15657.8 0.503427
\(990\) 0 0
\(991\) 14290.6 0.458078 0.229039 0.973417i \(-0.426442\pi\)
0.229039 + 0.973417i \(0.426442\pi\)
\(992\) 0 0
\(993\) −1836.42 430.521i −0.0586877 0.0137585i
\(994\) 0 0
\(995\) −11848.6 + 12332.4i −0.377514 + 0.392929i
\(996\) 0 0
\(997\) 16298.4 16298.4i 0.517728 0.517728i −0.399155 0.916883i \(-0.630697\pi\)
0.916883 + 0.399155i \(0.130697\pi\)
\(998\) 0 0
\(999\) 7389.30 700.875i 0.234021 0.0221969i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 60.4.i.b.53.1 yes 8
3.2 odd 2 inner 60.4.i.b.53.2 yes 8
4.3 odd 2 240.4.v.b.113.4 8
5.2 odd 4 inner 60.4.i.b.17.2 yes 8
5.3 odd 4 300.4.i.f.257.3 8
5.4 even 2 300.4.i.f.293.4 8
12.11 even 2 240.4.v.b.113.3 8
15.2 even 4 inner 60.4.i.b.17.1 8
15.8 even 4 300.4.i.f.257.4 8
15.14 odd 2 300.4.i.f.293.3 8
20.7 even 4 240.4.v.b.17.3 8
60.47 odd 4 240.4.v.b.17.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.4.i.b.17.1 8 15.2 even 4 inner
60.4.i.b.17.2 yes 8 5.2 odd 4 inner
60.4.i.b.53.1 yes 8 1.1 even 1 trivial
60.4.i.b.53.2 yes 8 3.2 odd 2 inner
240.4.v.b.17.3 8 20.7 even 4
240.4.v.b.17.4 8 60.47 odd 4
240.4.v.b.113.3 8 12.11 even 2
240.4.v.b.113.4 8 4.3 odd 2
300.4.i.f.257.3 8 5.3 odd 4
300.4.i.f.257.4 8 15.8 even 4
300.4.i.f.293.3 8 15.14 odd 2
300.4.i.f.293.4 8 5.4 even 2