Properties

Label 605.4.a.q
Level $605$
Weight $4$
Character orbit 605.a
Self dual yes
Analytic conductor $35.696$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 67 x^{10} + 65 x^{9} + 1558 x^{8} - 1475 x^{7} - 14915 x^{6} + 12951 x^{5} + \cdots + 27856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{2} + 3) q^{4} - 5 q^{5} + ( - \beta_{8} - 1) q^{6} + (\beta_{11} - \beta_{9} - \beta_{6} + \cdots - 4) q^{7} + ( - \beta_{11} + \beta_{10} + \beta_{7} + \cdots + 1) q^{8}+ \cdots + ( - 54 \beta_{11} + 13 \beta_{10} + \cdots + 382) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{3} + 39 q^{4} - 60 q^{5} - 10 q^{6} - 41 q^{7} + 9 q^{8} + 131 q^{9} + 5 q^{10} - 29 q^{12} - 109 q^{13} - 247 q^{14} - 5 q^{15} + 283 q^{16} + 167 q^{17} - 135 q^{18} - 332 q^{19} - 195 q^{20}+ \cdots + 4209 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - x^{11} - 67 x^{10} + 65 x^{9} + 1558 x^{8} - 1475 x^{7} - 14915 x^{6} + 12951 x^{5} + \cdots + 27856 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 1107391 \nu^{11} + 7673220 \nu^{10} + 70067177 \nu^{9} - 487545538 \nu^{8} + \cdots - 25808536144 ) / 3033701760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1547143 \nu^{11} - 5364860 \nu^{10} - 98589101 \nu^{9} + 346707534 \nu^{8} + 2080085148 \nu^{7} + \cdots + 54810001872 ) / 1516850880 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3213147 \nu^{11} - 5066460 \nu^{10} - 213226829 \nu^{9} + 325869666 \nu^{8} + \cdots + 58802064848 ) / 3033701760 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4650909 \nu^{11} - 4351580 \nu^{10} - 298006803 \nu^{9} + 269668622 \nu^{8} + \cdots - 115681745104 ) / 3033701760 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 732784 \nu^{11} - 1688045 \nu^{10} - 46784388 \nu^{9} + 107260687 \nu^{8} + 990422074 \nu^{7} + \cdots + 11388669576 ) / 379212720 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 3817717 \nu^{11} + 5069480 \nu^{10} + 246143239 \nu^{9} - 330363646 \nu^{8} + \cdots - 44614066288 ) / 1516850880 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4071101 \nu^{11} - 5076600 \nu^{10} - 264479807 \nu^{9} + 326978918 \nu^{8} + \cdots + 57175693584 ) / 1516850880 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 551436 \nu^{11} - 1451975 \nu^{10} - 35084837 \nu^{9} + 93506228 \nu^{8} + 742205606 \nu^{7} + \cdots + 12332638144 ) / 189606360 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 10483571 \nu^{11} - 18333020 \nu^{10} - 668387117 \nu^{9} + 1173224538 \nu^{8} + \cdots + 156036728784 ) / 3033701760 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} - \beta_{10} - \beta_{7} + \beta_{4} - \beta_{3} + 21\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{10} + 3\beta_{9} + \beta_{8} + \beta_{7} - \beta_{6} - 3\beta_{5} + 3\beta_{4} + 27\beta_{2} - \beta _1 + 225 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 40 \beta_{11} - 35 \beta_{10} - 5 \beta_{9} + 6 \beta_{8} - 40 \beta_{7} + 4 \beta_{6} + 9 \beta_{5} + \cdots - 20 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 22 \beta_{11} - 82 \beta_{10} + 154 \beta_{9} + 50 \beta_{8} + 42 \beta_{7} - 26 \beta_{6} + \cdots + 5342 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1268 \beta_{11} - 1042 \beta_{10} - 168 \beta_{9} + 308 \beta_{8} - 1320 \beta_{7} + 204 \beta_{6} + \cdots + 203 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 1177 \beta_{11} - 2701 \beta_{10} + 5728 \beta_{9} + 1752 \beta_{8} + 1249 \beta_{7} - 568 \beta_{6} + \cdots + 135553 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 37662 \beta_{11} - 29810 \beta_{10} - 4155 \beta_{9} + 11547 \beta_{8} - 40611 \beta_{7} + 7485 \beta_{6} + \cdots + 28119 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 43872 \beta_{11} - 83631 \beta_{10} + 188539 \beta_{9} + 54844 \beta_{8} + 32146 \beta_{7} + \cdots + 3583236 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 1089982 \beta_{11} - 845122 \beta_{10} - 85396 \beta_{9} + 384822 \beta_{8} - 1207126 \beta_{7} + \cdots + 1372748 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.39954
4.36383
3.48072
2.17093
1.85253
0.696762
−0.747441
−1.25858
−1.43938
−3.94598
−4.31191
−5.26103
−5.39954 6.27988 21.1550 −5.00000 −33.9084 1.92176 −71.0308 12.4368 26.9977
1.2 −4.36383 −6.47441 11.0430 −5.00000 28.2532 24.2107 −13.2791 14.9180 21.8191
1.3 −3.48072 −4.49803 4.11544 −5.00000 15.6564 0.859797 13.5211 −6.76775 17.4036
1.4 −2.17093 8.94509 −3.28705 −5.00000 −19.4192 −13.6976 24.5034 53.0147 10.8547
1.5 −1.85253 −5.02253 −4.56812 −5.00000 9.30441 −33.4856 23.2829 −1.77419 9.26267
1.6 −0.696762 2.36331 −7.51452 −5.00000 −1.64666 26.2619 10.8099 −21.4148 3.48381
1.7 0.747441 1.20483 −7.44133 −5.00000 0.900538 18.4546 −11.5415 −25.5484 −3.73720
1.8 1.25858 −9.09998 −6.41597 −5.00000 −11.4531 −16.3005 −18.1437 55.8097 −6.29291
1.9 1.43938 9.32704 −5.92820 −5.00000 13.4251 −14.6375 −20.0479 59.9937 −7.19688
1.10 3.94598 5.15950 7.57072 −5.00000 20.3593 −18.9445 −1.69392 −0.379584 −19.7299
1.11 4.31191 −6.66658 10.5926 −5.00000 −28.7457 17.4967 11.1791 17.4433 −21.5596
1.12 5.26103 −0.518116 19.6784 −5.00000 −2.72582 −33.1399 61.4406 −26.7316 −26.3051
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.4.a.q 12
11.b odd 2 1 605.4.a.s 12
11.d odd 10 2 55.4.g.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.g.a 24 11.d odd 10 2
605.4.a.q 12 1.a even 1 1 trivial
605.4.a.s 12 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{12} + T_{2}^{11} - 67 T_{2}^{10} - 65 T_{2}^{9} + 1558 T_{2}^{8} + 1475 T_{2}^{7} - 14915 T_{2}^{6} + \cdots + 27856 \) Copy content Toggle raw display
\( T_{3}^{12} - T_{3}^{11} - 227 T_{3}^{10} + 98 T_{3}^{9} + 18918 T_{3}^{8} + 620 T_{3}^{7} + \cdots + 35387420 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + T^{11} + \cdots + 27856 \) Copy content Toggle raw display
$3$ \( T^{12} - T^{11} + \cdots + 35387420 \) Copy content Toggle raw display
$5$ \( (T + 5)^{12} \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 23307327589120 \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots - 41\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots - 43\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 53\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 54\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 44\!\cdots\!01 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots - 37\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 65\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots - 97\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots - 21\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots - 51\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 83\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots - 42\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots - 60\!\cdots\!75 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
show more
show less