Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6084,2,Mod(1,6084)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6084.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 6084.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 2028) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 0 | 0 | −3.04892 | 0 | −5.04892 | 0 | 0 | 0 | |||||||||||||||||||||||||||
1.2 | 0 | 0 | 0 | 1.35690 | 0 | −0.643104 | 0 | 0 | 0 | ||||||||||||||||||||||||||||
1.3 | 0 | 0 | 0 | 1.69202 | 0 | −0.307979 | 0 | 0 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6084.2.a.z | 3 | |
3.b | odd | 2 | 1 | 2028.2.a.k | ✓ | 3 | |
12.b | even | 2 | 1 | 8112.2.a.cd | 3 | ||
13.b | even | 2 | 1 | 6084.2.a.ba | 3 | ||
13.d | odd | 4 | 2 | 6084.2.b.q | 6 | ||
39.d | odd | 2 | 1 | 2028.2.a.l | yes | 3 | |
39.f | even | 4 | 2 | 2028.2.b.g | 6 | ||
39.h | odd | 6 | 2 | 2028.2.i.j | 6 | ||
39.i | odd | 6 | 2 | 2028.2.i.k | 6 | ||
39.k | even | 12 | 4 | 2028.2.q.i | 12 | ||
156.h | even | 2 | 1 | 8112.2.a.ca | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2028.2.a.k | ✓ | 3 | 3.b | odd | 2 | 1 | |
2028.2.a.l | yes | 3 | 39.d | odd | 2 | 1 | |
2028.2.b.g | 6 | 39.f | even | 4 | 2 | ||
2028.2.i.j | 6 | 39.h | odd | 6 | 2 | ||
2028.2.i.k | 6 | 39.i | odd | 6 | 2 | ||
2028.2.q.i | 12 | 39.k | even | 12 | 4 | ||
6084.2.a.z | 3 | 1.a | even | 1 | 1 | trivial | |
6084.2.a.ba | 3 | 13.b | even | 2 | 1 | ||
6084.2.b.q | 6 | 13.d | odd | 4 | 2 | ||
8112.2.a.ca | 3 | 156.h | even | 2 | 1 | ||
8112.2.a.cd | 3 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|