Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [600,2,Mod(53,600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(600, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 10, 10, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("600.53");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 600.bp (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 16.0.6879707136000000000000.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
0.642040 | + | 1.26007i | −0.270952 | − | 1.71073i | −1.17557 | + | 1.61803i | 0.473739 | − | 2.18531i | 1.98168 | − | 1.43977i | −3.20022 | + | 3.20022i | −2.79360 | − | 0.442463i | −2.85317 | + | 0.927051i | 3.05781 | − | 0.806108i | ||||||||||||||||||||||||||||||||||||||||||||||||
53.2 | 0.642040 | + | 1.26007i | 0.270952 | + | 1.71073i | −1.17557 | + | 1.61803i | 2.04641 | + | 0.901229i | −1.98168 | + | 1.43977i | 3.64268 | − | 3.64268i | −2.79360 | − | 0.442463i | −2.85317 | + | 0.927051i | 0.178260 | + | 3.15725i | |||||||||||||||||||||||||||||||||||||||||||||||||
77.1 | 1.39680 | + | 0.221232i | −0.786335 | − | 1.54327i | 1.90211 | + | 0.618034i | −1.93196 | + | 1.12585i | −0.756934 | − | 2.32960i | 3.72858 | + | 3.72858i | 2.52015 | + | 1.28408i | −1.76336 | + | 2.42705i | −2.94764 | + | 1.14518i | |||||||||||||||||||||||||||||||||||||||||||||||||
77.2 | 1.39680 | + | 0.221232i | 0.786335 | + | 1.54327i | 1.90211 | + | 0.618034i | 1.48949 | + | 1.66775i | 0.756934 | + | 2.32960i | −2.44450 | − | 2.44450i | 2.52015 | + | 1.28408i | −1.76336 | + | 2.42705i | 1.71157 | + | 2.65905i | |||||||||||||||||||||||||||||||||||||||||||||||||
173.1 | 0.221232 | − | 1.39680i | −1.54327 | + | 0.786335i | −1.90211 | − | 0.618034i | −1.12585 | − | 1.93196i | 0.756934 | + | 2.32960i | 0.312596 | − | 0.312596i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | −2.94764 | + | 1.14518i | |||||||||||||||||||||||||||||||||||||||||||||||||
173.2 | 0.221232 | − | 1.39680i | 1.54327 | − | 0.786335i | −1.90211 | − | 0.618034i | −1.66775 | + | 1.48949i | −0.756934 | − | 2.32960i | −2.83274 | + | 2.83274i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | 1.71157 | + | 2.65905i | |||||||||||||||||||||||||||||||||||||||||||||||||
197.1 | −1.26007 | + | 0.642040i | −1.71073 | + | 0.270952i | 1.17557 | − | 1.61803i | 0.901229 | − | 2.04641i | 1.98168 | − | 1.43977i | 0.854897 | + | 0.854897i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | 0.178260 | + | 3.15725i | |||||||||||||||||||||||||||||||||||||||||||||||||
197.2 | −1.26007 | + | 0.642040i | 1.71073 | − | 0.270952i | 1.17557 | − | 1.61803i | −2.18531 | − | 0.473739i | −1.98168 | + | 1.43977i | 1.93871 | + | 1.93871i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | 3.05781 | − | 0.806108i | |||||||||||||||||||||||||||||||||||||||||||||||||
317.1 | 0.642040 | − | 1.26007i | −0.270952 | + | 1.71073i | −1.17557 | − | 1.61803i | 0.473739 | + | 2.18531i | 1.98168 | + | 1.43977i | −3.20022 | − | 3.20022i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | 3.05781 | + | 0.806108i | |||||||||||||||||||||||||||||||||||||||||||||||||
317.2 | 0.642040 | − | 1.26007i | 0.270952 | − | 1.71073i | −1.17557 | − | 1.61803i | 2.04641 | − | 0.901229i | −1.98168 | − | 1.43977i | 3.64268 | + | 3.64268i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | 0.178260 | − | 3.15725i | |||||||||||||||||||||||||||||||||||||||||||||||||
413.1 | 1.39680 | − | 0.221232i | −0.786335 | + | 1.54327i | 1.90211 | − | 0.618034i | −1.93196 | − | 1.12585i | −0.756934 | + | 2.32960i | 3.72858 | − | 3.72858i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | −2.94764 | − | 1.14518i | |||||||||||||||||||||||||||||||||||||||||||||||||
413.2 | 1.39680 | − | 0.221232i | 0.786335 | − | 1.54327i | 1.90211 | − | 0.618034i | 1.48949 | − | 1.66775i | 0.756934 | − | 2.32960i | −2.44450 | + | 2.44450i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | 1.71157 | − | 2.65905i | |||||||||||||||||||||||||||||||||||||||||||||||||
437.1 | 0.221232 | + | 1.39680i | −1.54327 | − | 0.786335i | −1.90211 | + | 0.618034i | −1.12585 | + | 1.93196i | 0.756934 | − | 2.32960i | 0.312596 | + | 0.312596i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | −2.94764 | − | 1.14518i | |||||||||||||||||||||||||||||||||||||||||||||||||
437.2 | 0.221232 | + | 1.39680i | 1.54327 | + | 0.786335i | −1.90211 | + | 0.618034i | −1.66775 | − | 1.48949i | −0.756934 | + | 2.32960i | −2.83274 | − | 2.83274i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | 1.71157 | − | 2.65905i | |||||||||||||||||||||||||||||||||||||||||||||||||
533.1 | −1.26007 | − | 0.642040i | −1.71073 | − | 0.270952i | 1.17557 | + | 1.61803i | 0.901229 | + | 2.04641i | 1.98168 | + | 1.43977i | 0.854897 | − | 0.854897i | −0.442463 | − | 2.79360i | 2.85317 | + | 0.927051i | 0.178260 | − | 3.15725i | |||||||||||||||||||||||||||||||||||||||||||||||||
533.2 | −1.26007 | − | 0.642040i | 1.71073 | + | 0.270952i | 1.17557 | + | 1.61803i | −2.18531 | + | 0.473739i | −1.98168 | − | 1.43977i | 1.93871 | − | 1.93871i | −0.442463 | − | 2.79360i | 2.85317 | + | 0.927051i | 3.05781 | + | 0.806108i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
24.h | odd | 2 | 1 | CM by |
25.f | odd | 20 | 1 | inner |
600.bp | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 600.2.bp.b | yes | 16 |
3.b | odd | 2 | 1 | 600.2.bp.a | ✓ | 16 | |
8.b | even | 2 | 1 | 600.2.bp.a | ✓ | 16 | |
24.h | odd | 2 | 1 | CM | 600.2.bp.b | yes | 16 |
25.f | odd | 20 | 1 | inner | 600.2.bp.b | yes | 16 |
75.l | even | 20 | 1 | 600.2.bp.a | ✓ | 16 | |
200.x | odd | 20 | 1 | 600.2.bp.a | ✓ | 16 | |
600.bp | even | 20 | 1 | inner | 600.2.bp.b | yes | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
600.2.bp.a | ✓ | 16 | 3.b | odd | 2 | 1 | |
600.2.bp.a | ✓ | 16 | 8.b | even | 2 | 1 | |
600.2.bp.a | ✓ | 16 | 75.l | even | 20 | 1 | |
600.2.bp.a | ✓ | 16 | 200.x | odd | 20 | 1 | |
600.2.bp.b | yes | 16 | 1.a | even | 1 | 1 | trivial |
600.2.bp.b | yes | 16 | 24.h | odd | 2 | 1 | CM |
600.2.bp.b | yes | 16 | 25.f | odd | 20 | 1 | inner |
600.2.bp.b | yes | 16 | 600.bp | even | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|