Properties

Label 600.4.a.n
Level 600600
Weight 44
Character orbit 600.a
Self dual yes
Analytic conductor 35.40135.401
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,4,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 35.401146003435.4011460034
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q3+5q7+9q9+14q11+q13+46q17+19q19+15q2146q23+27q27+14q29+133q31+42q33+258q37+3q39+84q41167q43+410q47++126q99+O(q100) q + 3 q^{3} + 5 q^{7} + 9 q^{9} + 14 q^{11} + q^{13} + 46 q^{17} + 19 q^{19} + 15 q^{21} - 46 q^{23} + 27 q^{27} + 14 q^{29} + 133 q^{31} + 42 q^{33} + 258 q^{37} + 3 q^{39} + 84 q^{41} - 167 q^{43} + 410 q^{47}+ \cdots + 126 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 0 0 5.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.4.a.n yes 1
3.b odd 2 1 1800.4.a.v 1
4.b odd 2 1 1200.4.a.g 1
5.b even 2 1 600.4.a.e 1
5.c odd 4 2 600.4.f.e 2
15.d odd 2 1 1800.4.a.m 1
15.e even 4 2 1800.4.f.l 2
20.d odd 2 1 1200.4.a.bd 1
20.e even 4 2 1200.4.f.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.4.a.e 1 5.b even 2 1
600.4.a.n yes 1 1.a even 1 1 trivial
600.4.f.e 2 5.c odd 4 2
1200.4.a.g 1 4.b odd 2 1
1200.4.a.bd 1 20.d odd 2 1
1200.4.f.i 2 20.e even 4 2
1800.4.a.m 1 15.d odd 2 1
1800.4.a.v 1 3.b odd 2 1
1800.4.f.l 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(600))S_{4}^{\mathrm{new}}(\Gamma_0(600)):

T75 T_{7} - 5 Copy content Toggle raw display
T1114 T_{11} - 14 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T5 T - 5 Copy content Toggle raw display
1111 T14 T - 14 Copy content Toggle raw display
1313 T1 T - 1 Copy content Toggle raw display
1717 T46 T - 46 Copy content Toggle raw display
1919 T19 T - 19 Copy content Toggle raw display
2323 T+46 T + 46 Copy content Toggle raw display
2929 T14 T - 14 Copy content Toggle raw display
3131 T133 T - 133 Copy content Toggle raw display
3737 T258 T - 258 Copy content Toggle raw display
4141 T84 T - 84 Copy content Toggle raw display
4343 T+167 T + 167 Copy content Toggle raw display
4747 T410 T - 410 Copy content Toggle raw display
5353 T456 T - 456 Copy content Toggle raw display
5959 T+194 T + 194 Copy content Toggle raw display
6161 T+17 T + 17 Copy content Toggle raw display
6767 T653 T - 653 Copy content Toggle raw display
7171 T828 T - 828 Copy content Toggle raw display
7373 T570 T - 570 Copy content Toggle raw display
7979 T+552 T + 552 Copy content Toggle raw display
8383 T142 T - 142 Copy content Toggle raw display
8989 T+1104 T + 1104 Copy content Toggle raw display
9797 T841 T - 841 Copy content Toggle raw display
show more
show less