Properties

Label 600.8.f.d
Level $600$
Weight $8$
Character orbit 600.f
Analytic conductor $187.431$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,8,Mod(49,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(187.431015290\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 i q^{3} + 504 i q^{7} - 729 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 27 i q^{3} + 504 i q^{7} - 729 q^{9} + 3812 q^{11} - 9574 i q^{13} + 26098 i q^{17} + 38308 q^{19} + 13608 q^{21} + 71128 i q^{23} + 19683 i q^{27} - 74262 q^{29} - 275680 q^{31} - 102924 i q^{33} - 266610 i q^{37} - 258498 q^{39} + 684762 q^{41} - 245956 i q^{43} + 478800 i q^{47} + 569527 q^{49} + 704646 q^{51} + 569410 i q^{53} - 1034316 i q^{57} + 1525324 q^{59} - 2640458 q^{61} - 367416 i q^{63} + 1416236 i q^{67} + 1920456 q^{69} - 3511304 q^{71} - 4738618 i q^{73} + 1921248 i q^{77} - 4661488 q^{79} + 531441 q^{81} + 5729252 i q^{83} + 2005074 i q^{87} - 11993514 q^{89} + 4825296 q^{91} + 7443360 i q^{93} + 7150754 i q^{97} - 2778948 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 1458 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 1458 q^{9} + 7624 q^{11} + 76616 q^{19} + 27216 q^{21} - 148524 q^{29} - 551360 q^{31} - 516996 q^{39} + 1369524 q^{41} + 1139054 q^{49} + 1409292 q^{51} + 3050648 q^{59} - 5280916 q^{61} + 3840912 q^{69} - 7022608 q^{71} - 9322976 q^{79} + 1062882 q^{81} - 23987028 q^{89} + 9650592 q^{91} - 5557896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 27.0000i 0 0 0 504.000i 0 −729.000 0
49.2 0 27.0000i 0 0 0 504.000i 0 −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.8.f.d 2
5.b even 2 1 inner 600.8.f.d 2
5.c odd 4 1 24.8.a.c 1
5.c odd 4 1 600.8.a.a 1
15.e even 4 1 72.8.a.b 1
20.e even 4 1 48.8.a.c 1
40.i odd 4 1 192.8.a.c 1
40.k even 4 1 192.8.a.k 1
60.l odd 4 1 144.8.a.d 1
120.q odd 4 1 576.8.a.s 1
120.w even 4 1 576.8.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.8.a.c 1 5.c odd 4 1
48.8.a.c 1 20.e even 4 1
72.8.a.b 1 15.e even 4 1
144.8.a.d 1 60.l odd 4 1
192.8.a.c 1 40.i odd 4 1
192.8.a.k 1 40.k even 4 1
576.8.a.s 1 120.q odd 4 1
576.8.a.t 1 120.w even 4 1
600.8.a.a 1 5.c odd 4 1
600.8.f.d 2 1.a even 1 1 trivial
600.8.f.d 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 254016 \) acting on \(S_{8}^{\mathrm{new}}(600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 729 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 254016 \) Copy content Toggle raw display
$11$ \( (T - 3812)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 91661476 \) Copy content Toggle raw display
$17$ \( T^{2} + 681105604 \) Copy content Toggle raw display
$19$ \( (T - 38308)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 5059192384 \) Copy content Toggle raw display
$29$ \( (T + 74262)^{2} \) Copy content Toggle raw display
$31$ \( (T + 275680)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 71080892100 \) Copy content Toggle raw display
$41$ \( (T - 684762)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 60494353936 \) Copy content Toggle raw display
$47$ \( T^{2} + 229249440000 \) Copy content Toggle raw display
$53$ \( T^{2} + 324227748100 \) Copy content Toggle raw display
$59$ \( (T - 1525324)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2640458)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2005724407696 \) Copy content Toggle raw display
$71$ \( (T + 3511304)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 22454500549924 \) Copy content Toggle raw display
$79$ \( (T + 4661488)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 32824328479504 \) Copy content Toggle raw display
$89$ \( (T + 11993514)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 51133282768516 \) Copy content Toggle raw display
show more
show less