Properties

Label 600.6.bm
Level 600600
Weight 66
Character orbit 600.bm
Rep. character χ600(61,)\chi_{600}(61,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 12001200
Sturm bound 720720

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 600.bm (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 200 200
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 720720

Dimensions

The following table gives the dimensions of various subspaces of M6(600,[χ])M_{6}(600, [\chi]).

Total New Old
Modular forms 2416 1200 1216
Cusp forms 2384 1200 1184
Eisenstein series 32 0 32

Trace form

1200q+738q8+24300q9+818q10+792q122748q14+3828q16+808q17+2576q20+3662q22+3116q25+12980q26+17708q286156q3023064q31+25580q32+689140q98+O(q100) 1200 q + 738 q^{8} + 24300 q^{9} + 818 q^{10} + 792 q^{12} - 2748 q^{14} + 3828 q^{16} + 808 q^{17} + 2576 q^{20} + 3662 q^{22} + 3116 q^{25} + 12980 q^{26} + 17708 q^{28} - 6156 q^{30} - 23064 q^{31} + 25580 q^{32}+ \cdots - 689140 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(600,[χ])S_{6}^{\mathrm{new}}(600, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S6old(600,[χ])S_{6}^{\mathrm{old}}(600, [\chi]) into lower level spaces

S6old(600,[χ]) S_{6}^{\mathrm{old}}(600, [\chi]) \simeq S6new(200,[χ])S_{6}^{\mathrm{new}}(200, [\chi])2^{\oplus 2}