Properties

Label 6080.2.a.bf.1.1
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} +1.00000 q^{5} +2.82843 q^{7} -1.00000 q^{9} -4.82843 q^{11} -0.585786 q^{13} -1.41421 q^{15} -0.828427 q^{17} +1.00000 q^{19} -4.00000 q^{21} +4.00000 q^{23} +1.00000 q^{25} +5.65685 q^{27} -4.82843 q^{29} +6.82843 q^{33} +2.82843 q^{35} -1.75736 q^{37} +0.828427 q^{39} +4.82843 q^{41} +2.82843 q^{43} -1.00000 q^{45} +8.48528 q^{47} +1.00000 q^{49} +1.17157 q^{51} +1.07107 q^{53} -4.82843 q^{55} -1.41421 q^{57} +2.82843 q^{59} -9.65685 q^{61} -2.82843 q^{63} -0.585786 q^{65} +6.58579 q^{67} -5.65685 q^{69} -7.31371 q^{71} -16.1421 q^{73} -1.41421 q^{75} -13.6569 q^{77} -14.8284 q^{79} -5.00000 q^{81} -8.00000 q^{83} -0.828427 q^{85} +6.82843 q^{87} -8.82843 q^{89} -1.65685 q^{91} +1.00000 q^{95} +6.24264 q^{97} +4.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9} - 4 q^{11} - 4 q^{13} + 4 q^{17} + 2 q^{19} - 8 q^{21} + 8 q^{23} + 2 q^{25} - 4 q^{29} + 8 q^{33} - 12 q^{37} - 4 q^{39} + 4 q^{41} - 2 q^{45} + 2 q^{49} + 8 q^{51} - 12 q^{53}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.82843 −1.45583 −0.727913 0.685670i \(-0.759509\pi\)
−0.727913 + 0.685670i \(0.759509\pi\)
\(12\) 0 0
\(13\) −0.585786 −0.162468 −0.0812340 0.996695i \(-0.525886\pi\)
−0.0812340 + 0.996695i \(0.525886\pi\)
\(14\) 0 0
\(15\) −1.41421 −0.365148
\(16\) 0 0
\(17\) −0.828427 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −4.82843 −0.896616 −0.448308 0.893879i \(-0.647973\pi\)
−0.448308 + 0.893879i \(0.647973\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 6.82843 1.18868
\(34\) 0 0
\(35\) 2.82843 0.478091
\(36\) 0 0
\(37\) −1.75736 −0.288908 −0.144454 0.989512i \(-0.546143\pi\)
−0.144454 + 0.989512i \(0.546143\pi\)
\(38\) 0 0
\(39\) 0.828427 0.132655
\(40\) 0 0
\(41\) 4.82843 0.754074 0.377037 0.926198i \(-0.376943\pi\)
0.377037 + 0.926198i \(0.376943\pi\)
\(42\) 0 0
\(43\) 2.82843 0.431331 0.215666 0.976467i \(-0.430808\pi\)
0.215666 + 0.976467i \(0.430808\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.17157 0.164053
\(52\) 0 0
\(53\) 1.07107 0.147122 0.0735612 0.997291i \(-0.476564\pi\)
0.0735612 + 0.997291i \(0.476564\pi\)
\(54\) 0 0
\(55\) −4.82843 −0.651065
\(56\) 0 0
\(57\) −1.41421 −0.187317
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) −9.65685 −1.23643 −0.618217 0.786008i \(-0.712145\pi\)
−0.618217 + 0.786008i \(0.712145\pi\)
\(62\) 0 0
\(63\) −2.82843 −0.356348
\(64\) 0 0
\(65\) −0.585786 −0.0726579
\(66\) 0 0
\(67\) 6.58579 0.804582 0.402291 0.915512i \(-0.368214\pi\)
0.402291 + 0.915512i \(0.368214\pi\)
\(68\) 0 0
\(69\) −5.65685 −0.681005
\(70\) 0 0
\(71\) −7.31371 −0.867978 −0.433989 0.900918i \(-0.642894\pi\)
−0.433989 + 0.900918i \(0.642894\pi\)
\(72\) 0 0
\(73\) −16.1421 −1.88929 −0.944647 0.328088i \(-0.893596\pi\)
−0.944647 + 0.328088i \(0.893596\pi\)
\(74\) 0 0
\(75\) −1.41421 −0.163299
\(76\) 0 0
\(77\) −13.6569 −1.55634
\(78\) 0 0
\(79\) −14.8284 −1.66833 −0.834164 0.551516i \(-0.814049\pi\)
−0.834164 + 0.551516i \(0.814049\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) −0.828427 −0.0898555
\(86\) 0 0
\(87\) 6.82843 0.732084
\(88\) 0 0
\(89\) −8.82843 −0.935811 −0.467906 0.883778i \(-0.654991\pi\)
−0.467906 + 0.883778i \(0.654991\pi\)
\(90\) 0 0
\(91\) −1.65685 −0.173686
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 6.24264 0.633844 0.316922 0.948452i \(-0.397351\pi\)
0.316922 + 0.948452i \(0.397351\pi\)
\(98\) 0 0
\(99\) 4.82843 0.485275
\(100\) 0 0
\(101\) −6.34315 −0.631167 −0.315583 0.948898i \(-0.602200\pi\)
−0.315583 + 0.948898i \(0.602200\pi\)
\(102\) 0 0
\(103\) −0.242641 −0.0239081 −0.0119540 0.999929i \(-0.503805\pi\)
−0.0119540 + 0.999929i \(0.503805\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 1.41421 0.136717 0.0683586 0.997661i \(-0.478224\pi\)
0.0683586 + 0.997661i \(0.478224\pi\)
\(108\) 0 0
\(109\) 7.65685 0.733394 0.366697 0.930341i \(-0.380489\pi\)
0.366697 + 0.930341i \(0.380489\pi\)
\(110\) 0 0
\(111\) 2.48528 0.235892
\(112\) 0 0
\(113\) 10.7279 1.00920 0.504599 0.863354i \(-0.331640\pi\)
0.504599 + 0.863354i \(0.331640\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 0.585786 0.0541560
\(118\) 0 0
\(119\) −2.34315 −0.214796
\(120\) 0 0
\(121\) 12.3137 1.11943
\(122\) 0 0
\(123\) −6.82843 −0.615699
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.5858 −0.939337 −0.469668 0.882843i \(-0.655626\pi\)
−0.469668 + 0.882843i \(0.655626\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 15.3137 1.33796 0.668982 0.743278i \(-0.266730\pi\)
0.668982 + 0.743278i \(0.266730\pi\)
\(132\) 0 0
\(133\) 2.82843 0.245256
\(134\) 0 0
\(135\) 5.65685 0.486864
\(136\) 0 0
\(137\) −12.8284 −1.09601 −0.548003 0.836476i \(-0.684612\pi\)
−0.548003 + 0.836476i \(0.684612\pi\)
\(138\) 0 0
\(139\) 8.82843 0.748817 0.374409 0.927264i \(-0.377846\pi\)
0.374409 + 0.927264i \(0.377846\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) 2.82843 0.236525
\(144\) 0 0
\(145\) −4.82843 −0.400979
\(146\) 0 0
\(147\) −1.41421 −0.116642
\(148\) 0 0
\(149\) 9.65685 0.791120 0.395560 0.918440i \(-0.370550\pi\)
0.395560 + 0.918440i \(0.370550\pi\)
\(150\) 0 0
\(151\) −22.1421 −1.80190 −0.900951 0.433921i \(-0.857130\pi\)
−0.900951 + 0.433921i \(0.857130\pi\)
\(152\) 0 0
\(153\) 0.828427 0.0669744
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −6.48528 −0.517582 −0.258791 0.965933i \(-0.583324\pi\)
−0.258791 + 0.965933i \(0.583324\pi\)
\(158\) 0 0
\(159\) −1.51472 −0.120125
\(160\) 0 0
\(161\) 11.3137 0.891645
\(162\) 0 0
\(163\) −9.17157 −0.718373 −0.359187 0.933266i \(-0.616946\pi\)
−0.359187 + 0.933266i \(0.616946\pi\)
\(164\) 0 0
\(165\) 6.82843 0.531592
\(166\) 0 0
\(167\) 21.8995 1.69463 0.847317 0.531088i \(-0.178217\pi\)
0.847317 + 0.531088i \(0.178217\pi\)
\(168\) 0 0
\(169\) −12.6569 −0.973604
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −14.7279 −1.11974 −0.559872 0.828579i \(-0.689150\pi\)
−0.559872 + 0.828579i \(0.689150\pi\)
\(174\) 0 0
\(175\) 2.82843 0.213809
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) −17.3137 −1.28692 −0.643459 0.765481i \(-0.722501\pi\)
−0.643459 + 0.765481i \(0.722501\pi\)
\(182\) 0 0
\(183\) 13.6569 1.00954
\(184\) 0 0
\(185\) −1.75736 −0.129204
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 16.0000 1.16383
\(190\) 0 0
\(191\) −19.3137 −1.39749 −0.698745 0.715370i \(-0.746258\pi\)
−0.698745 + 0.715370i \(0.746258\pi\)
\(192\) 0 0
\(193\) −21.0711 −1.51673 −0.758364 0.651831i \(-0.774001\pi\)
−0.758364 + 0.651831i \(0.774001\pi\)
\(194\) 0 0
\(195\) 0.828427 0.0593249
\(196\) 0 0
\(197\) −2.68629 −0.191390 −0.0956952 0.995411i \(-0.530507\pi\)
−0.0956952 + 0.995411i \(0.530507\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) −9.31371 −0.656938
\(202\) 0 0
\(203\) −13.6569 −0.958523
\(204\) 0 0
\(205\) 4.82843 0.337232
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) −4.82843 −0.333989
\(210\) 0 0
\(211\) −0.485281 −0.0334081 −0.0167041 0.999860i \(-0.505317\pi\)
−0.0167041 + 0.999860i \(0.505317\pi\)
\(212\) 0 0
\(213\) 10.3431 0.708701
\(214\) 0 0
\(215\) 2.82843 0.192897
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 22.8284 1.54260
\(220\) 0 0
\(221\) 0.485281 0.0326436
\(222\) 0 0
\(223\) 10.5858 0.708877 0.354438 0.935079i \(-0.384672\pi\)
0.354438 + 0.935079i \(0.384672\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 24.0416 1.59570 0.797850 0.602857i \(-0.205971\pi\)
0.797850 + 0.602857i \(0.205971\pi\)
\(228\) 0 0
\(229\) 11.3137 0.747631 0.373815 0.927503i \(-0.378049\pi\)
0.373815 + 0.927503i \(0.378049\pi\)
\(230\) 0 0
\(231\) 19.3137 1.27075
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 8.48528 0.553519
\(236\) 0 0
\(237\) 20.9706 1.36218
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −20.1421 −1.29747 −0.648735 0.761015i \(-0.724701\pi\)
−0.648735 + 0.761015i \(0.724701\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −0.585786 −0.0372727
\(248\) 0 0
\(249\) 11.3137 0.716977
\(250\) 0 0
\(251\) 4.97056 0.313739 0.156870 0.987619i \(-0.449860\pi\)
0.156870 + 0.987619i \(0.449860\pi\)
\(252\) 0 0
\(253\) −19.3137 −1.21424
\(254\) 0 0
\(255\) 1.17157 0.0733667
\(256\) 0 0
\(257\) −23.8995 −1.49081 −0.745405 0.666612i \(-0.767744\pi\)
−0.745405 + 0.666612i \(0.767744\pi\)
\(258\) 0 0
\(259\) −4.97056 −0.308856
\(260\) 0 0
\(261\) 4.82843 0.298872
\(262\) 0 0
\(263\) 4.68629 0.288969 0.144485 0.989507i \(-0.453848\pi\)
0.144485 + 0.989507i \(0.453848\pi\)
\(264\) 0 0
\(265\) 1.07107 0.0657952
\(266\) 0 0
\(267\) 12.4853 0.764087
\(268\) 0 0
\(269\) 6.68629 0.407670 0.203835 0.979005i \(-0.434659\pi\)
0.203835 + 0.979005i \(0.434659\pi\)
\(270\) 0 0
\(271\) −26.4853 −1.60887 −0.804433 0.594043i \(-0.797531\pi\)
−0.804433 + 0.594043i \(0.797531\pi\)
\(272\) 0 0
\(273\) 2.34315 0.141814
\(274\) 0 0
\(275\) −4.82843 −0.291165
\(276\) 0 0
\(277\) −24.8284 −1.49180 −0.745898 0.666060i \(-0.767979\pi\)
−0.745898 + 0.666060i \(0.767979\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.8284 1.00390 0.501950 0.864897i \(-0.332616\pi\)
0.501950 + 0.864897i \(0.332616\pi\)
\(282\) 0 0
\(283\) −17.6569 −1.04959 −0.524796 0.851228i \(-0.675858\pi\)
−0.524796 + 0.851228i \(0.675858\pi\)
\(284\) 0 0
\(285\) −1.41421 −0.0837708
\(286\) 0 0
\(287\) 13.6569 0.806139
\(288\) 0 0
\(289\) −16.3137 −0.959630
\(290\) 0 0
\(291\) −8.82843 −0.517532
\(292\) 0 0
\(293\) 4.38478 0.256161 0.128081 0.991764i \(-0.459118\pi\)
0.128081 + 0.991764i \(0.459118\pi\)
\(294\) 0 0
\(295\) 2.82843 0.164677
\(296\) 0 0
\(297\) −27.3137 −1.58490
\(298\) 0 0
\(299\) −2.34315 −0.135508
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 8.97056 0.515345
\(304\) 0 0
\(305\) −9.65685 −0.552950
\(306\) 0 0
\(307\) 1.41421 0.0807134 0.0403567 0.999185i \(-0.487151\pi\)
0.0403567 + 0.999185i \(0.487151\pi\)
\(308\) 0 0
\(309\) 0.343146 0.0195209
\(310\) 0 0
\(311\) 24.8284 1.40789 0.703945 0.710254i \(-0.251420\pi\)
0.703945 + 0.710254i \(0.251420\pi\)
\(312\) 0 0
\(313\) 17.3137 0.978629 0.489314 0.872107i \(-0.337247\pi\)
0.489314 + 0.872107i \(0.337247\pi\)
\(314\) 0 0
\(315\) −2.82843 −0.159364
\(316\) 0 0
\(317\) −19.8995 −1.11767 −0.558833 0.829280i \(-0.688751\pi\)
−0.558833 + 0.829280i \(0.688751\pi\)
\(318\) 0 0
\(319\) 23.3137 1.30532
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) −0.828427 −0.0460949
\(324\) 0 0
\(325\) −0.585786 −0.0324936
\(326\) 0 0
\(327\) −10.8284 −0.598813
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −33.4558 −1.83890 −0.919450 0.393208i \(-0.871365\pi\)
−0.919450 + 0.393208i \(0.871365\pi\)
\(332\) 0 0
\(333\) 1.75736 0.0963027
\(334\) 0 0
\(335\) 6.58579 0.359820
\(336\) 0 0
\(337\) 16.3848 0.892536 0.446268 0.894899i \(-0.352753\pi\)
0.446268 + 0.894899i \(0.352753\pi\)
\(338\) 0 0
\(339\) −15.1716 −0.824007
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) −5.65685 −0.304555
\(346\) 0 0
\(347\) −36.2843 −1.94784 −0.973921 0.226888i \(-0.927145\pi\)
−0.973921 + 0.226888i \(0.927145\pi\)
\(348\) 0 0
\(349\) −23.6569 −1.26632 −0.633161 0.774020i \(-0.718243\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(350\) 0 0
\(351\) −3.31371 −0.176873
\(352\) 0 0
\(353\) 16.1421 0.859159 0.429580 0.903029i \(-0.358662\pi\)
0.429580 + 0.903029i \(0.358662\pi\)
\(354\) 0 0
\(355\) −7.31371 −0.388171
\(356\) 0 0
\(357\) 3.31371 0.175380
\(358\) 0 0
\(359\) 31.4558 1.66018 0.830088 0.557632i \(-0.188290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −17.4142 −0.914009
\(364\) 0 0
\(365\) −16.1421 −0.844918
\(366\) 0 0
\(367\) −31.1127 −1.62407 −0.812035 0.583609i \(-0.801640\pi\)
−0.812035 + 0.583609i \(0.801640\pi\)
\(368\) 0 0
\(369\) −4.82843 −0.251358
\(370\) 0 0
\(371\) 3.02944 0.157281
\(372\) 0 0
\(373\) 2.44365 0.126527 0.0632637 0.997997i \(-0.479849\pi\)
0.0632637 + 0.997997i \(0.479849\pi\)
\(374\) 0 0
\(375\) −1.41421 −0.0730297
\(376\) 0 0
\(377\) 2.82843 0.145671
\(378\) 0 0
\(379\) 1.65685 0.0851069 0.0425534 0.999094i \(-0.486451\pi\)
0.0425534 + 0.999094i \(0.486451\pi\)
\(380\) 0 0
\(381\) 14.9706 0.766965
\(382\) 0 0
\(383\) 7.27208 0.371586 0.185793 0.982589i \(-0.440515\pi\)
0.185793 + 0.982589i \(0.440515\pi\)
\(384\) 0 0
\(385\) −13.6569 −0.696018
\(386\) 0 0
\(387\) −2.82843 −0.143777
\(388\) 0 0
\(389\) 13.3137 0.675032 0.337516 0.941320i \(-0.390413\pi\)
0.337516 + 0.941320i \(0.390413\pi\)
\(390\) 0 0
\(391\) −3.31371 −0.167581
\(392\) 0 0
\(393\) −21.6569 −1.09244
\(394\) 0 0
\(395\) −14.8284 −0.746099
\(396\) 0 0
\(397\) −31.1716 −1.56446 −0.782228 0.622992i \(-0.785917\pi\)
−0.782228 + 0.622992i \(0.785917\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) −18.9706 −0.947345 −0.473672 0.880701i \(-0.657072\pi\)
−0.473672 + 0.880701i \(0.657072\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) 8.48528 0.420600
\(408\) 0 0
\(409\) 26.2843 1.29967 0.649837 0.760074i \(-0.274837\pi\)
0.649837 + 0.760074i \(0.274837\pi\)
\(410\) 0 0
\(411\) 18.1421 0.894886
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −12.4853 −0.611407
\(418\) 0 0
\(419\) 9.65685 0.471768 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(420\) 0 0
\(421\) 15.1716 0.739417 0.369709 0.929148i \(-0.379458\pi\)
0.369709 + 0.929148i \(0.379458\pi\)
\(422\) 0 0
\(423\) −8.48528 −0.412568
\(424\) 0 0
\(425\) −0.828427 −0.0401846
\(426\) 0 0
\(427\) −27.3137 −1.32180
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −9.17157 −0.441779 −0.220890 0.975299i \(-0.570896\pi\)
−0.220890 + 0.975299i \(0.570896\pi\)
\(432\) 0 0
\(433\) 30.0416 1.44371 0.721854 0.692045i \(-0.243290\pi\)
0.721854 + 0.692045i \(0.243290\pi\)
\(434\) 0 0
\(435\) 6.82843 0.327398
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) −14.1421 −0.674967 −0.337484 0.941331i \(-0.609576\pi\)
−0.337484 + 0.941331i \(0.609576\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) −23.3137 −1.10767 −0.553834 0.832627i \(-0.686836\pi\)
−0.553834 + 0.832627i \(0.686836\pi\)
\(444\) 0 0
\(445\) −8.82843 −0.418508
\(446\) 0 0
\(447\) −13.6569 −0.645947
\(448\) 0 0
\(449\) −30.2843 −1.42920 −0.714602 0.699532i \(-0.753392\pi\)
−0.714602 + 0.699532i \(0.753392\pi\)
\(450\) 0 0
\(451\) −23.3137 −1.09780
\(452\) 0 0
\(453\) 31.3137 1.47125
\(454\) 0 0
\(455\) −1.65685 −0.0776745
\(456\) 0 0
\(457\) 22.2843 1.04241 0.521207 0.853430i \(-0.325482\pi\)
0.521207 + 0.853430i \(0.325482\pi\)
\(458\) 0 0
\(459\) −4.68629 −0.218737
\(460\) 0 0
\(461\) −36.6274 −1.70591 −0.852954 0.521985i \(-0.825192\pi\)
−0.852954 + 0.521985i \(0.825192\pi\)
\(462\) 0 0
\(463\) −18.6274 −0.865689 −0.432845 0.901468i \(-0.642490\pi\)
−0.432845 + 0.901468i \(0.642490\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) 18.6274 0.860134
\(470\) 0 0
\(471\) 9.17157 0.422604
\(472\) 0 0
\(473\) −13.6569 −0.627943
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −1.07107 −0.0490408
\(478\) 0 0
\(479\) −27.4558 −1.25449 −0.627245 0.778822i \(-0.715817\pi\)
−0.627245 + 0.778822i \(0.715817\pi\)
\(480\) 0 0
\(481\) 1.02944 0.0469383
\(482\) 0 0
\(483\) −16.0000 −0.728025
\(484\) 0 0
\(485\) 6.24264 0.283464
\(486\) 0 0
\(487\) −3.55635 −0.161154 −0.0805768 0.996748i \(-0.525676\pi\)
−0.0805768 + 0.996748i \(0.525676\pi\)
\(488\) 0 0
\(489\) 12.9706 0.586549
\(490\) 0 0
\(491\) −20.9706 −0.946388 −0.473194 0.880958i \(-0.656899\pi\)
−0.473194 + 0.880958i \(0.656899\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 4.82843 0.217022
\(496\) 0 0
\(497\) −20.6863 −0.927907
\(498\) 0 0
\(499\) 24.1421 1.08075 0.540375 0.841424i \(-0.318282\pi\)
0.540375 + 0.841424i \(0.318282\pi\)
\(500\) 0 0
\(501\) −30.9706 −1.38366
\(502\) 0 0
\(503\) 9.65685 0.430578 0.215289 0.976550i \(-0.430931\pi\)
0.215289 + 0.976550i \(0.430931\pi\)
\(504\) 0 0
\(505\) −6.34315 −0.282266
\(506\) 0 0
\(507\) 17.8995 0.794944
\(508\) 0 0
\(509\) −35.4558 −1.57155 −0.785776 0.618511i \(-0.787736\pi\)
−0.785776 + 0.618511i \(0.787736\pi\)
\(510\) 0 0
\(511\) −45.6569 −2.01974
\(512\) 0 0
\(513\) 5.65685 0.249756
\(514\) 0 0
\(515\) −0.242641 −0.0106920
\(516\) 0 0
\(517\) −40.9706 −1.80188
\(518\) 0 0
\(519\) 20.8284 0.914266
\(520\) 0 0
\(521\) 37.3137 1.63474 0.817372 0.576111i \(-0.195430\pi\)
0.817372 + 0.576111i \(0.195430\pi\)
\(522\) 0 0
\(523\) 27.7574 1.21374 0.606872 0.794799i \(-0.292424\pi\)
0.606872 + 0.794799i \(0.292424\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −2.82843 −0.122743
\(532\) 0 0
\(533\) −2.82843 −0.122513
\(534\) 0 0
\(535\) 1.41421 0.0611418
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −4.82843 −0.207975
\(540\) 0 0
\(541\) 20.2843 0.872089 0.436044 0.899925i \(-0.356379\pi\)
0.436044 + 0.899925i \(0.356379\pi\)
\(542\) 0 0
\(543\) 24.4853 1.05076
\(544\) 0 0
\(545\) 7.65685 0.327984
\(546\) 0 0
\(547\) 24.9289 1.06588 0.532942 0.846152i \(-0.321086\pi\)
0.532942 + 0.846152i \(0.321086\pi\)
\(548\) 0 0
\(549\) 9.65685 0.412144
\(550\) 0 0
\(551\) −4.82843 −0.205698
\(552\) 0 0
\(553\) −41.9411 −1.78352
\(554\) 0 0
\(555\) 2.48528 0.105494
\(556\) 0 0
\(557\) −33.7990 −1.43211 −0.716055 0.698044i \(-0.754054\pi\)
−0.716055 + 0.698044i \(0.754054\pi\)
\(558\) 0 0
\(559\) −1.65685 −0.0700775
\(560\) 0 0
\(561\) −5.65685 −0.238833
\(562\) 0 0
\(563\) −4.24264 −0.178806 −0.0894030 0.995996i \(-0.528496\pi\)
−0.0894030 + 0.995996i \(0.528496\pi\)
\(564\) 0 0
\(565\) 10.7279 0.451327
\(566\) 0 0
\(567\) −14.1421 −0.593914
\(568\) 0 0
\(569\) 35.9411 1.50673 0.753365 0.657602i \(-0.228429\pi\)
0.753365 + 0.657602i \(0.228429\pi\)
\(570\) 0 0
\(571\) 13.5147 0.565573 0.282787 0.959183i \(-0.408741\pi\)
0.282787 + 0.959183i \(0.408741\pi\)
\(572\) 0 0
\(573\) 27.3137 1.14105
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −0.627417 −0.0261197 −0.0130599 0.999915i \(-0.504157\pi\)
−0.0130599 + 0.999915i \(0.504157\pi\)
\(578\) 0 0
\(579\) 29.7990 1.23840
\(580\) 0 0
\(581\) −22.6274 −0.938743
\(582\) 0 0
\(583\) −5.17157 −0.214185
\(584\) 0 0
\(585\) 0.585786 0.0242193
\(586\) 0 0
\(587\) −5.65685 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 3.79899 0.156270
\(592\) 0 0
\(593\) −28.6274 −1.17559 −0.587794 0.809011i \(-0.700003\pi\)
−0.587794 + 0.809011i \(0.700003\pi\)
\(594\) 0 0
\(595\) −2.34315 −0.0960596
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) −22.1421 −0.904703 −0.452352 0.891840i \(-0.649415\pi\)
−0.452352 + 0.891840i \(0.649415\pi\)
\(600\) 0 0
\(601\) 2.48528 0.101377 0.0506884 0.998715i \(-0.483858\pi\)
0.0506884 + 0.998715i \(0.483858\pi\)
\(602\) 0 0
\(603\) −6.58579 −0.268194
\(604\) 0 0
\(605\) 12.3137 0.500623
\(606\) 0 0
\(607\) −16.2426 −0.659268 −0.329634 0.944109i \(-0.606925\pi\)
−0.329634 + 0.944109i \(0.606925\pi\)
\(608\) 0 0
\(609\) 19.3137 0.782631
\(610\) 0 0
\(611\) −4.97056 −0.201087
\(612\) 0 0
\(613\) 21.7990 0.880453 0.440226 0.897887i \(-0.354898\pi\)
0.440226 + 0.897887i \(0.354898\pi\)
\(614\) 0 0
\(615\) −6.82843 −0.275349
\(616\) 0 0
\(617\) 1.79899 0.0724246 0.0362123 0.999344i \(-0.488471\pi\)
0.0362123 + 0.999344i \(0.488471\pi\)
\(618\) 0 0
\(619\) −11.8579 −0.476608 −0.238304 0.971191i \(-0.576591\pi\)
−0.238304 + 0.971191i \(0.576591\pi\)
\(620\) 0 0
\(621\) 22.6274 0.908007
\(622\) 0 0
\(623\) −24.9706 −1.00042
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 6.82843 0.272701
\(628\) 0 0
\(629\) 1.45584 0.0580483
\(630\) 0 0
\(631\) −17.5147 −0.697250 −0.348625 0.937262i \(-0.613351\pi\)
−0.348625 + 0.937262i \(0.613351\pi\)
\(632\) 0 0
\(633\) 0.686292 0.0272776
\(634\) 0 0
\(635\) −10.5858 −0.420084
\(636\) 0 0
\(637\) −0.585786 −0.0232097
\(638\) 0 0
\(639\) 7.31371 0.289326
\(640\) 0 0
\(641\) −23.4558 −0.926450 −0.463225 0.886241i \(-0.653308\pi\)
−0.463225 + 0.886241i \(0.653308\pi\)
\(642\) 0 0
\(643\) 12.6863 0.500298 0.250149 0.968207i \(-0.419520\pi\)
0.250149 + 0.968207i \(0.419520\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) −39.3137 −1.54558 −0.772791 0.634661i \(-0.781140\pi\)
−0.772791 + 0.634661i \(0.781140\pi\)
\(648\) 0 0
\(649\) −13.6569 −0.536078
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.1421 0.631691 0.315845 0.948811i \(-0.397712\pi\)
0.315845 + 0.948811i \(0.397712\pi\)
\(654\) 0 0
\(655\) 15.3137 0.598356
\(656\) 0 0
\(657\) 16.1421 0.629765
\(658\) 0 0
\(659\) 11.5147 0.448550 0.224275 0.974526i \(-0.427999\pi\)
0.224275 + 0.974526i \(0.427999\pi\)
\(660\) 0 0
\(661\) −3.17157 −0.123360 −0.0616799 0.998096i \(-0.519646\pi\)
−0.0616799 + 0.998096i \(0.519646\pi\)
\(662\) 0 0
\(663\) −0.686292 −0.0266534
\(664\) 0 0
\(665\) 2.82843 0.109682
\(666\) 0 0
\(667\) −19.3137 −0.747830
\(668\) 0 0
\(669\) −14.9706 −0.578795
\(670\) 0 0
\(671\) 46.6274 1.80003
\(672\) 0 0
\(673\) −28.3848 −1.09415 −0.547076 0.837083i \(-0.684259\pi\)
−0.547076 + 0.837083i \(0.684259\pi\)
\(674\) 0 0
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) 44.3848 1.70585 0.852923 0.522037i \(-0.174828\pi\)
0.852923 + 0.522037i \(0.174828\pi\)
\(678\) 0 0
\(679\) 17.6569 0.677608
\(680\) 0 0
\(681\) −34.0000 −1.30288
\(682\) 0 0
\(683\) −9.89949 −0.378794 −0.189397 0.981901i \(-0.560653\pi\)
−0.189397 + 0.981901i \(0.560653\pi\)
\(684\) 0 0
\(685\) −12.8284 −0.490149
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) −0.627417 −0.0239027
\(690\) 0 0
\(691\) 40.8284 1.55319 0.776593 0.630002i \(-0.216946\pi\)
0.776593 + 0.630002i \(0.216946\pi\)
\(692\) 0 0
\(693\) 13.6569 0.518781
\(694\) 0 0
\(695\) 8.82843 0.334881
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 14.1421 0.534905
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) −1.75736 −0.0662801
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) −17.9411 −0.674745
\(708\) 0 0
\(709\) −38.2843 −1.43780 −0.718898 0.695116i \(-0.755353\pi\)
−0.718898 + 0.695116i \(0.755353\pi\)
\(710\) 0 0
\(711\) 14.8284 0.556109
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.82843 0.105777
\(716\) 0 0
\(717\) −11.3137 −0.422518
\(718\) 0 0
\(719\) 19.4558 0.725581 0.362790 0.931871i \(-0.381824\pi\)
0.362790 + 0.931871i \(0.381824\pi\)
\(720\) 0 0
\(721\) −0.686292 −0.0255588
\(722\) 0 0
\(723\) 28.4853 1.05938
\(724\) 0 0
\(725\) −4.82843 −0.179323
\(726\) 0 0
\(727\) 9.45584 0.350698 0.175349 0.984506i \(-0.443895\pi\)
0.175349 + 0.984506i \(0.443895\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) −2.34315 −0.0866644
\(732\) 0 0
\(733\) −15.6569 −0.578299 −0.289150 0.957284i \(-0.593372\pi\)
−0.289150 + 0.957284i \(0.593372\pi\)
\(734\) 0 0
\(735\) −1.41421 −0.0521641
\(736\) 0 0
\(737\) −31.7990 −1.17133
\(738\) 0 0
\(739\) −23.3137 −0.857609 −0.428804 0.903397i \(-0.641065\pi\)
−0.428804 + 0.903397i \(0.641065\pi\)
\(740\) 0 0
\(741\) 0.828427 0.0304330
\(742\) 0 0
\(743\) −24.2426 −0.889376 −0.444688 0.895685i \(-0.646685\pi\)
−0.444688 + 0.895685i \(0.646685\pi\)
\(744\) 0 0
\(745\) 9.65685 0.353800
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) −27.5147 −1.00403 −0.502013 0.864860i \(-0.667407\pi\)
−0.502013 + 0.864860i \(0.667407\pi\)
\(752\) 0 0
\(753\) −7.02944 −0.256167
\(754\) 0 0
\(755\) −22.1421 −0.805835
\(756\) 0 0
\(757\) −34.2843 −1.24608 −0.623042 0.782189i \(-0.714103\pi\)
−0.623042 + 0.782189i \(0.714103\pi\)
\(758\) 0 0
\(759\) 27.3137 0.991425
\(760\) 0 0
\(761\) 46.6274 1.69024 0.845121 0.534575i \(-0.179528\pi\)
0.845121 + 0.534575i \(0.179528\pi\)
\(762\) 0 0
\(763\) 21.6569 0.784031
\(764\) 0 0
\(765\) 0.828427 0.0299518
\(766\) 0 0
\(767\) −1.65685 −0.0598255
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) 33.7990 1.21724
\(772\) 0 0
\(773\) −4.87006 −0.175164 −0.0875819 0.996157i \(-0.527914\pi\)
−0.0875819 + 0.996157i \(0.527914\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.02944 0.252180
\(778\) 0 0
\(779\) 4.82843 0.172996
\(780\) 0 0
\(781\) 35.3137 1.26362
\(782\) 0 0
\(783\) −27.3137 −0.976112
\(784\) 0 0
\(785\) −6.48528 −0.231470
\(786\) 0 0
\(787\) −1.41421 −0.0504113 −0.0252056 0.999682i \(-0.508024\pi\)
−0.0252056 + 0.999682i \(0.508024\pi\)
\(788\) 0 0
\(789\) −6.62742 −0.235942
\(790\) 0 0
\(791\) 30.3431 1.07888
\(792\) 0 0
\(793\) 5.65685 0.200881
\(794\) 0 0
\(795\) −1.51472 −0.0537215
\(796\) 0 0
\(797\) 31.6985 1.12282 0.561409 0.827538i \(-0.310259\pi\)
0.561409 + 0.827538i \(0.310259\pi\)
\(798\) 0 0
\(799\) −7.02944 −0.248684
\(800\) 0 0
\(801\) 8.82843 0.311937
\(802\) 0 0
\(803\) 77.9411 2.75048
\(804\) 0 0
\(805\) 11.3137 0.398756
\(806\) 0 0
\(807\) −9.45584 −0.332861
\(808\) 0 0
\(809\) 38.0000 1.33601 0.668004 0.744157i \(-0.267149\pi\)
0.668004 + 0.744157i \(0.267149\pi\)
\(810\) 0 0
\(811\) 23.3137 0.818655 0.409328 0.912388i \(-0.365763\pi\)
0.409328 + 0.912388i \(0.365763\pi\)
\(812\) 0 0
\(813\) 37.4558 1.31363
\(814\) 0 0
\(815\) −9.17157 −0.321266
\(816\) 0 0
\(817\) 2.82843 0.0989541
\(818\) 0 0
\(819\) 1.65685 0.0578952
\(820\) 0 0
\(821\) −29.5980 −1.03298 −0.516488 0.856294i \(-0.672761\pi\)
−0.516488 + 0.856294i \(0.672761\pi\)
\(822\) 0 0
\(823\) 0.485281 0.0169158 0.00845792 0.999964i \(-0.497308\pi\)
0.00845792 + 0.999964i \(0.497308\pi\)
\(824\) 0 0
\(825\) 6.82843 0.237735
\(826\) 0 0
\(827\) 45.6985 1.58909 0.794546 0.607204i \(-0.207709\pi\)
0.794546 + 0.607204i \(0.207709\pi\)
\(828\) 0 0
\(829\) −29.5980 −1.02798 −0.513990 0.857796i \(-0.671833\pi\)
−0.513990 + 0.857796i \(0.671833\pi\)
\(830\) 0 0
\(831\) 35.1127 1.21805
\(832\) 0 0
\(833\) −0.828427 −0.0287033
\(834\) 0 0
\(835\) 21.8995 0.757863
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 39.7990 1.37401 0.687007 0.726651i \(-0.258924\pi\)
0.687007 + 0.726651i \(0.258924\pi\)
\(840\) 0 0
\(841\) −5.68629 −0.196079
\(842\) 0 0
\(843\) −23.7990 −0.819681
\(844\) 0 0
\(845\) −12.6569 −0.435409
\(846\) 0 0
\(847\) 34.8284 1.19672
\(848\) 0 0
\(849\) 24.9706 0.856987
\(850\) 0 0
\(851\) −7.02944 −0.240966
\(852\) 0 0
\(853\) −39.9411 −1.36756 −0.683779 0.729689i \(-0.739665\pi\)
−0.683779 + 0.729689i \(0.739665\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) −11.2132 −0.383036 −0.191518 0.981489i \(-0.561341\pi\)
−0.191518 + 0.981489i \(0.561341\pi\)
\(858\) 0 0
\(859\) −17.6569 −0.602444 −0.301222 0.953554i \(-0.597395\pi\)
−0.301222 + 0.953554i \(0.597395\pi\)
\(860\) 0 0
\(861\) −19.3137 −0.658209
\(862\) 0 0
\(863\) 4.04163 0.137579 0.0687894 0.997631i \(-0.478086\pi\)
0.0687894 + 0.997631i \(0.478086\pi\)
\(864\) 0 0
\(865\) −14.7279 −0.500764
\(866\) 0 0
\(867\) 23.0711 0.783535
\(868\) 0 0
\(869\) 71.5980 2.42880
\(870\) 0 0
\(871\) −3.85786 −0.130719
\(872\) 0 0
\(873\) −6.24264 −0.211281
\(874\) 0 0
\(875\) 2.82843 0.0956183
\(876\) 0 0
\(877\) 6.72792 0.227186 0.113593 0.993527i \(-0.463764\pi\)
0.113593 + 0.993527i \(0.463764\pi\)
\(878\) 0 0
\(879\) −6.20101 −0.209155
\(880\) 0 0
\(881\) 9.65685 0.325348 0.162674 0.986680i \(-0.447988\pi\)
0.162674 + 0.986680i \(0.447988\pi\)
\(882\) 0 0
\(883\) 5.17157 0.174037 0.0870186 0.996207i \(-0.472266\pi\)
0.0870186 + 0.996207i \(0.472266\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) −40.7279 −1.36751 −0.683755 0.729712i \(-0.739654\pi\)
−0.683755 + 0.729712i \(0.739654\pi\)
\(888\) 0 0
\(889\) −29.9411 −1.00419
\(890\) 0 0
\(891\) 24.1421 0.808792
\(892\) 0 0
\(893\) 8.48528 0.283949
\(894\) 0 0
\(895\) 8.48528 0.283632
\(896\) 0 0
\(897\) 3.31371 0.110642
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −0.887302 −0.0295603
\(902\) 0 0
\(903\) −11.3137 −0.376497
\(904\) 0 0
\(905\) −17.3137 −0.575527
\(906\) 0 0
\(907\) 0.0416306 0.00138232 0.000691160 1.00000i \(-0.499780\pi\)
0.000691160 1.00000i \(0.499780\pi\)
\(908\) 0 0
\(909\) 6.34315 0.210389
\(910\) 0 0
\(911\) −14.8284 −0.491288 −0.245644 0.969360i \(-0.578999\pi\)
−0.245644 + 0.969360i \(0.578999\pi\)
\(912\) 0 0
\(913\) 38.6274 1.27838
\(914\) 0 0
\(915\) 13.6569 0.451482
\(916\) 0 0
\(917\) 43.3137 1.43034
\(918\) 0 0
\(919\) 49.9411 1.64741 0.823703 0.567022i \(-0.191904\pi\)
0.823703 + 0.567022i \(0.191904\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 0 0
\(923\) 4.28427 0.141019
\(924\) 0 0
\(925\) −1.75736 −0.0577816
\(926\) 0 0
\(927\) 0.242641 0.00796937
\(928\) 0 0
\(929\) 18.6863 0.613077 0.306539 0.951858i \(-0.400829\pi\)
0.306539 + 0.951858i \(0.400829\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) −35.1127 −1.14954
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 4.54416 0.148451 0.0742256 0.997241i \(-0.476352\pi\)
0.0742256 + 0.997241i \(0.476352\pi\)
\(938\) 0 0
\(939\) −24.4853 −0.799047
\(940\) 0 0
\(941\) 57.5980 1.87764 0.938820 0.344408i \(-0.111920\pi\)
0.938820 + 0.344408i \(0.111920\pi\)
\(942\) 0 0
\(943\) 19.3137 0.628941
\(944\) 0 0
\(945\) 16.0000 0.520480
\(946\) 0 0
\(947\) −24.6863 −0.802197 −0.401098 0.916035i \(-0.631371\pi\)
−0.401098 + 0.916035i \(0.631371\pi\)
\(948\) 0 0
\(949\) 9.45584 0.306950
\(950\) 0 0
\(951\) 28.1421 0.912571
\(952\) 0 0
\(953\) −9.27208 −0.300352 −0.150176 0.988659i \(-0.547984\pi\)
−0.150176 + 0.988659i \(0.547984\pi\)
\(954\) 0 0
\(955\) −19.3137 −0.624977
\(956\) 0 0
\(957\) −32.9706 −1.06579
\(958\) 0 0
\(959\) −36.2843 −1.17168
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −1.41421 −0.0455724
\(964\) 0 0
\(965\) −21.0711 −0.678302
\(966\) 0 0
\(967\) 26.3431 0.847138 0.423569 0.905864i \(-0.360777\pi\)
0.423569 + 0.905864i \(0.360777\pi\)
\(968\) 0 0
\(969\) 1.17157 0.0376363
\(970\) 0 0
\(971\) 41.9411 1.34595 0.672977 0.739663i \(-0.265015\pi\)
0.672977 + 0.739663i \(0.265015\pi\)
\(972\) 0 0
\(973\) 24.9706 0.800519
\(974\) 0 0
\(975\) 0.828427 0.0265309
\(976\) 0 0
\(977\) 33.8406 1.08266 0.541329 0.840811i \(-0.317921\pi\)
0.541329 + 0.840811i \(0.317921\pi\)
\(978\) 0 0
\(979\) 42.6274 1.36238
\(980\) 0 0
\(981\) −7.65685 −0.244465
\(982\) 0 0
\(983\) −44.0416 −1.40471 −0.702355 0.711827i \(-0.747868\pi\)
−0.702355 + 0.711827i \(0.747868\pi\)
\(984\) 0 0
\(985\) −2.68629 −0.0855924
\(986\) 0 0
\(987\) −33.9411 −1.08036
\(988\) 0 0
\(989\) 11.3137 0.359755
\(990\) 0 0
\(991\) −28.7696 −0.913895 −0.456947 0.889494i \(-0.651057\pi\)
−0.456947 + 0.889494i \(0.651057\pi\)
\(992\) 0 0
\(993\) 47.3137 1.50146
\(994\) 0 0
\(995\) 5.65685 0.179334
\(996\) 0 0
\(997\) −7.17157 −0.227126 −0.113563 0.993531i \(-0.536226\pi\)
−0.113563 + 0.993531i \(0.536226\pi\)
\(998\) 0 0
\(999\) −9.94113 −0.314523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.bf.1.1 2
4.3 odd 2 6080.2.a.bg.1.2 2
8.3 odd 2 1520.2.a.m.1.1 2
8.5 even 2 760.2.a.f.1.2 2
24.5 odd 2 6840.2.a.z.1.2 2
40.13 odd 4 3800.2.d.i.3649.4 4
40.19 odd 2 7600.2.a.ba.1.2 2
40.29 even 2 3800.2.a.n.1.1 2
40.37 odd 4 3800.2.d.i.3649.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.f.1.2 2 8.5 even 2
1520.2.a.m.1.1 2 8.3 odd 2
3800.2.a.n.1.1 2 40.29 even 2
3800.2.d.i.3649.2 4 40.37 odd 4
3800.2.d.i.3649.4 4 40.13 odd 4
6080.2.a.bf.1.1 2 1.1 even 1 trivial
6080.2.a.bg.1.2 2 4.3 odd 2
6840.2.a.z.1.2 2 24.5 odd 2
7600.2.a.ba.1.2 2 40.19 odd 2