Properties

Label 6000.2.d
Level $6000$
Weight $2$
Character orbit 6000.d
Rep. character $\chi_{6000}(4249,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $2400$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(2400\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6000, [\chi])\).

Total New Old
Modular forms 1240 0 1240
Cusp forms 1160 0 1160
Eisenstein series 80 0 80

Decomposition of \(S_{2}^{\mathrm{old}}(6000, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6000, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1000, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3000, [\chi])\)\(^{\oplus 2}\)