Properties

Label 605.1.f.a.122.1
Level 605605
Weight 11
Character 605.122
Analytic conductor 0.3020.302
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,1,Mod(122,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.122");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 605=5112 605 = 5 \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 605.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3019343326430.301934332643
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.1375.1
Artin image: C4C2C_4\wr C_2
Artin field: Galois closure of 8.0.221445125.1

Embedding invariants

Embedding label 122.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 605.122
Dual form 605.1.f.a.243.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.000001.00000i)q31.00000iq4+1.00000iq51.00000iq9+(1.000001.00000i)q12+(1.00000+1.00000i)q151.00000q16+1.00000q20+(1.00000+1.00000i)q231.00000q251.00000q36+(1.000001.00000i)q37+1.00000q45+(1.00000+1.00000i)q47+(1.00000+1.00000i)q481.00000iq49+(1.00000+1.00000i)q53+(1.000001.00000i)q60+1.00000iq64+(1.00000+1.00000i)q67+2.00000iq69+2.00000q71+(1.00000+1.00000i)q751.00000iq80+1.00000q812.00000iq89+(1.00000+1.00000i)q92+(1.000001.00000i)q97+O(q100)q+(1.00000 - 1.00000i) q^{3} -1.00000i q^{4} +1.00000i q^{5} -1.00000i q^{9} +(-1.00000 - 1.00000i) q^{12} +(1.00000 + 1.00000i) q^{15} -1.00000 q^{16} +1.00000 q^{20} +(-1.00000 + 1.00000i) q^{23} -1.00000 q^{25} -1.00000 q^{36} +(-1.00000 - 1.00000i) q^{37} +1.00000 q^{45} +(1.00000 + 1.00000i) q^{47} +(-1.00000 + 1.00000i) q^{48} -1.00000i q^{49} +(-1.00000 + 1.00000i) q^{53} +(1.00000 - 1.00000i) q^{60} +1.00000i q^{64} +(1.00000 + 1.00000i) q^{67} +2.00000i q^{69} +2.00000 q^{71} +(-1.00000 + 1.00000i) q^{75} -1.00000i q^{80} +1.00000 q^{81} -2.00000i q^{89} +(1.00000 + 1.00000i) q^{92} +(-1.00000 - 1.00000i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q32q12+2q152q16+2q202q232q252q362q37+2q45+2q472q482q53+2q60+2q67+4q712q75+2q81+2q92+2q97+O(q100) 2 q + 2 q^{3} - 2 q^{12} + 2 q^{15} - 2 q^{16} + 2 q^{20} - 2 q^{23} - 2 q^{25} - 2 q^{36} - 2 q^{37} + 2 q^{45} + 2 q^{47} - 2 q^{48} - 2 q^{53} + 2 q^{60} + 2 q^{67} + 4 q^{71} - 2 q^{75} + 2 q^{81} + 2 q^{92}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/605Z)×\left(\mathbb{Z}/605\mathbb{Z}\right)^\times.

nn 122122 486486
χ(n)\chi(n) e(14)e\left(\frac{1}{4}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
33 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
44 1.00000i 1.00000i
55 1.00000i 1.00000i
66 0 0
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 0 0
99 1.00000i 1.00000i
1010 0 0
1111 0 0
1212 −1.00000 1.00000i −1.00000 1.00000i
1313 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1414 0 0
1515 1.00000 + 1.00000i 1.00000 + 1.00000i
1616 −1.00000 −1.00000
1717 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 1.00000 1.00000
2121 0 0
2222 0 0
2323 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
2424 0 0
2525 −1.00000 −1.00000
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 −1.00000 −1.00000
3737 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4444 0 0
4545 1.00000 1.00000
4646 0 0
4747 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
4848 −1.00000 + 1.00000i −1.00000 + 1.00000i
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0 0
5353 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 1.00000 1.00000i 1.00000 1.00000i
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
6868 0 0
6969 2.00000i 2.00000i
7070 0 0
7171 2.00000 2.00000 1.00000 00
1.00000 00
7272 0 0
7373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7474 0 0
7575 −1.00000 + 1.00000i −1.00000 + 1.00000i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 1.00000i 1.00000i
8181 1.00000 1.00000
8282 0 0
8383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
9090 0 0
9191 0 0
9292 1.00000 + 1.00000i 1.00000 + 1.00000i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
9898 0 0
9999 0 0
100100 1.00000i 1.00000i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 −2.00000 −2.00000
112112 0 0
113113 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
114114 0 0
115115 −1.00000 1.00000i −1.00000 1.00000i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 2.00000 2.00000
142142 0 0
143143 0 0
144144 1.00000i 1.00000i
145145 0 0
146146 0 0
147147 −1.00000 1.00000i −1.00000 1.00000i
148148 −1.00000 + 1.00000i −1.00000 + 1.00000i
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
158158 0 0
159159 2.00000i 2.00000i
160160 0 0
161161 0 0
162162 0 0
163163 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 1.00000i 1.00000i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
180180 1.00000i 1.00000i
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 1.00000 1.00000i 1.00000 1.00000i
186186 0 0
187187 0 0
188188 1.00000 1.00000i 1.00000 1.00000i
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 1.00000 + 1.00000i 1.00000 + 1.00000i
193193 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
194194 0 0
195195 0 0
196196 −1.00000 −1.00000
197197 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 2.00000 2.00000
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.00000 + 1.00000i 1.00000 + 1.00000i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 1.00000 + 1.00000i 1.00000 + 1.00000i
213213 2.00000 2.00000i 2.00000 2.00000i
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
224224 0 0
225225 1.00000i 1.00000i
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
234234 0 0
235235 −1.00000 + 1.00000i −1.00000 + 1.00000i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 −1.00000 1.00000i −1.00000 1.00000i
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 1.00000 1.00000i 1.00000 1.00000i
244244 0 0
245245 1.00000 1.00000
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
264264 0 0
265265 −1.00000 1.00000i −1.00000 1.00000i
266266 0 0
267267 −2.00000 2.00000i −2.00000 2.00000i
268268 1.00000 1.00000i 1.00000 1.00000i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 2.00000 2.00000
277277 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
284284 2.00000i 2.00000i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.00000i 1.00000i
290290 0 0
291291 −2.00000 −2.00000
292292 0 0
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 1.00000 + 1.00000i 1.00000 + 1.00000i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 0 0
309309 2.00000i 2.00000i
310310 0 0
311311 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
312312 0 0
313313 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
314314 0 0
315315 0 0
316316 0 0
317317 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 −1.00000 −1.00000
321321 0 0
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 −1.00000 + 1.00000i −1.00000 + 1.00000i
334334 0 0
335335 −1.00000 + 1.00000i −1.00000 + 1.00000i
336336 0 0
337337 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
338338 0 0
339339 2.00000i 2.00000i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 −2.00000 −2.00000
346346 0 0
347347 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
354354 0 0
355355 2.00000i 2.00000i
356356 −2.00000 −2.00000
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
368368 1.00000 1.00000i 1.00000 1.00000i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
374374 0 0
375375 −1.00000 1.00000i −1.00000 1.00000i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −1.00000 + 1.00000i −1.00000 + 1.00000i
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 1.00000 1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.00000i 1.00000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 −2.00000 −2.00000
412412 1.00000 + 1.00000i 1.00000 + 1.00000i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0 0
423423 1.00000 1.00000i 1.00000 1.00000i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
444444 2.00000i 2.00000i
445445 2.00000 2.00000
446446 0 0
447447 0 0
448448 0 0
449449 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 1.00000 + 1.00000i 1.00000 + 1.00000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
458458 0 0
459459 0 0
460460 −1.00000 + 1.00000i −1.00000 + 1.00000i
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
464464 0 0
465465 0 0
466466 0 0
467467 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 −2.00000 −2.00000
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 1.00000 + 1.00000i 1.00000 + 1.00000i
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 1.00000 1.00000i 1.00000 1.00000i
486486 0 0
487487 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
488488 0 0
489489 2.00000i 2.00000i
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −1.00000 −1.00000
501501 0 0
502502 0 0
503503 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.00000 + 1.00000i 1.00000 + 1.00000i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 −1.00000 1.00000i −1.00000 1.00000i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000i 1.00000i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −2.00000 2.00000i −2.00000 2.00000i
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 −1.00000 + 1.00000i −1.00000 + 1.00000i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 2.00000i 2.00000i
556556 0 0
557557 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
564564 2.00000i 2.00000i
565565 −1.00000 1.00000i −1.00000 1.00000i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 1.00000 1.00000i 1.00000 1.00000i
576576 1.00000 1.00000
577577 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
588588 −1.00000 + 1.00000i −1.00000 + 1.00000i
589589 0 0
590590 0 0
591591 0 0
592592 1.00000 + 1.00000i 1.00000 + 1.00000i
593593 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 1.00000 1.00000i 1.00000 1.00000i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
618618 0 0
619619 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 −1.00000 + 1.00000i −1.00000 + 1.00000i
629629 0 0
630630 0 0
631631 2.00000 2.00000 1.00000 00
1.00000 00
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 2.00000 2.00000
637637 0 0
638638 0 0
639639 2.00000i 2.00000i
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −1.00000 1.00000i −1.00000 1.00000i
653653 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 2.00000i 2.00000i
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
684684 0 0
685685 1.00000 1.00000i 1.00000 1.00000i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 2.00000i 2.00000i
706706 0 0
707707 0 0
708708 0 0
709709 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −2.00000 −2.00000
717717 0 0
718718 0 0
719719 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
720720 −1.00000 −1.00000
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
734734 0 0
735735 1.00000 1.00000i 1.00000 1.00000i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 −1.00000 1.00000i −1.00000 1.00000i
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 2.00000 2.00000 1.00000 00
1.00000 00
752752 −1.00000 1.00000i −1.00000 1.00000i
753753 −2.00000 + 2.00000i −2.00000 + 2.00000i
754754 0 0
755755 0 0
756756 0 0
757757 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 1.00000 1.00000i 1.00000 1.00000i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 2.00000 2.00000
772772 0 0
773773 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000i 1.00000i
785785 1.00000 1.00000i 1.00000 1.00000i
786786 0 0
787787 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 −2.00000 −2.00000
796796 0 0
797797 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 −2.00000 −2.00000
802802 0 0
803803 0 0
804804 2.00000i 2.00000i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 1.00000 + 1.00000i 1.00000 + 1.00000i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
828828 1.00000 1.00000i 1.00000 1.00000i
829829 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 −1.00000 −1.00000
846846 0 0
847847 0 0
848848 1.00000 1.00000i 1.00000 1.00000i
849849 0 0
850850 0 0
851851 2.00000 2.00000
852852 −2.00000 2.00000i −2.00000 2.00000i
853853 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
858858 0 0
859859 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
864864 0 0
865865 0 0
866866 0 0
867867 −1.00000 1.00000i −1.00000 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −1.00000 + 1.00000i −1.00000 + 1.00000i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 0 0
881881 2.00000 2.00000 1.00000 00
1.00000 00
882882 0 0
883883 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 −1.00000 1.00000i −1.00000 1.00000i
893893 0 0
894894 0 0
895895 2.00000 2.00000
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 1.00000 1.00000
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.00000 + 1.00000i 1.00000 + 1.00000i
926926 0 0
927927 1.00000 + 1.00000i 1.00000 + 1.00000i
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 −2.00000 + 2.00000i −2.00000 + 2.00000i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
938938 0 0
939939 2.00000i 2.00000i
940940 1.00000 + 1.00000i 1.00000 + 1.00000i
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 2.00000 2.00000
952952 0 0
953953 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −1.00000 + 1.00000i −1.00000 + 1.00000i
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 −1.00000 1.00000i −1.00000 1.00000i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 1.00000i 1.00000i
981981 0 0
982982 0 0
983983 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.1.f.a.122.1 2
5.2 odd 4 3025.1.f.b.243.1 2
5.3 odd 4 inner 605.1.f.a.243.1 yes 2
5.4 even 2 3025.1.f.b.1332.1 2
11.2 odd 10 605.1.l.a.202.1 8
11.3 even 5 605.1.l.a.372.1 8
11.4 even 5 605.1.l.a.27.1 8
11.5 even 5 605.1.l.a.487.1 8
11.6 odd 10 605.1.l.a.487.1 8
11.7 odd 10 605.1.l.a.27.1 8
11.8 odd 10 605.1.l.a.372.1 8
11.9 even 5 605.1.l.a.202.1 8
11.10 odd 2 CM 605.1.f.a.122.1 2
55.2 even 20 3025.1.bl.b.2743.1 8
55.3 odd 20 605.1.l.a.493.1 8
55.4 even 10 3025.1.bl.b.632.1 8
55.7 even 20 3025.1.bl.b.2568.1 8
55.8 even 20 605.1.l.a.493.1 8
55.9 even 10 3025.1.bl.b.807.1 8
55.13 even 20 605.1.l.a.323.1 8
55.14 even 10 3025.1.bl.b.1582.1 8
55.17 even 20 3025.1.bl.b.1818.1 8
55.18 even 20 605.1.l.a.148.1 8
55.19 odd 10 3025.1.bl.b.1582.1 8
55.24 odd 10 3025.1.bl.b.807.1 8
55.27 odd 20 3025.1.bl.b.1818.1 8
55.28 even 20 605.1.l.a.3.1 8
55.29 odd 10 3025.1.bl.b.632.1 8
55.32 even 4 3025.1.f.b.243.1 2
55.37 odd 20 3025.1.bl.b.2568.1 8
55.38 odd 20 605.1.l.a.3.1 8
55.39 odd 10 3025.1.bl.b.2907.1 8
55.42 odd 20 3025.1.bl.b.2743.1 8
55.43 even 4 inner 605.1.f.a.243.1 yes 2
55.47 odd 20 3025.1.bl.b.493.1 8
55.48 odd 20 605.1.l.a.148.1 8
55.49 even 10 3025.1.bl.b.2907.1 8
55.52 even 20 3025.1.bl.b.493.1 8
55.53 odd 20 605.1.l.a.323.1 8
55.54 odd 2 3025.1.f.b.1332.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.1.f.a.122.1 2 1.1 even 1 trivial
605.1.f.a.122.1 2 11.10 odd 2 CM
605.1.f.a.243.1 yes 2 5.3 odd 4 inner
605.1.f.a.243.1 yes 2 55.43 even 4 inner
605.1.l.a.3.1 8 55.28 even 20
605.1.l.a.3.1 8 55.38 odd 20
605.1.l.a.27.1 8 11.4 even 5
605.1.l.a.27.1 8 11.7 odd 10
605.1.l.a.148.1 8 55.18 even 20
605.1.l.a.148.1 8 55.48 odd 20
605.1.l.a.202.1 8 11.2 odd 10
605.1.l.a.202.1 8 11.9 even 5
605.1.l.a.323.1 8 55.13 even 20
605.1.l.a.323.1 8 55.53 odd 20
605.1.l.a.372.1 8 11.3 even 5
605.1.l.a.372.1 8 11.8 odd 10
605.1.l.a.487.1 8 11.5 even 5
605.1.l.a.487.1 8 11.6 odd 10
605.1.l.a.493.1 8 55.3 odd 20
605.1.l.a.493.1 8 55.8 even 20
3025.1.f.b.243.1 2 5.2 odd 4
3025.1.f.b.243.1 2 55.32 even 4
3025.1.f.b.1332.1 2 5.4 even 2
3025.1.f.b.1332.1 2 55.54 odd 2
3025.1.bl.b.493.1 8 55.47 odd 20
3025.1.bl.b.493.1 8 55.52 even 20
3025.1.bl.b.632.1 8 55.4 even 10
3025.1.bl.b.632.1 8 55.29 odd 10
3025.1.bl.b.807.1 8 55.9 even 10
3025.1.bl.b.807.1 8 55.24 odd 10
3025.1.bl.b.1582.1 8 55.14 even 10
3025.1.bl.b.1582.1 8 55.19 odd 10
3025.1.bl.b.1818.1 8 55.17 even 20
3025.1.bl.b.1818.1 8 55.27 odd 20
3025.1.bl.b.2568.1 8 55.7 even 20
3025.1.bl.b.2568.1 8 55.37 odd 20
3025.1.bl.b.2743.1 8 55.2 even 20
3025.1.bl.b.2743.1 8 55.42 odd 20
3025.1.bl.b.2907.1 8 55.39 odd 10
3025.1.bl.b.2907.1 8 55.49 even 10