Properties

Label 600.3.u.d.457.2
Level $600$
Weight $3$
Character 600.457
Analytic conductor $16.349$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,3,Mod(193,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.u (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 457.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 600.457
Dual form 600.3.u.d.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.22474i) q^{3} +(0.775255 + 0.775255i) q^{7} -3.00000i q^{9} +O(q^{10})\) \(q+(1.22474 - 1.22474i) q^{3} +(0.775255 + 0.775255i) q^{7} -3.00000i q^{9} +2.89898 q^{11} +(5.87628 - 5.87628i) q^{13} +(4.44949 + 4.44949i) q^{17} +0.101021i q^{19} +1.89898 q^{21} +(25.3485 - 25.3485i) q^{23} +(-3.67423 - 3.67423i) q^{27} -32.2929i q^{29} -3.69694 q^{31} +(3.55051 - 3.55051i) q^{33} +(42.6969 + 42.6969i) q^{37} -14.3939i q^{39} -12.8990 q^{41} +(49.2702 - 49.2702i) q^{43} +(2.85357 + 2.85357i) q^{47} -47.7980i q^{49} +10.8990 q^{51} +(-13.1918 + 13.1918i) q^{53} +(0.123724 + 0.123724i) q^{57} -76.3837i q^{59} -103.788 q^{61} +(2.32577 - 2.32577i) q^{63} +(47.6288 + 47.6288i) q^{67} -62.0908i q^{69} +29.7071 q^{71} +(3.50510 - 3.50510i) q^{73} +(2.24745 + 2.24745i) q^{77} +87.7980i q^{79} -9.00000 q^{81} +(81.7321 - 81.7321i) q^{83} +(-39.5505 - 39.5505i) q^{87} -96.5857i q^{89} +9.11123 q^{91} +(-4.52781 + 4.52781i) q^{93} +(54.2804 + 54.2804i) q^{97} -8.69694i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{7} - 8 q^{11} + 48 q^{13} + 8 q^{17} - 12 q^{21} + 72 q^{23} + 44 q^{31} + 24 q^{33} + 112 q^{37} - 32 q^{41} + 104 q^{43} + 80 q^{47} + 24 q^{51} + 104 q^{53} - 24 q^{57} - 180 q^{61} + 24 q^{63} + 264 q^{67} + 256 q^{71} + 112 q^{73} - 40 q^{77} - 36 q^{81} - 16 q^{83} - 168 q^{87} + 252 q^{91} - 72 q^{93} + 320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 1.22474i 0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.775255 + 0.775255i 0.110751 + 0.110751i 0.760311 0.649560i \(-0.225047\pi\)
−0.649560 + 0.760311i \(0.725047\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 2.89898 0.263544 0.131772 0.991280i \(-0.457933\pi\)
0.131772 + 0.991280i \(0.457933\pi\)
\(12\) 0 0
\(13\) 5.87628 5.87628i 0.452021 0.452021i −0.444004 0.896025i \(-0.646442\pi\)
0.896025 + 0.444004i \(0.146442\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.44949 + 4.44949i 0.261735 + 0.261735i 0.825759 0.564024i \(-0.190747\pi\)
−0.564024 + 0.825759i \(0.690747\pi\)
\(18\) 0 0
\(19\) 0.101021i 0.00531687i 0.999996 + 0.00265843i \(0.000846207\pi\)
−0.999996 + 0.00265843i \(0.999154\pi\)
\(20\) 0 0
\(21\) 1.89898 0.0904276
\(22\) 0 0
\(23\) 25.3485 25.3485i 1.10211 1.10211i 0.107951 0.994156i \(-0.465571\pi\)
0.994156 0.107951i \(-0.0344290\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 0 0
\(29\) 32.2929i 1.11355i −0.830664 0.556773i \(-0.812039\pi\)
0.830664 0.556773i \(-0.187961\pi\)
\(30\) 0 0
\(31\) −3.69694 −0.119256 −0.0596280 0.998221i \(-0.518991\pi\)
−0.0596280 + 0.998221i \(0.518991\pi\)
\(32\) 0 0
\(33\) 3.55051 3.55051i 0.107591 0.107591i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 42.6969 + 42.6969i 1.15397 + 1.15397i 0.985749 + 0.168222i \(0.0538026\pi\)
0.168222 + 0.985749i \(0.446197\pi\)
\(38\) 0 0
\(39\) 14.3939i 0.369074i
\(40\) 0 0
\(41\) −12.8990 −0.314609 −0.157305 0.987550i \(-0.550280\pi\)
−0.157305 + 0.987550i \(0.550280\pi\)
\(42\) 0 0
\(43\) 49.2702 49.2702i 1.14582 1.14582i 0.158451 0.987367i \(-0.449350\pi\)
0.987367 0.158451i \(-0.0506499\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.85357 + 2.85357i 0.0607143 + 0.0607143i 0.736812 0.676098i \(-0.236330\pi\)
−0.676098 + 0.736812i \(0.736330\pi\)
\(48\) 0 0
\(49\) 47.7980i 0.975469i
\(50\) 0 0
\(51\) 10.8990 0.213705
\(52\) 0 0
\(53\) −13.1918 + 13.1918i −0.248903 + 0.248903i −0.820520 0.571618i \(-0.806316\pi\)
0.571618 + 0.820520i \(0.306316\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.123724 + 0.123724i 0.00217060 + 0.00217060i
\(58\) 0 0
\(59\) 76.3837i 1.29464i −0.762219 0.647319i \(-0.775890\pi\)
0.762219 0.647319i \(-0.224110\pi\)
\(60\) 0 0
\(61\) −103.788 −1.70144 −0.850719 0.525620i \(-0.823833\pi\)
−0.850719 + 0.525620i \(0.823833\pi\)
\(62\) 0 0
\(63\) 2.32577 2.32577i 0.0369169 0.0369169i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 47.6288 + 47.6288i 0.710878 + 0.710878i 0.966719 0.255841i \(-0.0823523\pi\)
−0.255841 + 0.966719i \(0.582352\pi\)
\(68\) 0 0
\(69\) 62.0908i 0.899867i
\(70\) 0 0
\(71\) 29.7071 0.418410 0.209205 0.977872i \(-0.432912\pi\)
0.209205 + 0.977872i \(0.432912\pi\)
\(72\) 0 0
\(73\) 3.50510 3.50510i 0.0480151 0.0480151i −0.682692 0.730707i \(-0.739191\pi\)
0.730707 + 0.682692i \(0.239191\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.24745 + 2.24745i 0.0291876 + 0.0291876i
\(78\) 0 0
\(79\) 87.7980i 1.11137i 0.831394 + 0.555683i \(0.187543\pi\)
−0.831394 + 0.555683i \(0.812457\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 81.7321 81.7321i 0.984725 0.984725i −0.0151605 0.999885i \(-0.504826\pi\)
0.999885 + 0.0151605i \(0.00482592\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −39.5505 39.5505i −0.454604 0.454604i
\(88\) 0 0
\(89\) 96.5857i 1.08523i −0.839981 0.542616i \(-0.817434\pi\)
0.839981 0.542616i \(-0.182566\pi\)
\(90\) 0 0
\(91\) 9.11123 0.100123
\(92\) 0 0
\(93\) −4.52781 + 4.52781i −0.0486861 + 0.0486861i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 54.2804 + 54.2804i 0.559591 + 0.559591i 0.929191 0.369600i \(-0.120505\pi\)
−0.369600 + 0.929191i \(0.620505\pi\)
\(98\) 0 0
\(99\) 8.69694i 0.0878479i
\(100\) 0 0
\(101\) −50.5153 −0.500152 −0.250076 0.968226i \(-0.580456\pi\)
−0.250076 + 0.968226i \(0.580456\pi\)
\(102\) 0 0
\(103\) 26.2020 26.2020i 0.254389 0.254389i −0.568378 0.822767i \(-0.692429\pi\)
0.822767 + 0.568378i \(0.192429\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.48469 + 7.48469i 0.0699504 + 0.0699504i 0.741216 0.671266i \(-0.234249\pi\)
−0.671266 + 0.741216i \(0.734249\pi\)
\(108\) 0 0
\(109\) 94.5755i 0.867665i 0.900993 + 0.433833i \(0.142839\pi\)
−0.900993 + 0.433833i \(0.857161\pi\)
\(110\) 0 0
\(111\) 104.586 0.942214
\(112\) 0 0
\(113\) −89.9796 + 89.9796i −0.796280 + 0.796280i −0.982507 0.186227i \(-0.940374\pi\)
0.186227 + 0.982507i \(0.440374\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −17.6288 17.6288i −0.150674 0.150674i
\(118\) 0 0
\(119\) 6.89898i 0.0579746i
\(120\) 0 0
\(121\) −112.596 −0.930545
\(122\) 0 0
\(123\) −15.7980 + 15.7980i −0.128439 + 0.128439i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 37.3031 + 37.3031i 0.293725 + 0.293725i 0.838550 0.544825i \(-0.183404\pi\)
−0.544825 + 0.838550i \(0.683404\pi\)
\(128\) 0 0
\(129\) 120.687i 0.935556i
\(130\) 0 0
\(131\) 192.677 1.47081 0.735407 0.677626i \(-0.236991\pi\)
0.735407 + 0.677626i \(0.236991\pi\)
\(132\) 0 0
\(133\) −0.0783167 + 0.0783167i −0.000588847 + 0.000588847i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −165.328 165.328i −1.20677 1.20677i −0.972066 0.234708i \(-0.924587\pi\)
−0.234708 0.972066i \(-0.575413\pi\)
\(138\) 0 0
\(139\) 256.747i 1.84710i 0.383478 + 0.923550i \(0.374726\pi\)
−0.383478 + 0.923550i \(0.625274\pi\)
\(140\) 0 0
\(141\) 6.98979 0.0495730
\(142\) 0 0
\(143\) 17.0352 17.0352i 0.119127 0.119127i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −58.5403 58.5403i −0.398233 0.398233i
\(148\) 0 0
\(149\) 192.788i 1.29388i 0.762542 + 0.646939i \(0.223951\pi\)
−0.762542 + 0.646939i \(0.776049\pi\)
\(150\) 0 0
\(151\) 98.9092 0.655028 0.327514 0.944846i \(-0.393789\pi\)
0.327514 + 0.944846i \(0.393789\pi\)
\(152\) 0 0
\(153\) 13.3485 13.3485i 0.0872449 0.0872449i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 103.452 + 103.452i 0.658929 + 0.658929i 0.955127 0.296198i \(-0.0957188\pi\)
−0.296198 + 0.955127i \(0.595719\pi\)
\(158\) 0 0
\(159\) 32.3133i 0.203228i
\(160\) 0 0
\(161\) 39.3031 0.244118
\(162\) 0 0
\(163\) −19.1339 + 19.1339i −0.117386 + 0.117386i −0.763360 0.645974i \(-0.776452\pi\)
0.645974 + 0.763360i \(0.276452\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −96.6969 96.6969i −0.579024 0.579024i 0.355611 0.934634i \(-0.384273\pi\)
−0.934634 + 0.355611i \(0.884273\pi\)
\(168\) 0 0
\(169\) 99.9388i 0.591354i
\(170\) 0 0
\(171\) 0.303062 0.00177229
\(172\) 0 0
\(173\) −180.136 + 180.136i −1.04125 + 1.04125i −0.0421380 + 0.999112i \(0.513417\pi\)
−0.999112 + 0.0421380i \(0.986583\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −93.5505 93.5505i −0.528534 0.528534i
\(178\) 0 0
\(179\) 134.000i 0.748603i −0.927307 0.374302i \(-0.877882\pi\)
0.927307 0.374302i \(-0.122118\pi\)
\(180\) 0 0
\(181\) −171.586 −0.947987 −0.473994 0.880528i \(-0.657188\pi\)
−0.473994 + 0.880528i \(0.657188\pi\)
\(182\) 0 0
\(183\) −127.114 + 127.114i −0.694609 + 0.694609i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.8990 + 12.8990i 0.0689785 + 0.0689785i
\(188\) 0 0
\(189\) 5.69694i 0.0301425i
\(190\) 0 0
\(191\) 26.2724 0.137552 0.0687760 0.997632i \(-0.478091\pi\)
0.0687760 + 0.997632i \(0.478091\pi\)
\(192\) 0 0
\(193\) −74.1237 + 74.1237i −0.384061 + 0.384061i −0.872563 0.488502i \(-0.837543\pi\)
0.488502 + 0.872563i \(0.337543\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −47.7526 47.7526i −0.242399 0.242399i 0.575443 0.817842i \(-0.304830\pi\)
−0.817842 + 0.575443i \(0.804830\pi\)
\(198\) 0 0
\(199\) 355.454i 1.78620i 0.449857 + 0.893101i \(0.351475\pi\)
−0.449857 + 0.893101i \(0.648525\pi\)
\(200\) 0 0
\(201\) 116.666 0.580429
\(202\) 0 0
\(203\) 25.0352 25.0352i 0.123326 0.123326i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −76.0454 76.0454i −0.367369 0.367369i
\(208\) 0 0
\(209\) 0.292856i 0.00140123i
\(210\) 0 0
\(211\) −145.474 −0.689453 −0.344726 0.938703i \(-0.612028\pi\)
−0.344726 + 0.938703i \(0.612028\pi\)
\(212\) 0 0
\(213\) 36.3837 36.3837i 0.170815 0.170815i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.86607 2.86607i −0.0132077 0.0132077i
\(218\) 0 0
\(219\) 8.58571i 0.0392042i
\(220\) 0 0
\(221\) 52.2929 0.236619
\(222\) 0 0
\(223\) −230.351 + 230.351i −1.03296 + 1.03296i −0.0335252 + 0.999438i \(0.510673\pi\)
−0.999438 + 0.0335252i \(0.989327\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 40.4745 + 40.4745i 0.178302 + 0.178302i 0.790615 0.612313i \(-0.209761\pi\)
−0.612313 + 0.790615i \(0.709761\pi\)
\(228\) 0 0
\(229\) 210.192i 0.917868i 0.888470 + 0.458934i \(0.151769\pi\)
−0.888470 + 0.458934i \(0.848231\pi\)
\(230\) 0 0
\(231\) 5.50510 0.0238316
\(232\) 0 0
\(233\) −296.384 + 296.384i −1.27203 + 1.27203i −0.327013 + 0.945020i \(0.606042\pi\)
−0.945020 + 0.327013i \(0.893958\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 107.530 + 107.530i 0.453714 + 0.453714i
\(238\) 0 0
\(239\) 89.3031i 0.373653i −0.982393 0.186826i \(-0.940180\pi\)
0.982393 0.186826i \(-0.0598202\pi\)
\(240\) 0 0
\(241\) 120.616 0.500483 0.250241 0.968183i \(-0.419490\pi\)
0.250241 + 0.968183i \(0.419490\pi\)
\(242\) 0 0
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.593624 + 0.593624i 0.00240334 + 0.00240334i
\(248\) 0 0
\(249\) 200.202i 0.804024i
\(250\) 0 0
\(251\) −197.576 −0.787153 −0.393577 0.919292i \(-0.628762\pi\)
−0.393577 + 0.919292i \(0.628762\pi\)
\(252\) 0 0
\(253\) 73.4847 73.4847i 0.290453 0.290453i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −223.868 223.868i −0.871083 0.871083i 0.121507 0.992591i \(-0.461227\pi\)
−0.992591 + 0.121507i \(0.961227\pi\)
\(258\) 0 0
\(259\) 66.2020i 0.255606i
\(260\) 0 0
\(261\) −96.8786 −0.371182
\(262\) 0 0
\(263\) 90.7673 90.7673i 0.345123 0.345123i −0.513166 0.858289i \(-0.671528\pi\)
0.858289 + 0.513166i \(0.171528\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −118.293 118.293i −0.443044 0.443044i
\(268\) 0 0
\(269\) 361.909i 1.34539i 0.739921 + 0.672694i \(0.234863\pi\)
−0.739921 + 0.672694i \(0.765137\pi\)
\(270\) 0 0
\(271\) −216.788 −0.799955 −0.399977 0.916525i \(-0.630982\pi\)
−0.399977 + 0.916525i \(0.630982\pi\)
\(272\) 0 0
\(273\) 11.1589 11.1589i 0.0408752 0.0408752i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 205.406 + 205.406i 0.741539 + 0.741539i 0.972874 0.231335i \(-0.0743093\pi\)
−0.231335 + 0.972874i \(0.574309\pi\)
\(278\) 0 0
\(279\) 11.0908i 0.0397520i
\(280\) 0 0
\(281\) 334.899 1.19181 0.595906 0.803054i \(-0.296793\pi\)
0.595906 + 0.803054i \(0.296793\pi\)
\(282\) 0 0
\(283\) −74.3508 + 74.3508i −0.262724 + 0.262724i −0.826160 0.563436i \(-0.809479\pi\)
0.563436 + 0.826160i \(0.309479\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.0000 10.0000i −0.0348432 0.0348432i
\(288\) 0 0
\(289\) 249.404i 0.862990i
\(290\) 0 0
\(291\) 132.959 0.456904
\(292\) 0 0
\(293\) 116.874 116.874i 0.398887 0.398887i −0.478953 0.877840i \(-0.658984\pi\)
0.877840 + 0.478953i \(0.158984\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −10.6515 10.6515i −0.0358637 0.0358637i
\(298\) 0 0
\(299\) 297.909i 0.996352i
\(300\) 0 0
\(301\) 76.3939 0.253800
\(302\) 0 0
\(303\) −61.8684 + 61.8684i −0.204186 + 0.204186i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −135.250 135.250i −0.440553 0.440553i 0.451645 0.892198i \(-0.350837\pi\)
−0.892198 + 0.451645i \(0.850837\pi\)
\(308\) 0 0
\(309\) 64.1816i 0.207708i
\(310\) 0 0
\(311\) −239.212 −0.769171 −0.384586 0.923089i \(-0.625656\pi\)
−0.384586 + 0.923089i \(0.625656\pi\)
\(312\) 0 0
\(313\) 271.386 271.386i 0.867048 0.867048i −0.125097 0.992145i \(-0.539924\pi\)
0.992145 + 0.125097i \(0.0399241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 175.060 + 175.060i 0.552240 + 0.552240i 0.927087 0.374847i \(-0.122305\pi\)
−0.374847 + 0.927087i \(0.622305\pi\)
\(318\) 0 0
\(319\) 93.6163i 0.293468i
\(320\) 0 0
\(321\) 18.3337 0.0571143
\(322\) 0 0
\(323\) −0.449490 + 0.449490i −0.00139161 + 0.00139161i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 115.831 + 115.831i 0.354223 + 0.354223i
\(328\) 0 0
\(329\) 4.42449i 0.0134483i
\(330\) 0 0
\(331\) −134.445 −0.406178 −0.203089 0.979160i \(-0.565098\pi\)
−0.203089 + 0.979160i \(0.565098\pi\)
\(332\) 0 0
\(333\) 128.091 128.091i 0.384657 0.384657i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −137.654 137.654i −0.408468 0.408468i 0.472736 0.881204i \(-0.343266\pi\)
−0.881204 + 0.472736i \(0.843266\pi\)
\(338\) 0 0
\(339\) 220.404i 0.650160i
\(340\) 0 0
\(341\) −10.7173 −0.0314292
\(342\) 0 0
\(343\) 75.0431 75.0431i 0.218785 0.218785i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 365.823 + 365.823i 1.05424 + 1.05424i 0.998442 + 0.0558030i \(0.0177719\pi\)
0.0558030 + 0.998442i \(0.482228\pi\)
\(348\) 0 0
\(349\) 140.020i 0.401205i 0.979673 + 0.200602i \(0.0642899\pi\)
−0.979673 + 0.200602i \(0.935710\pi\)
\(350\) 0 0
\(351\) −43.1816 −0.123025
\(352\) 0 0
\(353\) 208.672 208.672i 0.591139 0.591139i −0.346800 0.937939i \(-0.612732\pi\)
0.937939 + 0.346800i \(0.112732\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 8.44949 + 8.44949i 0.0236680 + 0.0236680i
\(358\) 0 0
\(359\) 583.019i 1.62401i −0.583651 0.812005i \(-0.698376\pi\)
0.583651 0.812005i \(-0.301624\pi\)
\(360\) 0 0
\(361\) 360.990 0.999972
\(362\) 0 0
\(363\) −137.901 + 137.901i −0.379893 + 0.379893i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 123.341 + 123.341i 0.336078 + 0.336078i 0.854889 0.518811i \(-0.173625\pi\)
−0.518811 + 0.854889i \(0.673625\pi\)
\(368\) 0 0
\(369\) 38.6969i 0.104870i
\(370\) 0 0
\(371\) −20.4541 −0.0551323
\(372\) 0 0
\(373\) 345.052 345.052i 0.925073 0.925073i −0.0723091 0.997382i \(-0.523037\pi\)
0.997382 + 0.0723091i \(0.0230368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −189.762 189.762i −0.503347 0.503347i
\(378\) 0 0
\(379\) 421.393i 1.11185i −0.831231 0.555927i \(-0.812363\pi\)
0.831231 0.555927i \(-0.187637\pi\)
\(380\) 0 0
\(381\) 91.3735 0.239825
\(382\) 0 0
\(383\) 344.586 344.586i 0.899702 0.899702i −0.0957079 0.995409i \(-0.530511\pi\)
0.995409 + 0.0957079i \(0.0305115\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −147.810 147.810i −0.381939 0.381939i
\(388\) 0 0
\(389\) 486.111i 1.24964i 0.780768 + 0.624822i \(0.214828\pi\)
−0.780768 + 0.624822i \(0.785172\pi\)
\(390\) 0 0
\(391\) 225.576 0.576919
\(392\) 0 0
\(393\) 235.980 235.980i 0.600457 0.600457i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 312.062 + 312.062i 0.786052 + 0.786052i 0.980844 0.194793i \(-0.0624034\pi\)
−0.194793 + 0.980844i \(0.562403\pi\)
\(398\) 0 0
\(399\) 0.191836i 0.000480792i
\(400\) 0 0
\(401\) 590.252 1.47195 0.735975 0.677009i \(-0.236724\pi\)
0.735975 + 0.677009i \(0.236724\pi\)
\(402\) 0 0
\(403\) −21.7242 + 21.7242i −0.0539063 + 0.0539063i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 123.778 + 123.778i 0.304122 + 0.304122i
\(408\) 0 0
\(409\) 736.696i 1.80121i −0.434636 0.900606i \(-0.643123\pi\)
0.434636 0.900606i \(-0.356877\pi\)
\(410\) 0 0
\(411\) −404.969 −0.985327
\(412\) 0 0
\(413\) 59.2168 59.2168i 0.143382 0.143382i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 314.449 + 314.449i 0.754076 + 0.754076i
\(418\) 0 0
\(419\) 38.0296i 0.0907627i 0.998970 + 0.0453814i \(0.0144503\pi\)
−0.998970 + 0.0453814i \(0.985550\pi\)
\(420\) 0 0
\(421\) −331.394 −0.787159 −0.393579 0.919291i \(-0.628763\pi\)
−0.393579 + 0.919291i \(0.628763\pi\)
\(422\) 0 0
\(423\) 8.56072 8.56072i 0.0202381 0.0202381i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −80.4620 80.4620i −0.188436 0.188436i
\(428\) 0 0
\(429\) 41.7276i 0.0972670i
\(430\) 0 0
\(431\) −843.040 −1.95601 −0.978004 0.208584i \(-0.933114\pi\)
−0.978004 + 0.208584i \(0.933114\pi\)
\(432\) 0 0
\(433\) 149.381 149.381i 0.344992 0.344992i −0.513248 0.858240i \(-0.671558\pi\)
0.858240 + 0.513248i \(0.171558\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.56072 + 2.56072i 0.00585976 + 0.00585976i
\(438\) 0 0
\(439\) 545.999i 1.24373i −0.783123 0.621867i \(-0.786375\pi\)
0.783123 0.621867i \(-0.213625\pi\)
\(440\) 0 0
\(441\) −143.394 −0.325156
\(442\) 0 0
\(443\) −45.0398 + 45.0398i −0.101670 + 0.101670i −0.756112 0.654442i \(-0.772904\pi\)
0.654442 + 0.756112i \(0.272904\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 236.116 + 236.116i 0.528223 + 0.528223i
\(448\) 0 0
\(449\) 320.767i 0.714404i −0.934027 0.357202i \(-0.883731\pi\)
0.934027 0.357202i \(-0.116269\pi\)
\(450\) 0 0
\(451\) −37.3939 −0.0829133
\(452\) 0 0
\(453\) 121.139 121.139i 0.267414 0.267414i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −599.918 599.918i −1.31273 1.31273i −0.919394 0.393337i \(-0.871320\pi\)
−0.393337 0.919394i \(-0.628680\pi\)
\(458\) 0 0
\(459\) 32.6969i 0.0712352i
\(460\) 0 0
\(461\) −376.595 −0.816909 −0.408454 0.912779i \(-0.633932\pi\)
−0.408454 + 0.912779i \(0.633932\pi\)
\(462\) 0 0
\(463\) −214.838 + 214.838i −0.464012 + 0.464012i −0.899968 0.435956i \(-0.856410\pi\)
0.435956 + 0.899968i \(0.356410\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 463.419 + 463.419i 0.992332 + 0.992332i 0.999971 0.00763918i \(-0.00243165\pi\)
−0.00763918 + 0.999971i \(0.502432\pi\)
\(468\) 0 0
\(469\) 73.8490i 0.157461i
\(470\) 0 0
\(471\) 253.404 0.538013
\(472\) 0 0
\(473\) 142.833 142.833i 0.301973 0.301973i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 39.5755 + 39.5755i 0.0829675 + 0.0829675i
\(478\) 0 0
\(479\) 415.394i 0.867211i −0.901103 0.433605i \(-0.857241\pi\)
0.901103 0.433605i \(-0.142759\pi\)
\(480\) 0 0
\(481\) 501.798 1.04324
\(482\) 0 0
\(483\) 48.1362 48.1362i 0.0996609 0.0996609i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.1033 + 38.1033i 0.0782409 + 0.0782409i 0.745144 0.666903i \(-0.232381\pi\)
−0.666903 + 0.745144i \(0.732381\pi\)
\(488\) 0 0
\(489\) 46.8684i 0.0958453i
\(490\) 0 0
\(491\) 383.514 0.781088 0.390544 0.920584i \(-0.372287\pi\)
0.390544 + 0.920584i \(0.372287\pi\)
\(492\) 0 0
\(493\) 143.687 143.687i 0.291454 0.291454i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.0306 + 23.0306i 0.0463393 + 0.0463393i
\(498\) 0 0
\(499\) 81.4133i 0.163153i −0.996667 0.0815764i \(-0.974005\pi\)
0.996667 0.0815764i \(-0.0259955\pi\)
\(500\) 0 0
\(501\) −236.858 −0.472771
\(502\) 0 0
\(503\) 171.626 171.626i 0.341204 0.341204i −0.515616 0.856820i \(-0.672437\pi\)
0.856820 + 0.515616i \(0.172437\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 122.399 + 122.399i 0.241419 + 0.241419i
\(508\) 0 0
\(509\) 452.202i 0.888413i 0.895925 + 0.444206i \(0.146514\pi\)
−0.895925 + 0.444206i \(0.853486\pi\)
\(510\) 0 0
\(511\) 5.43470 0.0106354
\(512\) 0 0
\(513\) 0.371173 0.371173i 0.000723534 0.000723534i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.27245 + 8.27245i 0.0160009 + 0.0160009i
\(518\) 0 0
\(519\) 441.242i 0.850177i
\(520\) 0 0
\(521\) −773.928 −1.48547 −0.742733 0.669588i \(-0.766471\pi\)
−0.742733 + 0.669588i \(0.766471\pi\)
\(522\) 0 0
\(523\) −474.507 + 474.507i −0.907280 + 0.907280i −0.996052 0.0887721i \(-0.971706\pi\)
0.0887721 + 0.996052i \(0.471706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.4495 16.4495i −0.0312135 0.0312135i
\(528\) 0 0
\(529\) 756.090i 1.42928i
\(530\) 0 0
\(531\) −229.151 −0.431546
\(532\) 0 0
\(533\) −75.7980 + 75.7980i −0.142210 + 0.142210i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −164.116 164.116i −0.305616 0.305616i
\(538\) 0 0
\(539\) 138.565i 0.257078i
\(540\) 0 0
\(541\) 511.867 0.946150 0.473075 0.881022i \(-0.343144\pi\)
0.473075 + 0.881022i \(0.343144\pi\)
\(542\) 0 0
\(543\) −210.149 + 210.149i −0.387014 + 0.387014i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −373.980 373.980i −0.683692 0.683692i 0.277138 0.960830i \(-0.410614\pi\)
−0.960830 + 0.277138i \(0.910614\pi\)
\(548\) 0 0
\(549\) 311.363i 0.567146i
\(550\) 0 0
\(551\) 3.26224 0.00592058
\(552\) 0 0
\(553\) −68.0658 + 68.0658i −0.123085 + 0.123085i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 421.015 + 421.015i 0.755861 + 0.755861i 0.975566 0.219705i \(-0.0705095\pi\)
−0.219705 + 0.975566i \(0.570509\pi\)
\(558\) 0 0
\(559\) 579.050i 1.03587i
\(560\) 0 0
\(561\) 31.5959 0.0563207
\(562\) 0 0
\(563\) 7.77296 7.77296i 0.0138063 0.0138063i −0.700170 0.713976i \(-0.746892\pi\)
0.713976 + 0.700170i \(0.246892\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.97730 6.97730i −0.0123056 0.0123056i
\(568\) 0 0
\(569\) 473.787i 0.832666i 0.909212 + 0.416333i \(0.136685\pi\)
−0.909212 + 0.416333i \(0.863315\pi\)
\(570\) 0 0
\(571\) −120.344 −0.210760 −0.105380 0.994432i \(-0.533606\pi\)
−0.105380 + 0.994432i \(0.533606\pi\)
\(572\) 0 0
\(573\) 32.1770 32.1770i 0.0561554 0.0561554i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −266.033 266.033i −0.461062 0.461062i 0.437941 0.899004i \(-0.355708\pi\)
−0.899004 + 0.437941i \(0.855708\pi\)
\(578\) 0 0
\(579\) 181.565i 0.313584i
\(580\) 0 0
\(581\) 126.727 0.218118
\(582\) 0 0
\(583\) −38.2429 + 38.2429i −0.0655967 + 0.0655967i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 114.141 + 114.141i 0.194448 + 0.194448i 0.797615 0.603167i \(-0.206095\pi\)
−0.603167 + 0.797615i \(0.706095\pi\)
\(588\) 0 0
\(589\) 0.373467i 0.000634069i
\(590\) 0 0
\(591\) −116.969 −0.197918
\(592\) 0 0
\(593\) −566.636 + 566.636i −0.955541 + 0.955541i −0.999053 0.0435121i \(-0.986145\pi\)
0.0435121 + 0.999053i \(0.486145\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 435.341 + 435.341i 0.729214 + 0.729214i
\(598\) 0 0
\(599\) 1002.44i 1.67353i 0.547564 + 0.836764i \(0.315555\pi\)
−0.547564 + 0.836764i \(0.684445\pi\)
\(600\) 0 0
\(601\) −20.8796 −0.0347414 −0.0173707 0.999849i \(-0.505530\pi\)
−0.0173707 + 0.999849i \(0.505530\pi\)
\(602\) 0 0
\(603\) 142.886 142.886i 0.236959 0.236959i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −305.748 305.748i −0.503703 0.503703i 0.408883 0.912587i \(-0.365918\pi\)
−0.912587 + 0.408883i \(0.865918\pi\)
\(608\) 0 0
\(609\) 61.3235i 0.100695i
\(610\) 0 0
\(611\) 33.5367 0.0548883
\(612\) 0 0
\(613\) −153.303 + 153.303i −0.250087 + 0.250087i −0.821006 0.570919i \(-0.806587\pi\)
0.570919 + 0.821006i \(0.306587\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −276.879 276.879i −0.448750 0.448750i 0.446189 0.894939i \(-0.352781\pi\)
−0.894939 + 0.446189i \(0.852781\pi\)
\(618\) 0 0
\(619\) 389.352i 0.629002i 0.949257 + 0.314501i \(0.101837\pi\)
−0.949257 + 0.314501i \(0.898163\pi\)
\(620\) 0 0
\(621\) −186.272 −0.299956
\(622\) 0 0
\(623\) 74.8786 74.8786i 0.120190 0.120190i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.358674 + 0.358674i 0.000572048 + 0.000572048i
\(628\) 0 0
\(629\) 379.959i 0.604069i
\(630\) 0 0
\(631\) 576.201 0.913155 0.456578 0.889684i \(-0.349075\pi\)
0.456578 + 0.889684i \(0.349075\pi\)
\(632\) 0 0
\(633\) −178.169 + 178.169i −0.281468 + 0.281468i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −280.874 280.874i −0.440932 0.440932i
\(638\) 0 0
\(639\) 89.1214i 0.139470i
\(640\) 0 0
\(641\) 780.827 1.21814 0.609069 0.793117i \(-0.291543\pi\)
0.609069 + 0.793117i \(0.291543\pi\)
\(642\) 0 0
\(643\) 403.787 403.787i 0.627973 0.627973i −0.319585 0.947558i \(-0.603543\pi\)
0.947558 + 0.319585i \(0.103543\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −381.898 381.898i −0.590260 0.590260i 0.347442 0.937702i \(-0.387050\pi\)
−0.937702 + 0.347442i \(0.887050\pi\)
\(648\) 0 0
\(649\) 221.435i 0.341194i
\(650\) 0 0
\(651\) −7.02041 −0.0107840
\(652\) 0 0
\(653\) 149.864 149.864i 0.229500 0.229500i −0.582984 0.812484i \(-0.698115\pi\)
0.812484 + 0.582984i \(0.198115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.5153 10.5153i −0.0160050 0.0160050i
\(658\) 0 0
\(659\) 552.495i 0.838384i 0.907898 + 0.419192i \(0.137687\pi\)
−0.907898 + 0.419192i \(0.862313\pi\)
\(660\) 0 0
\(661\) −274.767 −0.415684 −0.207842 0.978162i \(-0.566644\pi\)
−0.207842 + 0.978162i \(0.566644\pi\)
\(662\) 0 0
\(663\) 64.0454 64.0454i 0.0965994 0.0965994i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −818.574 818.574i −1.22725 1.22725i
\(668\) 0 0
\(669\) 564.242i 0.843411i
\(670\) 0 0
\(671\) −300.879 −0.448403
\(672\) 0 0
\(673\) −624.272 + 624.272i −0.927597 + 0.927597i −0.997550 0.0699537i \(-0.977715\pi\)
0.0699537 + 0.997550i \(0.477715\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.04541 4.04541i −0.00597549 0.00597549i 0.704113 0.710088i \(-0.251345\pi\)
−0.710088 + 0.704113i \(0.751345\pi\)
\(678\) 0 0
\(679\) 84.1623i 0.123950i
\(680\) 0 0
\(681\) 99.1418 0.145583
\(682\) 0 0
\(683\) −913.757 + 913.757i −1.33786 + 1.33786i −0.439726 + 0.898132i \(0.644925\pi\)
−0.898132 + 0.439726i \(0.855075\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 257.431 + 257.431i 0.374718 + 0.374718i
\(688\) 0 0
\(689\) 155.038i 0.225018i
\(690\) 0 0
\(691\) 1286.24 1.86142 0.930710 0.365759i \(-0.119190\pi\)
0.930710 + 0.365759i \(0.119190\pi\)
\(692\) 0 0
\(693\) 6.74235 6.74235i 0.00972922 0.00972922i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −57.3939 57.3939i −0.0823442 0.0823442i
\(698\) 0 0
\(699\) 725.989i 1.03861i
\(700\) 0 0
\(701\) −527.181 −0.752041 −0.376020 0.926611i \(-0.622708\pi\)
−0.376020 + 0.926611i \(0.622708\pi\)
\(702\) 0 0
\(703\) −4.31327 + 4.31327i −0.00613551 + 0.00613551i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −39.1623 39.1623i −0.0553922 0.0553922i
\(708\) 0 0
\(709\) 204.514i 0.288455i −0.989545 0.144227i \(-0.953930\pi\)
0.989545 0.144227i \(-0.0460696\pi\)
\(710\) 0 0
\(711\) 263.394 0.370456
\(712\) 0 0
\(713\) −93.7117 + 93.7117i −0.131433 + 0.131433i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −109.373 109.373i −0.152543 0.152543i
\(718\) 0 0
\(719\) 511.989i 0.712085i 0.934470 + 0.356042i \(0.115874\pi\)
−0.934470 + 0.356042i \(0.884126\pi\)
\(720\) 0 0
\(721\) 40.6265 0.0563475
\(722\) 0 0
\(723\) 147.724 147.724i 0.204321 0.204321i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 211.992 + 211.992i 0.291598 + 0.291598i 0.837712 0.546113i \(-0.183893\pi\)
−0.546113 + 0.837712i \(0.683893\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 438.454 0.599800
\(732\) 0 0
\(733\) −702.979 + 702.979i −0.959043 + 0.959043i −0.999194 0.0401506i \(-0.987216\pi\)
0.0401506 + 0.999194i \(0.487216\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 138.075 + 138.075i 0.187347 + 0.187347i
\(738\) 0 0
\(739\) 838.586i 1.13476i 0.823457 + 0.567379i \(0.192042\pi\)
−0.823457 + 0.567379i \(0.807958\pi\)
\(740\) 0 0
\(741\) 1.45408 0.00196232
\(742\) 0 0
\(743\) 962.534 962.534i 1.29547 1.29547i 0.364115 0.931354i \(-0.381371\pi\)
0.931354 0.364115i \(-0.118629\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −245.196 245.196i −0.328242 0.328242i
\(748\) 0 0
\(749\) 11.6051i 0.0154941i
\(750\) 0 0
\(751\) 594.241 0.791266 0.395633 0.918409i \(-0.370525\pi\)
0.395633 + 0.918409i \(0.370525\pi\)
\(752\) 0 0
\(753\) −241.980 + 241.980i −0.321354 + 0.321354i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −399.402 399.402i −0.527611 0.527611i 0.392248 0.919859i \(-0.371697\pi\)
−0.919859 + 0.392248i \(0.871697\pi\)
\(758\) 0 0
\(759\) 180.000i 0.237154i
\(760\) 0 0
\(761\) 127.292 0.167269 0.0836346 0.996496i \(-0.473347\pi\)
0.0836346 + 0.996496i \(0.473347\pi\)
\(762\) 0 0
\(763\) −73.3201 + 73.3201i −0.0960946 + 0.0960946i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −448.852 448.852i −0.585204 0.585204i
\(768\) 0 0
\(769\) 699.847i 0.910074i 0.890473 + 0.455037i \(0.150374\pi\)
−0.890473 + 0.455037i \(0.849626\pi\)
\(770\) 0 0
\(771\) −548.363 −0.711236
\(772\) 0 0
\(773\) −627.485 + 627.485i −0.811753 + 0.811753i −0.984897 0.173144i \(-0.944607\pi\)
0.173144 + 0.984897i \(0.444607\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 81.0806 + 81.0806i 0.104351 + 0.104351i
\(778\) 0 0
\(779\) 1.30306i 0.00167274i
\(780\) 0 0
\(781\) 86.1204 0.110269
\(782\) 0 0
\(783\) −118.652 + 118.652i −0.151535 + 0.151535i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −363.992 363.992i −0.462506 0.462506i 0.436970 0.899476i \(-0.356052\pi\)
−0.899476 + 0.436970i \(0.856052\pi\)
\(788\) 0 0
\(789\) 222.334i 0.281792i
\(790\) 0 0
\(791\) −139.514 −0.176377
\(792\) 0 0
\(793\) −609.885 + 609.885i −0.769086 + 0.769086i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 506.080 + 506.080i 0.634981 + 0.634981i 0.949313 0.314332i \(-0.101781\pi\)
−0.314332 + 0.949313i \(0.601781\pi\)
\(798\) 0 0
\(799\) 25.3939i 0.0317821i
\(800\) 0 0
\(801\) −289.757 −0.361744
\(802\) 0 0
\(803\) 10.1612 10.1612i 0.0126541 0.0126541i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 443.246 + 443.246i 0.549252 + 0.549252i
\(808\) 0 0
\(809\) 1165.28i 1.44040i −0.693768 0.720198i \(-0.744051\pi\)
0.693768 0.720198i \(-0.255949\pi\)
\(810\) 0 0
\(811\) −1507.67 −1.85903 −0.929516 0.368783i \(-0.879775\pi\)
−0.929516 + 0.368783i \(0.879775\pi\)
\(812\) 0 0
\(813\) −265.510 + 265.510i −0.326580 + 0.326580i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.97730 + 4.97730i 0.00609216 + 0.00609216i
\(818\) 0 0
\(819\) 27.3337i 0.0333745i
\(820\) 0 0
\(821\) −965.959 −1.17656 −0.588282 0.808656i \(-0.700196\pi\)
−0.588282 + 0.808656i \(0.700196\pi\)
\(822\) 0 0
\(823\) −88.9727 + 88.9727i −0.108108 + 0.108108i −0.759092 0.650984i \(-0.774357\pi\)
0.650984 + 0.759092i \(0.274357\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 275.271 + 275.271i 0.332855 + 0.332855i 0.853670 0.520814i \(-0.174372\pi\)
−0.520814 + 0.853670i \(0.674372\pi\)
\(828\) 0 0
\(829\) 351.980i 0.424583i −0.977206 0.212292i \(-0.931907\pi\)
0.977206 0.212292i \(-0.0680927\pi\)
\(830\) 0 0
\(831\) 503.141 0.605464
\(832\) 0 0
\(833\) 212.677 212.677i 0.255314 0.255314i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 13.5834 + 13.5834i 0.0162287 + 0.0162287i
\(838\) 0 0
\(839\) 1408.43i 1.67871i 0.543587 + 0.839353i \(0.317066\pi\)
−0.543587 + 0.839353i \(0.682934\pi\)
\(840\) 0 0
\(841\) −201.829 −0.239986
\(842\) 0 0
\(843\) 410.166 410.166i 0.486555 0.486555i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −87.2906 87.2906i −0.103059 0.103059i
\(848\) 0 0
\(849\) 182.121i 0.214513i
\(850\) 0 0
\(851\) 2164.60 2.54360
\(852\) 0 0
\(853\) 50.5528 50.5528i 0.0592647 0.0592647i −0.676853 0.736118i \(-0.736657\pi\)
0.736118 + 0.676853i \(0.236657\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −210.434 210.434i −0.245547 0.245547i 0.573593 0.819140i \(-0.305549\pi\)
−0.819140 + 0.573593i \(0.805549\pi\)
\(858\) 0 0
\(859\) 1255.45i 1.46153i −0.682630 0.730764i \(-0.739164\pi\)
0.682630 0.730764i \(-0.260836\pi\)
\(860\) 0 0
\(861\) −24.4949 −0.0284494
\(862\) 0 0
\(863\) −1007.70 + 1007.70i −1.16767 + 1.16767i −0.184911 + 0.982755i \(0.559200\pi\)
−0.982755 + 0.184911i \(0.940800\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −305.456 305.456i −0.352314 0.352314i
\(868\) 0 0
\(869\) 254.524i 0.292894i
\(870\) 0 0
\(871\) 559.760 0.642664
\(872\) 0 0
\(873\) 162.841 162.841i 0.186530 0.186530i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 282.346 + 282.346i 0.321945 + 0.321945i 0.849513 0.527568i \(-0.176896\pi\)
−0.527568 + 0.849513i \(0.676896\pi\)
\(878\) 0 0
\(879\) 286.282i 0.325690i
\(880\) 0 0
\(881\) −1420.34 −1.61219 −0.806096 0.591785i \(-0.798423\pi\)
−0.806096 + 0.591785i \(0.798423\pi\)
\(882\) 0 0
\(883\) 1170.15 1170.15i 1.32519 1.32519i 0.415686 0.909508i \(-0.363541\pi\)
0.909508 0.415686i \(-0.136459\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −756.711 756.711i −0.853112 0.853112i 0.137403 0.990515i \(-0.456125\pi\)
−0.990515 + 0.137403i \(0.956125\pi\)
\(888\) 0 0
\(889\) 57.8388i 0.0650605i
\(890\) 0 0
\(891\) −26.0908 −0.0292826
\(892\) 0 0
\(893\) −0.288269 + 0.288269i −0.000322810 + 0.000322810i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −364.863 364.863i −0.406759 0.406759i
\(898\) 0 0
\(899\) 119.385i 0.132797i
\(900\) 0 0
\(901\) −117.394 −0.130293
\(902\) 0 0
\(903\) 93.5630 93.5630i 0.103614 0.103614i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 942.979 + 942.979i 1.03967 + 1.03967i 0.999180 + 0.0404876i \(0.0128911\pi\)
0.0404876 + 0.999180i \(0.487109\pi\)
\(908\) 0 0
\(909\) 151.546i 0.166717i
\(910\) 0 0
\(911\) −1181.15 −1.29654 −0.648272 0.761409i \(-0.724508\pi\)
−0.648272 + 0.761409i \(0.724508\pi\)
\(912\) 0 0
\(913\) 236.940 236.940i 0.259518 0.259518i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 149.373 + 149.373i 0.162894 + 0.162894i
\(918\) 0 0
\(919\) 473.595i 0.515337i 0.966233 + 0.257669i \(0.0829543\pi\)
−0.966233 + 0.257669i \(0.917046\pi\)
\(920\) 0 0
\(921\) −331.293 −0.359710
\(922\) 0 0
\(923\) 174.567 174.567i 0.189130 0.189130i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −78.6061 78.6061i −0.0847962 0.0847962i
\(928\) 0 0
\(929\) 1094.43i 1.17807i −0.808106 0.589037i \(-0.799507\pi\)
0.808106 0.589037i \(-0.200493\pi\)
\(930\) 0 0
\(931\) 4.82857 0.00518644
\(932\) 0 0
\(933\) −292.974 + 292.974i −0.314013 + 0.314013i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 654.891 + 654.891i 0.698923 + 0.698923i 0.964178 0.265255i \(-0.0854562\pi\)
−0.265255 + 0.964178i \(0.585456\pi\)
\(938\) 0 0
\(939\) 664.757i 0.707942i
\(940\) 0 0
\(941\) 766.382 0.814433 0.407217 0.913332i \(-0.366499\pi\)
0.407217 + 0.913332i \(0.366499\pi\)
\(942\) 0 0
\(943\) −326.969 + 326.969i −0.346733 + 0.346733i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 325.348 + 325.348i 0.343557 + 0.343557i 0.857703 0.514146i \(-0.171891\pi\)
−0.514146 + 0.857703i \(0.671891\pi\)
\(948\) 0 0
\(949\) 41.1939i 0.0434077i
\(950\) 0 0
\(951\) 428.808 0.450902
\(952\) 0 0
\(953\) −31.1010 + 31.1010i −0.0326349 + 0.0326349i −0.723236 0.690601i \(-0.757346\pi\)
0.690601 + 0.723236i \(0.257346\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −114.656 114.656i −0.119808 0.119808i
\(958\) 0 0
\(959\) 256.343i 0.267302i
\(960\) 0 0
\(961\) −947.333 −0.985778
\(962\) 0 0
\(963\) 22.4541 22.4541i 0.0233168 0.0233168i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 314.656 + 314.656i 0.325394 + 0.325394i 0.850832 0.525438i \(-0.176098\pi\)
−0.525438 + 0.850832i \(0.676098\pi\)
\(968\) 0 0
\(969\) 1.10102i 0.00113624i
\(970\) 0 0
\(971\) −253.614 −0.261189 −0.130594 0.991436i \(-0.541689\pi\)
−0.130594 + 0.991436i \(0.541689\pi\)
\(972\) 0 0
\(973\) −199.044 + 199.044i −0.204568 + 0.204568i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 580.974 + 580.974i 0.594651 + 0.594651i 0.938884 0.344233i \(-0.111861\pi\)
−0.344233 + 0.938884i \(0.611861\pi\)
\(978\) 0 0
\(979\) 280.000i 0.286006i
\(980\) 0 0
\(981\) 283.727 0.289222
\(982\) 0 0
\(983\) 734.070 734.070i 0.746765 0.746765i −0.227105 0.973870i \(-0.572926\pi\)
0.973870 + 0.227105i \(0.0729260\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 5.41887 + 5.41887i 0.00549025 + 0.00549025i
\(988\) 0 0
\(989\) 2497.85i 2.52563i
\(990\) 0 0
\(991\) 616.887 0.622489 0.311245 0.950330i \(-0.399254\pi\)
0.311245 + 0.950330i \(0.399254\pi\)
\(992\) 0 0
\(993\) −164.661 + 164.661i −0.165821 + 0.165821i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −460.191 460.191i −0.461576 0.461576i 0.437596 0.899172i \(-0.355830\pi\)
−0.899172 + 0.437596i \(0.855830\pi\)
\(998\) 0 0
\(999\) 313.757i 0.314071i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.u.d.457.2 yes 4
3.2 odd 2 1800.3.v.m.1657.1 4
4.3 odd 2 1200.3.bg.f.1057.1 4
5.2 odd 4 600.3.u.c.193.1 4
5.3 odd 4 inner 600.3.u.d.193.2 yes 4
5.4 even 2 600.3.u.c.457.1 yes 4
15.2 even 4 1800.3.v.l.793.2 4
15.8 even 4 1800.3.v.m.793.1 4
15.14 odd 2 1800.3.v.l.1657.2 4
20.3 even 4 1200.3.bg.f.193.1 4
20.7 even 4 1200.3.bg.l.193.2 4
20.19 odd 2 1200.3.bg.l.1057.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.u.c.193.1 4 5.2 odd 4
600.3.u.c.457.1 yes 4 5.4 even 2
600.3.u.d.193.2 yes 4 5.3 odd 4 inner
600.3.u.d.457.2 yes 4 1.1 even 1 trivial
1200.3.bg.f.193.1 4 20.3 even 4
1200.3.bg.f.1057.1 4 4.3 odd 2
1200.3.bg.l.193.2 4 20.7 even 4
1200.3.bg.l.1057.2 4 20.19 odd 2
1800.3.v.l.793.2 4 15.2 even 4
1800.3.v.l.1657.2 4 15.14 odd 2
1800.3.v.m.793.1 4 15.8 even 4
1800.3.v.m.1657.1 4 3.2 odd 2