Properties

Label 600.2.f.c
Level $600$
Weight $2$
Character orbit 600.f
Analytic conductor $4.791$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(49,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} - 4 i q^{7} - q^{9} - 6 i q^{13} + 2 i q^{17} - 4 q^{19} + 4 q^{21} - 8 i q^{23} - i q^{27} + 6 q^{29} + 6 i q^{37} + 6 q^{39} + 10 q^{41} - 4 i q^{43} - 8 i q^{47} - 9 q^{49} - 2 q^{51} + 10 i q^{53} + \cdots - 2 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 8 q^{19} + 8 q^{21} + 12 q^{29} + 12 q^{39} + 20 q^{41} - 18 q^{49} - 4 q^{51} + 12 q^{61} + 16 q^{69} - 32 q^{79} + 2 q^{81} - 4 q^{89} - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 1.00000i 0 0 0 4.00000i 0 −1.00000 0
49.2 0 1.00000i 0 0 0 4.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.f.c 2
3.b odd 2 1 1800.2.f.g 2
4.b odd 2 1 1200.2.f.f 2
5.b even 2 1 inner 600.2.f.c 2
5.c odd 4 1 120.2.a.a 1
5.c odd 4 1 600.2.a.a 1
8.b even 2 1 4800.2.f.u 2
8.d odd 2 1 4800.2.f.n 2
12.b even 2 1 3600.2.f.l 2
15.d odd 2 1 1800.2.f.g 2
15.e even 4 1 360.2.a.e 1
15.e even 4 1 1800.2.a.c 1
20.d odd 2 1 1200.2.f.f 2
20.e even 4 1 240.2.a.a 1
20.e even 4 1 1200.2.a.r 1
35.f even 4 1 5880.2.a.p 1
40.e odd 2 1 4800.2.f.n 2
40.f even 2 1 4800.2.f.u 2
40.i odd 4 1 960.2.a.g 1
40.i odd 4 1 4800.2.a.bl 1
40.k even 4 1 960.2.a.n 1
40.k even 4 1 4800.2.a.bh 1
45.k odd 12 2 3240.2.q.m 2
45.l even 12 2 3240.2.q.a 2
60.h even 2 1 3600.2.f.l 2
60.l odd 4 1 720.2.a.f 1
60.l odd 4 1 3600.2.a.bo 1
80.i odd 4 1 3840.2.k.a 2
80.j even 4 1 3840.2.k.z 2
80.s even 4 1 3840.2.k.z 2
80.t odd 4 1 3840.2.k.a 2
120.q odd 4 1 2880.2.a.b 1
120.w even 4 1 2880.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.a.a 1 5.c odd 4 1
240.2.a.a 1 20.e even 4 1
360.2.a.e 1 15.e even 4 1
600.2.a.a 1 5.c odd 4 1
600.2.f.c 2 1.a even 1 1 trivial
600.2.f.c 2 5.b even 2 1 inner
720.2.a.f 1 60.l odd 4 1
960.2.a.g 1 40.i odd 4 1
960.2.a.n 1 40.k even 4 1
1200.2.a.r 1 20.e even 4 1
1200.2.f.f 2 4.b odd 2 1
1200.2.f.f 2 20.d odd 2 1
1800.2.a.c 1 15.e even 4 1
1800.2.f.g 2 3.b odd 2 1
1800.2.f.g 2 15.d odd 2 1
2880.2.a.b 1 120.q odd 4 1
2880.2.a.r 1 120.w even 4 1
3240.2.q.a 2 45.l even 12 2
3240.2.q.m 2 45.k odd 12 2
3600.2.a.bo 1 60.l odd 4 1
3600.2.f.l 2 12.b even 2 1
3600.2.f.l 2 60.h even 2 1
3840.2.k.a 2 80.i odd 4 1
3840.2.k.a 2 80.t odd 4 1
3840.2.k.z 2 80.j even 4 1
3840.2.k.z 2 80.s even 4 1
4800.2.a.bh 1 40.k even 4 1
4800.2.a.bl 1 40.i odd 4 1
4800.2.f.n 2 8.d odd 2 1
4800.2.f.n 2 40.e odd 2 1
4800.2.f.u 2 8.b even 2 1
4800.2.f.u 2 40.f even 2 1
5880.2.a.p 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(600, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 36 \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less