Properties

Label 600.2.f.c
Level 600600
Weight 22
Character orbit 600.f
Analytic conductor 4.7914.791
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(49,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 600.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.791024121284.79102412128
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq34iq7q96iq13+2iq174q19+4q218iq23iq27+6q29+6iq37+6q39+10q414iq438iq479q492q51+10iq53+2iq97+O(q100) q + i q^{3} - 4 i q^{7} - q^{9} - 6 i q^{13} + 2 i q^{17} - 4 q^{19} + 4 q^{21} - 8 i q^{23} - i q^{27} + 6 q^{29} + 6 i q^{37} + 6 q^{39} + 10 q^{41} - 4 i q^{43} - 8 i q^{47} - 9 q^{49} - 2 q^{51} + 10 i q^{53} + \cdots - 2 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q98q19+8q21+12q29+12q39+20q4118q494q51+12q61+16q6932q79+2q814q8948q91+O(q100) 2 q - 2 q^{9} - 8 q^{19} + 8 q^{21} + 12 q^{29} + 12 q^{39} + 20 q^{41} - 18 q^{49} - 4 q^{51} + 12 q^{61} + 16 q^{69} - 32 q^{79} + 2 q^{81} - 4 q^{89} - 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/600Z)×\left(\mathbb{Z}/600\mathbb{Z}\right)^\times.

nn 151151 301301 401401 577577
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 1.00000i 0 0 0 4.00000i 0 −1.00000 0
49.2 0 1.00000i 0 0 0 4.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.f.c 2
3.b odd 2 1 1800.2.f.g 2
4.b odd 2 1 1200.2.f.f 2
5.b even 2 1 inner 600.2.f.c 2
5.c odd 4 1 120.2.a.a 1
5.c odd 4 1 600.2.a.a 1
8.b even 2 1 4800.2.f.u 2
8.d odd 2 1 4800.2.f.n 2
12.b even 2 1 3600.2.f.l 2
15.d odd 2 1 1800.2.f.g 2
15.e even 4 1 360.2.a.e 1
15.e even 4 1 1800.2.a.c 1
20.d odd 2 1 1200.2.f.f 2
20.e even 4 1 240.2.a.a 1
20.e even 4 1 1200.2.a.r 1
35.f even 4 1 5880.2.a.p 1
40.e odd 2 1 4800.2.f.n 2
40.f even 2 1 4800.2.f.u 2
40.i odd 4 1 960.2.a.g 1
40.i odd 4 1 4800.2.a.bl 1
40.k even 4 1 960.2.a.n 1
40.k even 4 1 4800.2.a.bh 1
45.k odd 12 2 3240.2.q.m 2
45.l even 12 2 3240.2.q.a 2
60.h even 2 1 3600.2.f.l 2
60.l odd 4 1 720.2.a.f 1
60.l odd 4 1 3600.2.a.bo 1
80.i odd 4 1 3840.2.k.a 2
80.j even 4 1 3840.2.k.z 2
80.s even 4 1 3840.2.k.z 2
80.t odd 4 1 3840.2.k.a 2
120.q odd 4 1 2880.2.a.b 1
120.w even 4 1 2880.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.a.a 1 5.c odd 4 1
240.2.a.a 1 20.e even 4 1
360.2.a.e 1 15.e even 4 1
600.2.a.a 1 5.c odd 4 1
600.2.f.c 2 1.a even 1 1 trivial
600.2.f.c 2 5.b even 2 1 inner
720.2.a.f 1 60.l odd 4 1
960.2.a.g 1 40.i odd 4 1
960.2.a.n 1 40.k even 4 1
1200.2.a.r 1 20.e even 4 1
1200.2.f.f 2 4.b odd 2 1
1200.2.f.f 2 20.d odd 2 1
1800.2.a.c 1 15.e even 4 1
1800.2.f.g 2 3.b odd 2 1
1800.2.f.g 2 15.d odd 2 1
2880.2.a.b 1 120.q odd 4 1
2880.2.a.r 1 120.w even 4 1
3240.2.q.a 2 45.l even 12 2
3240.2.q.m 2 45.k odd 12 2
3600.2.a.bo 1 60.l odd 4 1
3600.2.f.l 2 12.b even 2 1
3600.2.f.l 2 60.h even 2 1
3840.2.k.a 2 80.i odd 4 1
3840.2.k.a 2 80.t odd 4 1
3840.2.k.z 2 80.j even 4 1
3840.2.k.z 2 80.s even 4 1
4800.2.a.bh 1 40.k even 4 1
4800.2.a.bl 1 40.i odd 4 1
4800.2.f.n 2 8.d odd 2 1
4800.2.f.n 2 40.e odd 2 1
4800.2.f.u 2 8.b even 2 1
4800.2.f.u 2 40.f even 2 1
5880.2.a.p 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(600,[χ])S_{2}^{\mathrm{new}}(600, [\chi]):

T72+16 T_{7}^{2} + 16 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+16 T^{2} + 16 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2+64 T^{2} + 64 Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+36 T^{2} + 36 Copy content Toggle raw display
4141 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 T2+100 T^{2} + 100 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T6)2 (T - 6)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+196 T^{2} + 196 Copy content Toggle raw display
7979 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
8383 T2+144 T^{2} + 144 Copy content Toggle raw display
8989 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
9797 T2+4 T^{2} + 4 Copy content Toggle raw display
show more
show less