Properties

Label 600.6.bm
Level $600$
Weight $6$
Character orbit 600.bm
Rep. character $\chi_{600}(61,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $1200$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.bm (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(600, [\chi])\).

Total New Old
Modular forms 2416 1200 1216
Cusp forms 2384 1200 1184
Eisenstein series 32 0 32

Trace form

\( 1200 q + 738 q^{8} + 24300 q^{9} + 818 q^{10} + 792 q^{12} - 2748 q^{14} + 3828 q^{16} + 808 q^{17} + 2576 q^{20} + 3662 q^{22} + 3116 q^{25} + 12980 q^{26} + 17708 q^{28} - 6156 q^{30} - 23064 q^{31} + 25580 q^{32}+ \cdots - 689140 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(600, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(600, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)