Properties

Label 6080.2.a.bx.1.1
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.81361\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.81361 q^{3} +1.00000 q^{5} -4.91638 q^{7} +0.289169 q^{9} -0.578337 q^{11} +6.39194 q^{13} -1.81361 q^{15} -0.710831 q^{17} -1.00000 q^{19} +8.91638 q^{21} -2.71083 q^{23} +1.00000 q^{25} +4.91638 q^{27} -6.54359 q^{29} +1.42166 q^{31} +1.04888 q^{33} -4.91638 q^{35} +9.10278 q^{37} -11.5925 q^{39} -11.0489 q^{41} -5.83276 q^{43} +0.289169 q^{45} -1.15667 q^{47} +17.1708 q^{49} +1.28917 q^{51} -13.2736 q^{53} -0.578337 q^{55} +1.81361 q^{57} -11.3869 q^{59} +9.04888 q^{61} -1.42166 q^{63} +6.39194 q^{65} -2.97028 q^{67} +4.91638 q^{69} -9.38692 q^{73} -1.81361 q^{75} +2.84333 q^{77} +4.37279 q^{79} -9.78389 q^{81} +0.372787 q^{83} -0.710831 q^{85} +11.8675 q^{87} -16.6167 q^{89} -31.4252 q^{91} -2.57834 q^{93} -1.00000 q^{95} +3.94610 q^{97} -0.167237 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 3 q^{5} - q^{7} + 11 q^{13} + q^{15} - 3 q^{17} - 3 q^{19} + 13 q^{21} - 9 q^{23} + 3 q^{25} + q^{27} + 7 q^{29} + 6 q^{31} - 8 q^{33} - q^{35} + 20 q^{37} + 3 q^{39} - 22 q^{41} + 10 q^{43}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.81361 −1.04709 −0.523543 0.851999i \(-0.675390\pi\)
−0.523543 + 0.851999i \(0.675390\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.91638 −1.85822 −0.929109 0.369807i \(-0.879424\pi\)
−0.929109 + 0.369807i \(0.879424\pi\)
\(8\) 0 0
\(9\) 0.289169 0.0963895
\(10\) 0 0
\(11\) −0.578337 −0.174375 −0.0871876 0.996192i \(-0.527788\pi\)
−0.0871876 + 0.996192i \(0.527788\pi\)
\(12\) 0 0
\(13\) 6.39194 1.77281 0.886403 0.462914i \(-0.153196\pi\)
0.886403 + 0.462914i \(0.153196\pi\)
\(14\) 0 0
\(15\) −1.81361 −0.468271
\(16\) 0 0
\(17\) −0.710831 −0.172402 −0.0862010 0.996278i \(-0.527473\pi\)
−0.0862010 + 0.996278i \(0.527473\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 8.91638 1.94571
\(22\) 0 0
\(23\) −2.71083 −0.565247 −0.282624 0.959231i \(-0.591205\pi\)
−0.282624 + 0.959231i \(0.591205\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.91638 0.946158
\(28\) 0 0
\(29\) −6.54359 −1.21512 −0.607558 0.794276i \(-0.707851\pi\)
−0.607558 + 0.794276i \(0.707851\pi\)
\(30\) 0 0
\(31\) 1.42166 0.255338 0.127669 0.991817i \(-0.459250\pi\)
0.127669 + 0.991817i \(0.459250\pi\)
\(32\) 0 0
\(33\) 1.04888 0.182586
\(34\) 0 0
\(35\) −4.91638 −0.831020
\(36\) 0 0
\(37\) 9.10278 1.49649 0.748243 0.663424i \(-0.230897\pi\)
0.748243 + 0.663424i \(0.230897\pi\)
\(38\) 0 0
\(39\) −11.5925 −1.85628
\(40\) 0 0
\(41\) −11.0489 −1.72554 −0.862772 0.505593i \(-0.831274\pi\)
−0.862772 + 0.505593i \(0.831274\pi\)
\(42\) 0 0
\(43\) −5.83276 −0.889488 −0.444744 0.895658i \(-0.646705\pi\)
−0.444744 + 0.895658i \(0.646705\pi\)
\(44\) 0 0
\(45\) 0.289169 0.0431067
\(46\) 0 0
\(47\) −1.15667 −0.168718 −0.0843591 0.996435i \(-0.526884\pi\)
−0.0843591 + 0.996435i \(0.526884\pi\)
\(48\) 0 0
\(49\) 17.1708 2.45297
\(50\) 0 0
\(51\) 1.28917 0.180520
\(52\) 0 0
\(53\) −13.2736 −1.82327 −0.911633 0.411004i \(-0.865178\pi\)
−0.911633 + 0.411004i \(0.865178\pi\)
\(54\) 0 0
\(55\) −0.578337 −0.0779830
\(56\) 0 0
\(57\) 1.81361 0.240218
\(58\) 0 0
\(59\) −11.3869 −1.48245 −0.741225 0.671256i \(-0.765755\pi\)
−0.741225 + 0.671256i \(0.765755\pi\)
\(60\) 0 0
\(61\) 9.04888 1.15859 0.579295 0.815118i \(-0.303328\pi\)
0.579295 + 0.815118i \(0.303328\pi\)
\(62\) 0 0
\(63\) −1.42166 −0.179113
\(64\) 0 0
\(65\) 6.39194 0.792823
\(66\) 0 0
\(67\) −2.97028 −0.362878 −0.181439 0.983402i \(-0.558075\pi\)
−0.181439 + 0.983402i \(0.558075\pi\)
\(68\) 0 0
\(69\) 4.91638 0.591863
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −9.38692 −1.09866 −0.549328 0.835607i \(-0.685116\pi\)
−0.549328 + 0.835607i \(0.685116\pi\)
\(74\) 0 0
\(75\) −1.81361 −0.209417
\(76\) 0 0
\(77\) 2.84333 0.324027
\(78\) 0 0
\(79\) 4.37279 0.491977 0.245988 0.969273i \(-0.420887\pi\)
0.245988 + 0.969273i \(0.420887\pi\)
\(80\) 0 0
\(81\) −9.78389 −1.08710
\(82\) 0 0
\(83\) 0.372787 0.0409187 0.0204593 0.999791i \(-0.493487\pi\)
0.0204593 + 0.999791i \(0.493487\pi\)
\(84\) 0 0
\(85\) −0.710831 −0.0771005
\(86\) 0 0
\(87\) 11.8675 1.27233
\(88\) 0 0
\(89\) −16.6167 −1.76136 −0.880681 0.473710i \(-0.842914\pi\)
−0.880681 + 0.473710i \(0.842914\pi\)
\(90\) 0 0
\(91\) −31.4252 −3.29426
\(92\) 0 0
\(93\) −2.57834 −0.267361
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 3.94610 0.400666 0.200333 0.979728i \(-0.435798\pi\)
0.200333 + 0.979728i \(0.435798\pi\)
\(98\) 0 0
\(99\) −0.167237 −0.0168079
\(100\) 0 0
\(101\) 6.20555 0.617475 0.308738 0.951147i \(-0.400093\pi\)
0.308738 + 0.951147i \(0.400093\pi\)
\(102\) 0 0
\(103\) 8.15165 0.803206 0.401603 0.915814i \(-0.368453\pi\)
0.401603 + 0.915814i \(0.368453\pi\)
\(104\) 0 0
\(105\) 8.91638 0.870150
\(106\) 0 0
\(107\) 13.0680 1.26333 0.631667 0.775240i \(-0.282371\pi\)
0.631667 + 0.775240i \(0.282371\pi\)
\(108\) 0 0
\(109\) 11.5925 1.11036 0.555179 0.831731i \(-0.312650\pi\)
0.555179 + 0.831731i \(0.312650\pi\)
\(110\) 0 0
\(111\) −16.5089 −1.56695
\(112\) 0 0
\(113\) −14.9355 −1.40502 −0.702509 0.711675i \(-0.747937\pi\)
−0.702509 + 0.711675i \(0.747937\pi\)
\(114\) 0 0
\(115\) −2.71083 −0.252786
\(116\) 0 0
\(117\) 1.84835 0.170880
\(118\) 0 0
\(119\) 3.49472 0.320360
\(120\) 0 0
\(121\) −10.6655 −0.969593
\(122\) 0 0
\(123\) 20.0383 1.80679
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.8867 1.05477 0.527385 0.849626i \(-0.323172\pi\)
0.527385 + 0.849626i \(0.323172\pi\)
\(128\) 0 0
\(129\) 10.5783 0.931371
\(130\) 0 0
\(131\) 9.15667 0.800022 0.400011 0.916510i \(-0.369006\pi\)
0.400011 + 0.916510i \(0.369006\pi\)
\(132\) 0 0
\(133\) 4.91638 0.426304
\(134\) 0 0
\(135\) 4.91638 0.423135
\(136\) 0 0
\(137\) 13.3869 1.14372 0.571861 0.820351i \(-0.306222\pi\)
0.571861 + 0.820351i \(0.306222\pi\)
\(138\) 0 0
\(139\) −3.42166 −0.290222 −0.145111 0.989415i \(-0.546354\pi\)
−0.145111 + 0.989415i \(0.546354\pi\)
\(140\) 0 0
\(141\) 2.09775 0.176663
\(142\) 0 0
\(143\) −3.69670 −0.309133
\(144\) 0 0
\(145\) −6.54359 −0.543416
\(146\) 0 0
\(147\) −31.1411 −2.56847
\(148\) 0 0
\(149\) 3.36222 0.275444 0.137722 0.990471i \(-0.456022\pi\)
0.137722 + 0.990471i \(0.456022\pi\)
\(150\) 0 0
\(151\) 21.1950 1.72482 0.862412 0.506207i \(-0.168953\pi\)
0.862412 + 0.506207i \(0.168953\pi\)
\(152\) 0 0
\(153\) −0.205550 −0.0166177
\(154\) 0 0
\(155\) 1.42166 0.114191
\(156\) 0 0
\(157\) 11.7944 0.941300 0.470650 0.882320i \(-0.344020\pi\)
0.470650 + 0.882320i \(0.344020\pi\)
\(158\) 0 0
\(159\) 24.0731 1.90912
\(160\) 0 0
\(161\) 13.3275 1.05035
\(162\) 0 0
\(163\) 14.2439 1.11567 0.557833 0.829953i \(-0.311633\pi\)
0.557833 + 0.829953i \(0.311633\pi\)
\(164\) 0 0
\(165\) 1.04888 0.0816549
\(166\) 0 0
\(167\) −7.47556 −0.578476 −0.289238 0.957257i \(-0.593402\pi\)
−0.289238 + 0.957257i \(0.593402\pi\)
\(168\) 0 0
\(169\) 27.8569 2.14284
\(170\) 0 0
\(171\) −0.289169 −0.0221133
\(172\) 0 0
\(173\) −4.05390 −0.308212 −0.154106 0.988054i \(-0.549250\pi\)
−0.154106 + 0.988054i \(0.549250\pi\)
\(174\) 0 0
\(175\) −4.91638 −0.371644
\(176\) 0 0
\(177\) 20.6514 1.55225
\(178\) 0 0
\(179\) −2.95112 −0.220577 −0.110289 0.993900i \(-0.535178\pi\)
−0.110289 + 0.993900i \(0.535178\pi\)
\(180\) 0 0
\(181\) −9.66553 −0.718433 −0.359216 0.933254i \(-0.616956\pi\)
−0.359216 + 0.933254i \(0.616956\pi\)
\(182\) 0 0
\(183\) −16.4111 −1.21314
\(184\) 0 0
\(185\) 9.10278 0.669249
\(186\) 0 0
\(187\) 0.411100 0.0300626
\(188\) 0 0
\(189\) −24.1708 −1.75817
\(190\) 0 0
\(191\) −15.9058 −1.15090 −0.575452 0.817835i \(-0.695174\pi\)
−0.575452 + 0.817835i \(0.695174\pi\)
\(192\) 0 0
\(193\) 15.6116 1.12375 0.561875 0.827222i \(-0.310080\pi\)
0.561875 + 0.827222i \(0.310080\pi\)
\(194\) 0 0
\(195\) −11.5925 −0.830154
\(196\) 0 0
\(197\) 13.6655 0.973628 0.486814 0.873506i \(-0.338159\pi\)
0.486814 + 0.873506i \(0.338159\pi\)
\(198\) 0 0
\(199\) 8.91638 0.632066 0.316033 0.948748i \(-0.397649\pi\)
0.316033 + 0.948748i \(0.397649\pi\)
\(200\) 0 0
\(201\) 5.38692 0.379964
\(202\) 0 0
\(203\) 32.1708 2.25795
\(204\) 0 0
\(205\) −11.0489 −0.771687
\(206\) 0 0
\(207\) −0.783887 −0.0544839
\(208\) 0 0
\(209\) 0.578337 0.0400044
\(210\) 0 0
\(211\) −19.7980 −1.36295 −0.681476 0.731840i \(-0.738662\pi\)
−0.681476 + 0.731840i \(0.738662\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.83276 −0.397791
\(216\) 0 0
\(217\) −6.98944 −0.474474
\(218\) 0 0
\(219\) 17.0242 1.15039
\(220\) 0 0
\(221\) −4.54359 −0.305635
\(222\) 0 0
\(223\) −1.57331 −0.105357 −0.0526784 0.998612i \(-0.516776\pi\)
−0.0526784 + 0.998612i \(0.516776\pi\)
\(224\) 0 0
\(225\) 0.289169 0.0192779
\(226\) 0 0
\(227\) 28.0575 1.86224 0.931120 0.364713i \(-0.118833\pi\)
0.931120 + 0.364713i \(0.118833\pi\)
\(228\) 0 0
\(229\) −2.47054 −0.163258 −0.0816289 0.996663i \(-0.526012\pi\)
−0.0816289 + 0.996663i \(0.526012\pi\)
\(230\) 0 0
\(231\) −5.15667 −0.339284
\(232\) 0 0
\(233\) 3.15667 0.206801 0.103400 0.994640i \(-0.467028\pi\)
0.103400 + 0.994640i \(0.467028\pi\)
\(234\) 0 0
\(235\) −1.15667 −0.0754531
\(236\) 0 0
\(237\) −7.93051 −0.515142
\(238\) 0 0
\(239\) −2.74914 −0.177827 −0.0889137 0.996039i \(-0.528340\pi\)
−0.0889137 + 0.996039i \(0.528340\pi\)
\(240\) 0 0
\(241\) 8.88164 0.572117 0.286058 0.958212i \(-0.407655\pi\)
0.286058 + 0.958212i \(0.407655\pi\)
\(242\) 0 0
\(243\) 2.99498 0.192128
\(244\) 0 0
\(245\) 17.1708 1.09700
\(246\) 0 0
\(247\) −6.39194 −0.406710
\(248\) 0 0
\(249\) −0.676089 −0.0428454
\(250\) 0 0
\(251\) −6.31335 −0.398495 −0.199248 0.979949i \(-0.563850\pi\)
−0.199248 + 0.979949i \(0.563850\pi\)
\(252\) 0 0
\(253\) 1.56777 0.0985651
\(254\) 0 0
\(255\) 1.28917 0.0807309
\(256\) 0 0
\(257\) 7.83830 0.488940 0.244470 0.969657i \(-0.421386\pi\)
0.244470 + 0.969657i \(0.421386\pi\)
\(258\) 0 0
\(259\) −44.7527 −2.78080
\(260\) 0 0
\(261\) −1.89220 −0.117124
\(262\) 0 0
\(263\) 13.8711 0.855327 0.427664 0.903938i \(-0.359337\pi\)
0.427664 + 0.903938i \(0.359337\pi\)
\(264\) 0 0
\(265\) −13.2736 −0.815390
\(266\) 0 0
\(267\) 30.1361 1.84430
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −4.07306 −0.247421 −0.123710 0.992318i \(-0.539479\pi\)
−0.123710 + 0.992318i \(0.539479\pi\)
\(272\) 0 0
\(273\) 56.9930 3.44937
\(274\) 0 0
\(275\) −0.578337 −0.0348750
\(276\) 0 0
\(277\) −16.1361 −0.969522 −0.484761 0.874647i \(-0.661093\pi\)
−0.484761 + 0.874647i \(0.661093\pi\)
\(278\) 0 0
\(279\) 0.411100 0.0246119
\(280\) 0 0
\(281\) −11.4600 −0.683645 −0.341822 0.939765i \(-0.611044\pi\)
−0.341822 + 0.939765i \(0.611044\pi\)
\(282\) 0 0
\(283\) 21.7250 1.29142 0.645708 0.763585i \(-0.276563\pi\)
0.645708 + 0.763585i \(0.276563\pi\)
\(284\) 0 0
\(285\) 1.81361 0.107429
\(286\) 0 0
\(287\) 54.3205 3.20644
\(288\) 0 0
\(289\) −16.4947 −0.970278
\(290\) 0 0
\(291\) −7.15667 −0.419532
\(292\) 0 0
\(293\) 5.91136 0.345345 0.172673 0.984979i \(-0.444760\pi\)
0.172673 + 0.984979i \(0.444760\pi\)
\(294\) 0 0
\(295\) −11.3869 −0.662972
\(296\) 0 0
\(297\) −2.84333 −0.164986
\(298\) 0 0
\(299\) −17.3275 −1.00207
\(300\) 0 0
\(301\) 28.6761 1.65286
\(302\) 0 0
\(303\) −11.2544 −0.646550
\(304\) 0 0
\(305\) 9.04888 0.518137
\(306\) 0 0
\(307\) 29.7194 1.69618 0.848089 0.529854i \(-0.177753\pi\)
0.848089 + 0.529854i \(0.177753\pi\)
\(308\) 0 0
\(309\) −14.7839 −0.841026
\(310\) 0 0
\(311\) −0.407530 −0.0231089 −0.0115544 0.999933i \(-0.503678\pi\)
−0.0115544 + 0.999933i \(0.503678\pi\)
\(312\) 0 0
\(313\) −0.338044 −0.0191074 −0.00955370 0.999954i \(-0.503041\pi\)
−0.00955370 + 0.999954i \(0.503041\pi\)
\(314\) 0 0
\(315\) −1.42166 −0.0801016
\(316\) 0 0
\(317\) 8.75468 0.491712 0.245856 0.969306i \(-0.420931\pi\)
0.245856 + 0.969306i \(0.420931\pi\)
\(318\) 0 0
\(319\) 3.78440 0.211886
\(320\) 0 0
\(321\) −23.7003 −1.32282
\(322\) 0 0
\(323\) 0.710831 0.0395517
\(324\) 0 0
\(325\) 6.39194 0.354561
\(326\) 0 0
\(327\) −21.0242 −1.16264
\(328\) 0 0
\(329\) 5.68665 0.313515
\(330\) 0 0
\(331\) −23.8675 −1.31188 −0.655938 0.754814i \(-0.727727\pi\)
−0.655938 + 0.754814i \(0.727727\pi\)
\(332\) 0 0
\(333\) 2.63224 0.144246
\(334\) 0 0
\(335\) −2.97028 −0.162284
\(336\) 0 0
\(337\) −10.0439 −0.547124 −0.273562 0.961854i \(-0.588202\pi\)
−0.273562 + 0.961854i \(0.588202\pi\)
\(338\) 0 0
\(339\) 27.0872 1.47117
\(340\) 0 0
\(341\) −0.822200 −0.0445246
\(342\) 0 0
\(343\) −50.0036 −2.69994
\(344\) 0 0
\(345\) 4.91638 0.264689
\(346\) 0 0
\(347\) 15.6272 0.838913 0.419456 0.907775i \(-0.362221\pi\)
0.419456 + 0.907775i \(0.362221\pi\)
\(348\) 0 0
\(349\) −17.2544 −0.923608 −0.461804 0.886982i \(-0.652798\pi\)
−0.461804 + 0.886982i \(0.652798\pi\)
\(350\) 0 0
\(351\) 31.4252 1.67735
\(352\) 0 0
\(353\) 27.2197 1.44876 0.724379 0.689402i \(-0.242127\pi\)
0.724379 + 0.689402i \(0.242127\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.33804 −0.335445
\(358\) 0 0
\(359\) −7.18137 −0.379018 −0.189509 0.981879i \(-0.560690\pi\)
−0.189509 + 0.981879i \(0.560690\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 19.3431 1.01525
\(364\) 0 0
\(365\) −9.38692 −0.491334
\(366\) 0 0
\(367\) 9.15667 0.477975 0.238987 0.971023i \(-0.423185\pi\)
0.238987 + 0.971023i \(0.423185\pi\)
\(368\) 0 0
\(369\) −3.19499 −0.166324
\(370\) 0 0
\(371\) 65.2580 3.38803
\(372\) 0 0
\(373\) 8.75468 0.453300 0.226650 0.973976i \(-0.427223\pi\)
0.226650 + 0.973976i \(0.427223\pi\)
\(374\) 0 0
\(375\) −1.81361 −0.0936542
\(376\) 0 0
\(377\) −41.8263 −2.15416
\(378\) 0 0
\(379\) 12.9164 0.663470 0.331735 0.943373i \(-0.392366\pi\)
0.331735 + 0.943373i \(0.392366\pi\)
\(380\) 0 0
\(381\) −21.5577 −1.10444
\(382\) 0 0
\(383\) −1.64280 −0.0839431 −0.0419716 0.999119i \(-0.513364\pi\)
−0.0419716 + 0.999119i \(0.513364\pi\)
\(384\) 0 0
\(385\) 2.84333 0.144909
\(386\) 0 0
\(387\) −1.68665 −0.0857373
\(388\) 0 0
\(389\) 11.8328 0.599945 0.299972 0.953948i \(-0.403023\pi\)
0.299972 + 0.953948i \(0.403023\pi\)
\(390\) 0 0
\(391\) 1.92694 0.0974498
\(392\) 0 0
\(393\) −16.6066 −0.837692
\(394\) 0 0
\(395\) 4.37279 0.220019
\(396\) 0 0
\(397\) 24.1361 1.21135 0.605677 0.795710i \(-0.292902\pi\)
0.605677 + 0.795710i \(0.292902\pi\)
\(398\) 0 0
\(399\) −8.91638 −0.446377
\(400\) 0 0
\(401\) 19.9789 0.997697 0.498849 0.866689i \(-0.333756\pi\)
0.498849 + 0.866689i \(0.333756\pi\)
\(402\) 0 0
\(403\) 9.08719 0.452665
\(404\) 0 0
\(405\) −9.78389 −0.486165
\(406\) 0 0
\(407\) −5.26447 −0.260950
\(408\) 0 0
\(409\) 5.66553 0.280142 0.140071 0.990141i \(-0.455267\pi\)
0.140071 + 0.990141i \(0.455267\pi\)
\(410\) 0 0
\(411\) −24.2786 −1.19758
\(412\) 0 0
\(413\) 55.9824 2.75472
\(414\) 0 0
\(415\) 0.372787 0.0182994
\(416\) 0 0
\(417\) 6.20555 0.303887
\(418\) 0 0
\(419\) −22.6550 −1.10677 −0.553384 0.832926i \(-0.686664\pi\)
−0.553384 + 0.832926i \(0.686664\pi\)
\(420\) 0 0
\(421\) 25.5330 1.24440 0.622202 0.782857i \(-0.286238\pi\)
0.622202 + 0.782857i \(0.286238\pi\)
\(422\) 0 0
\(423\) −0.334474 −0.0162627
\(424\) 0 0
\(425\) −0.710831 −0.0344804
\(426\) 0 0
\(427\) −44.4877 −2.15291
\(428\) 0 0
\(429\) 6.70436 0.323689
\(430\) 0 0
\(431\) −13.7944 −0.664455 −0.332228 0.943199i \(-0.607800\pi\)
−0.332228 + 0.943199i \(0.607800\pi\)
\(432\) 0 0
\(433\) −29.4444 −1.41501 −0.707504 0.706710i \(-0.750179\pi\)
−0.707504 + 0.706710i \(0.750179\pi\)
\(434\) 0 0
\(435\) 11.8675 0.569003
\(436\) 0 0
\(437\) 2.71083 0.129677
\(438\) 0 0
\(439\) −34.5472 −1.64885 −0.824423 0.565974i \(-0.808500\pi\)
−0.824423 + 0.565974i \(0.808500\pi\)
\(440\) 0 0
\(441\) 4.96526 0.236441
\(442\) 0 0
\(443\) 23.5577 1.11926 0.559631 0.828742i \(-0.310943\pi\)
0.559631 + 0.828742i \(0.310943\pi\)
\(444\) 0 0
\(445\) −16.6167 −0.787705
\(446\) 0 0
\(447\) −6.09775 −0.288414
\(448\) 0 0
\(449\) −7.49115 −0.353529 −0.176765 0.984253i \(-0.556563\pi\)
−0.176765 + 0.984253i \(0.556563\pi\)
\(450\) 0 0
\(451\) 6.38997 0.300892
\(452\) 0 0
\(453\) −38.4394 −1.80604
\(454\) 0 0
\(455\) −31.4252 −1.47324
\(456\) 0 0
\(457\) 38.5819 1.80479 0.902393 0.430914i \(-0.141809\pi\)
0.902393 + 0.430914i \(0.141809\pi\)
\(458\) 0 0
\(459\) −3.49472 −0.163119
\(460\) 0 0
\(461\) 31.9789 1.48940 0.744702 0.667397i \(-0.232591\pi\)
0.744702 + 0.667397i \(0.232591\pi\)
\(462\) 0 0
\(463\) 30.8122 1.43196 0.715981 0.698120i \(-0.245980\pi\)
0.715981 + 0.698120i \(0.245980\pi\)
\(464\) 0 0
\(465\) −2.57834 −0.119568
\(466\) 0 0
\(467\) −41.4600 −1.91854 −0.959269 0.282493i \(-0.908839\pi\)
−0.959269 + 0.282493i \(0.908839\pi\)
\(468\) 0 0
\(469\) 14.6030 0.674305
\(470\) 0 0
\(471\) −21.3905 −0.985622
\(472\) 0 0
\(473\) 3.37330 0.155105
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −3.83830 −0.175744
\(478\) 0 0
\(479\) −9.93051 −0.453737 −0.226868 0.973925i \(-0.572849\pi\)
−0.226868 + 0.973925i \(0.572849\pi\)
\(480\) 0 0
\(481\) 58.1844 2.65298
\(482\) 0 0
\(483\) −24.1708 −1.09981
\(484\) 0 0
\(485\) 3.94610 0.179183
\(486\) 0 0
\(487\) −19.7789 −0.896266 −0.448133 0.893967i \(-0.647911\pi\)
−0.448133 + 0.893967i \(0.647911\pi\)
\(488\) 0 0
\(489\) −25.8328 −1.16820
\(490\) 0 0
\(491\) 16.1461 0.728664 0.364332 0.931269i \(-0.381297\pi\)
0.364332 + 0.931269i \(0.381297\pi\)
\(492\) 0 0
\(493\) 4.65139 0.209488
\(494\) 0 0
\(495\) −0.167237 −0.00751674
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 38.8222 1.73792 0.868960 0.494882i \(-0.164789\pi\)
0.868960 + 0.494882i \(0.164789\pi\)
\(500\) 0 0
\(501\) 13.5577 0.605715
\(502\) 0 0
\(503\) 12.5436 0.559291 0.279646 0.960103i \(-0.409783\pi\)
0.279646 + 0.960103i \(0.409783\pi\)
\(504\) 0 0
\(505\) 6.20555 0.276143
\(506\) 0 0
\(507\) −50.5215 −2.24374
\(508\) 0 0
\(509\) −25.0278 −1.10934 −0.554668 0.832072i \(-0.687155\pi\)
−0.554668 + 0.832072i \(0.687155\pi\)
\(510\) 0 0
\(511\) 46.1497 2.04154
\(512\) 0 0
\(513\) −4.91638 −0.217064
\(514\) 0 0
\(515\) 8.15165 0.359205
\(516\) 0 0
\(517\) 0.668948 0.0294203
\(518\) 0 0
\(519\) 7.35218 0.322725
\(520\) 0 0
\(521\) −16.6550 −0.729667 −0.364834 0.931073i \(-0.618874\pi\)
−0.364834 + 0.931073i \(0.618874\pi\)
\(522\) 0 0
\(523\) −24.3608 −1.06522 −0.532611 0.846360i \(-0.678789\pi\)
−0.532611 + 0.846360i \(0.678789\pi\)
\(524\) 0 0
\(525\) 8.91638 0.389143
\(526\) 0 0
\(527\) −1.01056 −0.0440208
\(528\) 0 0
\(529\) −15.6514 −0.680495
\(530\) 0 0
\(531\) −3.29274 −0.142893
\(532\) 0 0
\(533\) −70.6238 −3.05906
\(534\) 0 0
\(535\) 13.0680 0.564980
\(536\) 0 0
\(537\) 5.35218 0.230964
\(538\) 0 0
\(539\) −9.93051 −0.427738
\(540\) 0 0
\(541\) −15.3622 −0.660474 −0.330237 0.943898i \(-0.607129\pi\)
−0.330237 + 0.943898i \(0.607129\pi\)
\(542\) 0 0
\(543\) 17.5295 0.752261
\(544\) 0 0
\(545\) 11.5925 0.496567
\(546\) 0 0
\(547\) 26.5527 1.13531 0.567656 0.823266i \(-0.307850\pi\)
0.567656 + 0.823266i \(0.307850\pi\)
\(548\) 0 0
\(549\) 2.61665 0.111676
\(550\) 0 0
\(551\) 6.54359 0.278767
\(552\) 0 0
\(553\) −21.4983 −0.914200
\(554\) 0 0
\(555\) −16.5089 −0.700762
\(556\) 0 0
\(557\) 28.9583 1.22700 0.613501 0.789694i \(-0.289761\pi\)
0.613501 + 0.789694i \(0.289761\pi\)
\(558\) 0 0
\(559\) −37.2827 −1.57689
\(560\) 0 0
\(561\) −0.745574 −0.0314782
\(562\) 0 0
\(563\) 1.64280 0.0692357 0.0346179 0.999401i \(-0.488979\pi\)
0.0346179 + 0.999401i \(0.488979\pi\)
\(564\) 0 0
\(565\) −14.9355 −0.628343
\(566\) 0 0
\(567\) 48.1013 2.02007
\(568\) 0 0
\(569\) 14.3416 0.601232 0.300616 0.953745i \(-0.402808\pi\)
0.300616 + 0.953745i \(0.402808\pi\)
\(570\) 0 0
\(571\) 39.0177 1.63284 0.816420 0.577458i \(-0.195955\pi\)
0.816420 + 0.577458i \(0.195955\pi\)
\(572\) 0 0
\(573\) 28.8469 1.20510
\(574\) 0 0
\(575\) −2.71083 −0.113049
\(576\) 0 0
\(577\) 25.4947 1.06136 0.530680 0.847573i \(-0.321937\pi\)
0.530680 + 0.847573i \(0.321937\pi\)
\(578\) 0 0
\(579\) −28.3133 −1.17666
\(580\) 0 0
\(581\) −1.83276 −0.0760358
\(582\) 0 0
\(583\) 7.67661 0.317933
\(584\) 0 0
\(585\) 1.84835 0.0764198
\(586\) 0 0
\(587\) 9.72496 0.401392 0.200696 0.979654i \(-0.435680\pi\)
0.200696 + 0.979654i \(0.435680\pi\)
\(588\) 0 0
\(589\) −1.42166 −0.0585786
\(590\) 0 0
\(591\) −24.7839 −1.01947
\(592\) 0 0
\(593\) −13.0388 −0.535441 −0.267720 0.963497i \(-0.586270\pi\)
−0.267720 + 0.963497i \(0.586270\pi\)
\(594\) 0 0
\(595\) 3.49472 0.143269
\(596\) 0 0
\(597\) −16.1708 −0.661827
\(598\) 0 0
\(599\) −18.6861 −0.763495 −0.381747 0.924267i \(-0.624678\pi\)
−0.381747 + 0.924267i \(0.624678\pi\)
\(600\) 0 0
\(601\) 12.7355 0.519493 0.259747 0.965677i \(-0.416361\pi\)
0.259747 + 0.965677i \(0.416361\pi\)
\(602\) 0 0
\(603\) −0.858912 −0.0349776
\(604\) 0 0
\(605\) −10.6655 −0.433615
\(606\) 0 0
\(607\) 23.0645 0.936158 0.468079 0.883687i \(-0.344946\pi\)
0.468079 + 0.883687i \(0.344946\pi\)
\(608\) 0 0
\(609\) −58.3452 −2.36427
\(610\) 0 0
\(611\) −7.39340 −0.299105
\(612\) 0 0
\(613\) −25.7038 −1.03817 −0.519084 0.854723i \(-0.673727\pi\)
−0.519084 + 0.854723i \(0.673727\pi\)
\(614\) 0 0
\(615\) 20.0383 0.808023
\(616\) 0 0
\(617\) −0.205550 −0.00827514 −0.00413757 0.999991i \(-0.501317\pi\)
−0.00413757 + 0.999991i \(0.501317\pi\)
\(618\) 0 0
\(619\) 11.0872 0.445632 0.222816 0.974861i \(-0.428475\pi\)
0.222816 + 0.974861i \(0.428475\pi\)
\(620\) 0 0
\(621\) −13.3275 −0.534813
\(622\) 0 0
\(623\) 81.6938 3.27299
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.04888 −0.0418881
\(628\) 0 0
\(629\) −6.47054 −0.257997
\(630\) 0 0
\(631\) 10.4806 0.417226 0.208613 0.977998i \(-0.433105\pi\)
0.208613 + 0.977998i \(0.433105\pi\)
\(632\) 0 0
\(633\) 35.9058 1.42713
\(634\) 0 0
\(635\) 11.8867 0.471708
\(636\) 0 0
\(637\) 109.755 4.34864
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.3694 1.47600 0.738001 0.674800i \(-0.235770\pi\)
0.738001 + 0.674800i \(0.235770\pi\)
\(642\) 0 0
\(643\) −42.0172 −1.65700 −0.828498 0.559992i \(-0.810804\pi\)
−0.828498 + 0.559992i \(0.810804\pi\)
\(644\) 0 0
\(645\) 10.5783 0.416522
\(646\) 0 0
\(647\) 23.4635 0.922447 0.461224 0.887284i \(-0.347411\pi\)
0.461224 + 0.887284i \(0.347411\pi\)
\(648\) 0 0
\(649\) 6.58548 0.258503
\(650\) 0 0
\(651\) 12.6761 0.496815
\(652\) 0 0
\(653\) −33.6272 −1.31593 −0.657967 0.753047i \(-0.728583\pi\)
−0.657967 + 0.753047i \(0.728583\pi\)
\(654\) 0 0
\(655\) 9.15667 0.357781
\(656\) 0 0
\(657\) −2.71440 −0.105899
\(658\) 0 0
\(659\) −17.9653 −0.699827 −0.349914 0.936782i \(-0.613789\pi\)
−0.349914 + 0.936782i \(0.613789\pi\)
\(660\) 0 0
\(661\) −15.5542 −0.604987 −0.302493 0.953152i \(-0.597819\pi\)
−0.302493 + 0.953152i \(0.597819\pi\)
\(662\) 0 0
\(663\) 8.24029 0.320026
\(664\) 0 0
\(665\) 4.91638 0.190649
\(666\) 0 0
\(667\) 17.7386 0.686841
\(668\) 0 0
\(669\) 2.85337 0.110318
\(670\) 0 0
\(671\) −5.23330 −0.202029
\(672\) 0 0
\(673\) 12.2111 0.470703 0.235351 0.971910i \(-0.424376\pi\)
0.235351 + 0.971910i \(0.424376\pi\)
\(674\) 0 0
\(675\) 4.91638 0.189232
\(676\) 0 0
\(677\) 43.0680 1.65524 0.827619 0.561290i \(-0.189695\pi\)
0.827619 + 0.561290i \(0.189695\pi\)
\(678\) 0 0
\(679\) −19.4005 −0.744524
\(680\) 0 0
\(681\) −50.8852 −1.94993
\(682\) 0 0
\(683\) 45.3850 1.73661 0.868303 0.496033i \(-0.165211\pi\)
0.868303 + 0.496033i \(0.165211\pi\)
\(684\) 0 0
\(685\) 13.3869 0.511488
\(686\) 0 0
\(687\) 4.48059 0.170945
\(688\) 0 0
\(689\) −84.8440 −3.23230
\(690\) 0 0
\(691\) 0.508852 0.0193576 0.00967882 0.999953i \(-0.496919\pi\)
0.00967882 + 0.999953i \(0.496919\pi\)
\(692\) 0 0
\(693\) 0.822200 0.0312328
\(694\) 0 0
\(695\) −3.42166 −0.129791
\(696\) 0 0
\(697\) 7.85389 0.297487
\(698\) 0 0
\(699\) −5.72496 −0.216538
\(700\) 0 0
\(701\) 40.1844 1.51774 0.758872 0.651239i \(-0.225751\pi\)
0.758872 + 0.651239i \(0.225751\pi\)
\(702\) 0 0
\(703\) −9.10278 −0.343318
\(704\) 0 0
\(705\) 2.09775 0.0790059
\(706\) 0 0
\(707\) −30.5089 −1.14740
\(708\) 0 0
\(709\) −20.0978 −0.754787 −0.377393 0.926053i \(-0.623180\pi\)
−0.377393 + 0.926053i \(0.623180\pi\)
\(710\) 0 0
\(711\) 1.26447 0.0474214
\(712\) 0 0
\(713\) −3.85389 −0.144329
\(714\) 0 0
\(715\) −3.69670 −0.138249
\(716\) 0 0
\(717\) 4.98587 0.186201
\(718\) 0 0
\(719\) 35.5925 1.32738 0.663688 0.748010i \(-0.268990\pi\)
0.663688 + 0.748010i \(0.268990\pi\)
\(720\) 0 0
\(721\) −40.0766 −1.49253
\(722\) 0 0
\(723\) −16.1078 −0.599055
\(724\) 0 0
\(725\) −6.54359 −0.243023
\(726\) 0 0
\(727\) −20.1708 −0.748094 −0.374047 0.927410i \(-0.622030\pi\)
−0.374047 + 0.927410i \(0.622030\pi\)
\(728\) 0 0
\(729\) 23.9200 0.885924
\(730\) 0 0
\(731\) 4.14611 0.153349
\(732\) 0 0
\(733\) −30.1461 −1.11347 −0.556736 0.830689i \(-0.687947\pi\)
−0.556736 + 0.830689i \(0.687947\pi\)
\(734\) 0 0
\(735\) −31.1411 −1.14866
\(736\) 0 0
\(737\) 1.71782 0.0632768
\(738\) 0 0
\(739\) −26.0283 −0.957465 −0.478733 0.877961i \(-0.658904\pi\)
−0.478733 + 0.877961i \(0.658904\pi\)
\(740\) 0 0
\(741\) 11.5925 0.425860
\(742\) 0 0
\(743\) 0.221136 0.00811269 0.00405635 0.999992i \(-0.498709\pi\)
0.00405635 + 0.999992i \(0.498709\pi\)
\(744\) 0 0
\(745\) 3.36222 0.123182
\(746\) 0 0
\(747\) 0.107798 0.00394413
\(748\) 0 0
\(749\) −64.2474 −2.34755
\(750\) 0 0
\(751\) 41.9406 1.53043 0.765216 0.643773i \(-0.222632\pi\)
0.765216 + 0.643773i \(0.222632\pi\)
\(752\) 0 0
\(753\) 11.4499 0.417259
\(754\) 0 0
\(755\) 21.1950 0.771365
\(756\) 0 0
\(757\) 26.7456 0.972084 0.486042 0.873935i \(-0.338440\pi\)
0.486042 + 0.873935i \(0.338440\pi\)
\(758\) 0 0
\(759\) −2.84333 −0.103206
\(760\) 0 0
\(761\) −11.6519 −0.422381 −0.211191 0.977445i \(-0.567734\pi\)
−0.211191 + 0.977445i \(0.567734\pi\)
\(762\) 0 0
\(763\) −56.9930 −2.06329
\(764\) 0 0
\(765\) −0.205550 −0.00743168
\(766\) 0 0
\(767\) −72.7846 −2.62810
\(768\) 0 0
\(769\) −9.28917 −0.334976 −0.167488 0.985874i \(-0.553566\pi\)
−0.167488 + 0.985874i \(0.553566\pi\)
\(770\) 0 0
\(771\) −14.2156 −0.511962
\(772\) 0 0
\(773\) 10.3225 0.371273 0.185637 0.982618i \(-0.440565\pi\)
0.185637 + 0.982618i \(0.440565\pi\)
\(774\) 0 0
\(775\) 1.42166 0.0510676
\(776\) 0 0
\(777\) 81.1638 2.91174
\(778\) 0 0
\(779\) 11.0489 0.395867
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −32.1708 −1.14969
\(784\) 0 0
\(785\) 11.7944 0.420962
\(786\) 0 0
\(787\) −49.8902 −1.77839 −0.889197 0.457524i \(-0.848736\pi\)
−0.889197 + 0.457524i \(0.848736\pi\)
\(788\) 0 0
\(789\) −25.1567 −0.895601
\(790\) 0 0
\(791\) 73.4288 2.61083
\(792\) 0 0
\(793\) 57.8399 2.05396
\(794\) 0 0
\(795\) 24.0731 0.853783
\(796\) 0 0
\(797\) −28.7436 −1.01815 −0.509075 0.860722i \(-0.670013\pi\)
−0.509075 + 0.860722i \(0.670013\pi\)
\(798\) 0 0
\(799\) 0.822200 0.0290874
\(800\) 0 0
\(801\) −4.80501 −0.169777
\(802\) 0 0
\(803\) 5.42880 0.191578
\(804\) 0 0
\(805\) 13.3275 0.469732
\(806\) 0 0
\(807\) −25.3905 −0.893788
\(808\) 0 0
\(809\) 38.5124 1.35402 0.677012 0.735972i \(-0.263274\pi\)
0.677012 + 0.735972i \(0.263274\pi\)
\(810\) 0 0
\(811\) 28.1013 0.986771 0.493385 0.869811i \(-0.335759\pi\)
0.493385 + 0.869811i \(0.335759\pi\)
\(812\) 0 0
\(813\) 7.38692 0.259071
\(814\) 0 0
\(815\) 14.2439 0.498941
\(816\) 0 0
\(817\) 5.83276 0.204063
\(818\) 0 0
\(819\) −9.08719 −0.317532
\(820\) 0 0
\(821\) −22.2650 −0.777053 −0.388527 0.921437i \(-0.627016\pi\)
−0.388527 + 0.921437i \(0.627016\pi\)
\(822\) 0 0
\(823\) 39.8363 1.38861 0.694304 0.719682i \(-0.255712\pi\)
0.694304 + 0.719682i \(0.255712\pi\)
\(824\) 0 0
\(825\) 1.04888 0.0365172
\(826\) 0 0
\(827\) 48.5874 1.68955 0.844776 0.535121i \(-0.179734\pi\)
0.844776 + 0.535121i \(0.179734\pi\)
\(828\) 0 0
\(829\) 45.9058 1.59437 0.797187 0.603732i \(-0.206320\pi\)
0.797187 + 0.603732i \(0.206320\pi\)
\(830\) 0 0
\(831\) 29.2645 1.01517
\(832\) 0 0
\(833\) −12.2056 −0.422897
\(834\) 0 0
\(835\) −7.47556 −0.258702
\(836\) 0 0
\(837\) 6.98944 0.241590
\(838\) 0 0
\(839\) −27.9688 −0.965591 −0.482796 0.875733i \(-0.660379\pi\)
−0.482796 + 0.875733i \(0.660379\pi\)
\(840\) 0 0
\(841\) 13.8186 0.476504
\(842\) 0 0
\(843\) 20.7839 0.715835
\(844\) 0 0
\(845\) 27.8569 0.958308
\(846\) 0 0
\(847\) 52.4358 1.80172
\(848\) 0 0
\(849\) −39.4005 −1.35222
\(850\) 0 0
\(851\) −24.6761 −0.845885
\(852\) 0 0
\(853\) −7.56777 −0.259116 −0.129558 0.991572i \(-0.541356\pi\)
−0.129558 + 0.991572i \(0.541356\pi\)
\(854\) 0 0
\(855\) −0.289169 −0.00988936
\(856\) 0 0
\(857\) 21.4756 0.733591 0.366796 0.930302i \(-0.380455\pi\)
0.366796 + 0.930302i \(0.380455\pi\)
\(858\) 0 0
\(859\) 33.0177 1.12655 0.563275 0.826270i \(-0.309541\pi\)
0.563275 + 0.826270i \(0.309541\pi\)
\(860\) 0 0
\(861\) −98.5160 −3.35742
\(862\) 0 0
\(863\) 18.6605 0.635211 0.317605 0.948223i \(-0.397121\pi\)
0.317605 + 0.948223i \(0.397121\pi\)
\(864\) 0 0
\(865\) −4.05390 −0.137837
\(866\) 0 0
\(867\) 29.9149 1.01596
\(868\) 0 0
\(869\) −2.52894 −0.0857886
\(870\) 0 0
\(871\) −18.9859 −0.643312
\(872\) 0 0
\(873\) 1.14109 0.0386200
\(874\) 0 0
\(875\) −4.91638 −0.166204
\(876\) 0 0
\(877\) 57.7925 1.95151 0.975757 0.218858i \(-0.0702332\pi\)
0.975757 + 0.218858i \(0.0702332\pi\)
\(878\) 0 0
\(879\) −10.7209 −0.361606
\(880\) 0 0
\(881\) 36.2338 1.22075 0.610374 0.792113i \(-0.291019\pi\)
0.610374 + 0.792113i \(0.291019\pi\)
\(882\) 0 0
\(883\) 2.98944 0.100603 0.0503013 0.998734i \(-0.483982\pi\)
0.0503013 + 0.998734i \(0.483982\pi\)
\(884\) 0 0
\(885\) 20.6514 0.694189
\(886\) 0 0
\(887\) −42.2494 −1.41860 −0.709298 0.704909i \(-0.750988\pi\)
−0.709298 + 0.704909i \(0.750988\pi\)
\(888\) 0 0
\(889\) −58.4394 −1.95999
\(890\) 0 0
\(891\) 5.65838 0.189563
\(892\) 0 0
\(893\) 1.15667 0.0387066
\(894\) 0 0
\(895\) −2.95112 −0.0986452
\(896\) 0 0
\(897\) 31.4252 1.04926
\(898\) 0 0
\(899\) −9.30279 −0.310265
\(900\) 0 0
\(901\) 9.43528 0.314335
\(902\) 0 0
\(903\) −52.0071 −1.73069
\(904\) 0 0
\(905\) −9.66553 −0.321293
\(906\) 0 0
\(907\) −1.97080 −0.0654392 −0.0327196 0.999465i \(-0.510417\pi\)
−0.0327196 + 0.999465i \(0.510417\pi\)
\(908\) 0 0
\(909\) 1.79445 0.0595181
\(910\) 0 0
\(911\) 9.98995 0.330982 0.165491 0.986211i \(-0.447079\pi\)
0.165491 + 0.986211i \(0.447079\pi\)
\(912\) 0 0
\(913\) −0.215597 −0.00713520
\(914\) 0 0
\(915\) −16.4111 −0.542534
\(916\) 0 0
\(917\) −45.0177 −1.48662
\(918\) 0 0
\(919\) 4.24029 0.139874 0.0699372 0.997551i \(-0.477720\pi\)
0.0699372 + 0.997551i \(0.477720\pi\)
\(920\) 0 0
\(921\) −53.8993 −1.77604
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 9.10278 0.299297
\(926\) 0 0
\(927\) 2.35720 0.0774206
\(928\) 0 0
\(929\) −13.1531 −0.431539 −0.215770 0.976444i \(-0.569226\pi\)
−0.215770 + 0.976444i \(0.569226\pi\)
\(930\) 0 0
\(931\) −17.1708 −0.562750
\(932\) 0 0
\(933\) 0.739098 0.0241970
\(934\) 0 0
\(935\) 0.411100 0.0134444
\(936\) 0 0
\(937\) −38.5436 −1.25916 −0.629582 0.776934i \(-0.716774\pi\)
−0.629582 + 0.776934i \(0.716774\pi\)
\(938\) 0 0
\(939\) 0.613080 0.0200071
\(940\) 0 0
\(941\) 2.91638 0.0950713 0.0475357 0.998870i \(-0.484863\pi\)
0.0475357 + 0.998870i \(0.484863\pi\)
\(942\) 0 0
\(943\) 29.9516 0.975360
\(944\) 0 0
\(945\) −24.1708 −0.786276
\(946\) 0 0
\(947\) −58.4011 −1.89778 −0.948890 0.315608i \(-0.897792\pi\)
−0.948890 + 0.315608i \(0.897792\pi\)
\(948\) 0 0
\(949\) −60.0007 −1.94770
\(950\) 0 0
\(951\) −15.8776 −0.514865
\(952\) 0 0
\(953\) −36.8378 −1.19329 −0.596646 0.802504i \(-0.703501\pi\)
−0.596646 + 0.802504i \(0.703501\pi\)
\(954\) 0 0
\(955\) −15.9058 −0.514700
\(956\) 0 0
\(957\) −6.86342 −0.221863
\(958\) 0 0
\(959\) −65.8152 −2.12528
\(960\) 0 0
\(961\) −28.9789 −0.934802
\(962\) 0 0
\(963\) 3.77886 0.121772
\(964\) 0 0
\(965\) 15.6116 0.502556
\(966\) 0 0
\(967\) −43.0278 −1.38368 −0.691840 0.722051i \(-0.743199\pi\)
−0.691840 + 0.722051i \(0.743199\pi\)
\(968\) 0 0
\(969\) −1.28917 −0.0414141
\(970\) 0 0
\(971\) 49.0177 1.57305 0.786526 0.617557i \(-0.211877\pi\)
0.786526 + 0.617557i \(0.211877\pi\)
\(972\) 0 0
\(973\) 16.8222 0.539295
\(974\) 0 0
\(975\) −11.5925 −0.371256
\(976\) 0 0
\(977\) 20.2383 0.647481 0.323741 0.946146i \(-0.395059\pi\)
0.323741 + 0.946146i \(0.395059\pi\)
\(978\) 0 0
\(979\) 9.61003 0.307138
\(980\) 0 0
\(981\) 3.35218 0.107027
\(982\) 0 0
\(983\) 25.6811 0.819100 0.409550 0.912288i \(-0.365686\pi\)
0.409550 + 0.912288i \(0.365686\pi\)
\(984\) 0 0
\(985\) 13.6655 0.435420
\(986\) 0 0
\(987\) −10.3133 −0.328277
\(988\) 0 0
\(989\) 15.8116 0.502781
\(990\) 0 0
\(991\) 8.56829 0.272181 0.136090 0.990696i \(-0.456546\pi\)
0.136090 + 0.990696i \(0.456546\pi\)
\(992\) 0 0
\(993\) 43.2863 1.37365
\(994\) 0 0
\(995\) 8.91638 0.282668
\(996\) 0 0
\(997\) −29.9688 −0.949122 −0.474561 0.880223i \(-0.657393\pi\)
−0.474561 + 0.880223i \(0.657393\pi\)
\(998\) 0 0
\(999\) 44.7527 1.41591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.bx.1.1 3
4.3 odd 2 6080.2.a.br.1.3 3
8.3 odd 2 1520.2.a.q.1.1 3
8.5 even 2 760.2.a.i.1.3 3
24.5 odd 2 6840.2.a.bm.1.1 3
40.13 odd 4 3800.2.d.n.3649.5 6
40.19 odd 2 7600.2.a.bp.1.3 3
40.29 even 2 3800.2.a.w.1.1 3
40.37 odd 4 3800.2.d.n.3649.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.i.1.3 3 8.5 even 2
1520.2.a.q.1.1 3 8.3 odd 2
3800.2.a.w.1.1 3 40.29 even 2
3800.2.d.n.3649.2 6 40.37 odd 4
3800.2.d.n.3649.5 6 40.13 odd 4
6080.2.a.br.1.3 3 4.3 odd 2
6080.2.a.bx.1.1 3 1.1 even 1 trivial
6840.2.a.bm.1.1 3 24.5 odd 2
7600.2.a.bp.1.3 3 40.19 odd 2