Properties

Label 600.2.bp.b
Level 600600
Weight 22
Character orbit 600.bp
Analytic conductor 4.7914.791
Analytic rank 00
Dimension 1616
CM discriminant -24
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(53,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 10, 10, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 600.bp (of order 2020, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.791024121284.79102412128
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ20)\Q(\zeta_{20})
Coefficient field: 16.0.6879707136000000000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x169x12+81x8729x4+6561 x^{16} - 9x^{12} + 81x^{8} - 729x^{4} + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D20]\mathrm{U}(1)[D_{20}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β12+β8β6++1)q2+(β13β9+β5β1)q32β2q4+(β12β11β8+1)q5+(β13+β3)q6++(3β15+6β14+6)q99+O(q100) q + ( - \beta_{12} + \beta_{8} - \beta_{6} + \cdots + 1) q^{2} + (\beta_{13} - \beta_{9} + \beta_{5} - \beta_1) q^{3} - 2 \beta_{2} q^{4} + (\beta_{12} - \beta_{11} - \beta_{8} + \cdots - 1) q^{5} + (\beta_{13} + \beta_{3}) q^{6}+ \cdots + ( - 3 \beta_{15} + 6 \beta_{14} + \cdots - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q24q5+4q78q8+8q1024q1112q15+16q1648q188q20+36q2116q22+32q28+12q30+64q32+12q33+8q3524q36++72q98+O(q100) 16 q + 4 q^{2} - 4 q^{5} + 4 q^{7} - 8 q^{8} + 8 q^{10} - 24 q^{11} - 12 q^{15} + 16 q^{16} - 48 q^{18} - 8 q^{20} + 36 q^{21} - 16 q^{22} + 32 q^{28} + 12 q^{30} + 64 q^{32} + 12 q^{33} + 8 q^{35} - 24 q^{36}+ \cdots + 72 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x169x12+81x8729x4+6561 x^{16} - 9x^{12} + 81x^{8} - 729x^{4} + 6561 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
β4\beta_{4}== (ν4)/9 ( \nu^{4} ) / 9 Copy content Toggle raw display
β5\beta_{5}== (ν5)/9 ( \nu^{5} ) / 9 Copy content Toggle raw display
β6\beta_{6}== (ν6)/27 ( \nu^{6} ) / 27 Copy content Toggle raw display
β7\beta_{7}== (ν7)/27 ( \nu^{7} ) / 27 Copy content Toggle raw display
β8\beta_{8}== (ν8)/81 ( \nu^{8} ) / 81 Copy content Toggle raw display
β9\beta_{9}== (ν9)/81 ( \nu^{9} ) / 81 Copy content Toggle raw display
β10\beta_{10}== (ν10)/243 ( \nu^{10} ) / 243 Copy content Toggle raw display
β11\beta_{11}== (ν11)/243 ( \nu^{11} ) / 243 Copy content Toggle raw display
β12\beta_{12}== (ν12)/729 ( \nu^{12} ) / 729 Copy content Toggle raw display
β13\beta_{13}== (ν13)/729 ( \nu^{13} ) / 729 Copy content Toggle raw display
β14\beta_{14}== (ν14)/2187 ( \nu^{14} ) / 2187 Copy content Toggle raw display
β15\beta_{15}== (ν15)/2187 ( \nu^{15} ) / 2187 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 9β4 9\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 9β5 9\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 27β6 27\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 27β7 27\beta_{7} Copy content Toggle raw display
ν8\nu^{8}== 81β8 81\beta_{8} Copy content Toggle raw display
ν9\nu^{9}== 81β9 81\beta_{9} Copy content Toggle raw display
ν10\nu^{10}== 243β10 243\beta_{10} Copy content Toggle raw display
ν11\nu^{11}== 243β11 243\beta_{11} Copy content Toggle raw display
ν12\nu^{12}== 729β12 729\beta_{12} Copy content Toggle raw display
ν13\nu^{13}== 729β13 729\beta_{13} Copy content Toggle raw display
ν14\nu^{14}== 2187β14 2187\beta_{14} Copy content Toggle raw display
ν15\nu^{15}== 2187β15 2187\beta_{15} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/600Z)×\left(\mathbb{Z}/600\mathbb{Z}\right)^\times.

nn 151151 301301 401401 577577
χ(n)\chi(n) 11 1-1 1-1 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
53.1
1.54327 0.786335i
−1.54327 + 0.786335i
−0.270952 + 1.71073i
0.270952 1.71073i
1.71073 + 0.270952i
−1.71073 0.270952i
−0.786335 1.54327i
0.786335 + 1.54327i
1.54327 + 0.786335i
−1.54327 0.786335i
−0.270952 1.71073i
0.270952 + 1.71073i
1.71073 0.270952i
−1.71073 + 0.270952i
−0.786335 + 1.54327i
0.786335 1.54327i
0.642040 + 1.26007i −0.270952 1.71073i −1.17557 + 1.61803i 0.473739 2.18531i 1.98168 1.43977i −3.20022 + 3.20022i −2.79360 0.442463i −2.85317 + 0.927051i 3.05781 0.806108i
53.2 0.642040 + 1.26007i 0.270952 + 1.71073i −1.17557 + 1.61803i 2.04641 + 0.901229i −1.98168 + 1.43977i 3.64268 3.64268i −2.79360 0.442463i −2.85317 + 0.927051i 0.178260 + 3.15725i
77.1 1.39680 + 0.221232i −0.786335 1.54327i 1.90211 + 0.618034i −1.93196 + 1.12585i −0.756934 2.32960i 3.72858 + 3.72858i 2.52015 + 1.28408i −1.76336 + 2.42705i −2.94764 + 1.14518i
77.2 1.39680 + 0.221232i 0.786335 + 1.54327i 1.90211 + 0.618034i 1.48949 + 1.66775i 0.756934 + 2.32960i −2.44450 2.44450i 2.52015 + 1.28408i −1.76336 + 2.42705i 1.71157 + 2.65905i
173.1 0.221232 1.39680i −1.54327 + 0.786335i −1.90211 0.618034i −1.12585 1.93196i 0.756934 + 2.32960i 0.312596 0.312596i −1.28408 + 2.52015i 1.76336 2.42705i −2.94764 + 1.14518i
173.2 0.221232 1.39680i 1.54327 0.786335i −1.90211 0.618034i −1.66775 + 1.48949i −0.756934 2.32960i −2.83274 + 2.83274i −1.28408 + 2.52015i 1.76336 2.42705i 1.71157 + 2.65905i
197.1 −1.26007 + 0.642040i −1.71073 + 0.270952i 1.17557 1.61803i 0.901229 2.04641i 1.98168 1.43977i 0.854897 + 0.854897i −0.442463 + 2.79360i 2.85317 0.927051i 0.178260 + 3.15725i
197.2 −1.26007 + 0.642040i 1.71073 0.270952i 1.17557 1.61803i −2.18531 0.473739i −1.98168 + 1.43977i 1.93871 + 1.93871i −0.442463 + 2.79360i 2.85317 0.927051i 3.05781 0.806108i
317.1 0.642040 1.26007i −0.270952 + 1.71073i −1.17557 1.61803i 0.473739 + 2.18531i 1.98168 + 1.43977i −3.20022 3.20022i −2.79360 + 0.442463i −2.85317 0.927051i 3.05781 + 0.806108i
317.2 0.642040 1.26007i 0.270952 1.71073i −1.17557 1.61803i 2.04641 0.901229i −1.98168 1.43977i 3.64268 + 3.64268i −2.79360 + 0.442463i −2.85317 0.927051i 0.178260 3.15725i
413.1 1.39680 0.221232i −0.786335 + 1.54327i 1.90211 0.618034i −1.93196 1.12585i −0.756934 + 2.32960i 3.72858 3.72858i 2.52015 1.28408i −1.76336 2.42705i −2.94764 1.14518i
413.2 1.39680 0.221232i 0.786335 1.54327i 1.90211 0.618034i 1.48949 1.66775i 0.756934 2.32960i −2.44450 + 2.44450i 2.52015 1.28408i −1.76336 2.42705i 1.71157 2.65905i
437.1 0.221232 + 1.39680i −1.54327 0.786335i −1.90211 + 0.618034i −1.12585 + 1.93196i 0.756934 2.32960i 0.312596 + 0.312596i −1.28408 2.52015i 1.76336 + 2.42705i −2.94764 1.14518i
437.2 0.221232 + 1.39680i 1.54327 + 0.786335i −1.90211 + 0.618034i −1.66775 1.48949i −0.756934 + 2.32960i −2.83274 2.83274i −1.28408 2.52015i 1.76336 + 2.42705i 1.71157 2.65905i
533.1 −1.26007 0.642040i −1.71073 0.270952i 1.17557 + 1.61803i 0.901229 + 2.04641i 1.98168 + 1.43977i 0.854897 0.854897i −0.442463 2.79360i 2.85317 + 0.927051i 0.178260 3.15725i
533.2 −1.26007 0.642040i 1.71073 + 0.270952i 1.17557 + 1.61803i −2.18531 + 0.473739i −1.98168 1.43977i 1.93871 1.93871i −0.442463 2.79360i 2.85317 + 0.927051i 3.05781 + 0.806108i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
25.f odd 20 1 inner
600.bp even 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.bp.b yes 16
3.b odd 2 1 600.2.bp.a 16
8.b even 2 1 600.2.bp.a 16
24.h odd 2 1 CM 600.2.bp.b yes 16
25.f odd 20 1 inner 600.2.bp.b yes 16
75.l even 20 1 600.2.bp.a 16
200.x odd 20 1 600.2.bp.a 16
600.bp even 20 1 inner 600.2.bp.b yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.bp.a 16 3.b odd 2 1
600.2.bp.a 16 8.b even 2 1
600.2.bp.a 16 75.l even 20 1
600.2.bp.a 16 200.x odd 20 1
600.2.bp.b yes 16 1.a even 1 1 trivial
600.2.bp.b yes 16 24.h odd 2 1 CM
600.2.bp.b yes 16 25.f odd 20 1 inner
600.2.bp.b yes 16 600.bp even 20 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(600,[χ])S_{2}^{\mathrm{new}}(600, [\chi]):

T7164T715+8T714+40T713+986T7123060T711++6225025 T_{7}^{16} - 4 T_{7}^{15} + 8 T_{7}^{14} + 40 T_{7}^{13} + 986 T_{7}^{12} - 3060 T_{7}^{11} + \cdots + 6225025 Copy content Toggle raw display
T1116+24T1115+332T1114+3192T1113+23945T1112+145128T1111++515517025 T_{11}^{16} + 24 T_{11}^{15} + 332 T_{11}^{14} + 3192 T_{11}^{13} + 23945 T_{11}^{12} + 145128 T_{11}^{11} + \cdots + 515517025 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T82T7+2T6++16)2 (T^{8} - 2 T^{7} + 2 T^{6} + \cdots + 16)^{2} Copy content Toggle raw display
33 T169T12++6561 T^{16} - 9 T^{12} + \cdots + 6561 Copy content Toggle raw display
55 T16+4T15++390625 T^{16} + 4 T^{15} + \cdots + 390625 Copy content Toggle raw display
77 T164T15++6225025 T^{16} - 4 T^{15} + \cdots + 6225025 Copy content Toggle raw display
1111 T16++515517025 T^{16} + \cdots + 515517025 Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 T16 T^{16} Copy content Toggle raw display
1919 T16 T^{16} Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T16++39062500000000 T^{16} + \cdots + 39062500000000 Copy content Toggle raw display
3131 T16++7611645084241 T^{16} + \cdots + 7611645084241 Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T16++14 ⁣ ⁣61 T^{16} + \cdots + 14\!\cdots\!61 Copy content Toggle raw display
5959 T16++34 ⁣ ⁣25 T^{16} + \cdots + 34\!\cdots\!25 Copy content Toggle raw display
6161 T16 T^{16} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T16++39062500000000 T^{16} + \cdots + 39062500000000 Copy content Toggle raw display
7979 (T8216T6++55636681)2 (T^{8} - 216 T^{6} + \cdots + 55636681)^{2} Copy content Toggle raw display
8383 T16++24 ⁣ ⁣41 T^{16} + \cdots + 24\!\cdots\!41 Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16++22 ⁣ ⁣25 T^{16} + \cdots + 22\!\cdots\!25 Copy content Toggle raw display
show more
show less