Properties

Label 612.2.b.c
Level $612$
Weight $2$
Character orbit 612.b
Analytic conductor $4.887$
Analytic rank $0$
Dimension $4$
CM discriminant -51
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(577,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.88684460370\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + (2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{3} + 1) q^{13} + (\beta_{2} - \beta_1) q^{17} + (\beta_{3} - 3) q^{19} + ( - 2 \beta_{2} - 3 \beta_1) q^{23} + (\beta_{3} - 2) q^{25} + (2 \beta_{2} - 2 \beta_1) q^{29}+ \cdots + (2 \beta_{2} + 9 \beta_1) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{13} - 10 q^{19} - 6 q^{25} - 22 q^{43} + 28 q^{49} + 10 q^{55} + 32 q^{67} - 34 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + \nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 7\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{2} + 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 14 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{2} + 14\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/612\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\) \(307\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
2.56155i
1.56155i
1.56155i
2.56155i
0 0 0 3.56155i 0 0 0 0 0
577.2 0 0 0 0.561553i 0 0 0 0 0
577.3 0 0 0 0.561553i 0 0 0 0 0
577.4 0 0 0 3.56155i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
51.c odd 2 1 CM by \(\Q(\sqrt{-51}) \)
3.b odd 2 1 inner
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.2.b.c 4
3.b odd 2 1 inner 612.2.b.c 4
4.b odd 2 1 2448.2.c.p 4
12.b even 2 1 2448.2.c.p 4
17.b even 2 1 inner 612.2.b.c 4
51.c odd 2 1 CM 612.2.b.c 4
68.d odd 2 1 2448.2.c.p 4
204.h even 2 1 2448.2.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
612.2.b.c 4 1.a even 1 1 trivial
612.2.b.c 4 3.b odd 2 1 inner
612.2.b.c 4 17.b even 2 1 inner
612.2.b.c 4 51.c odd 2 1 CM
2448.2.c.p 4 4.b odd 2 1
2448.2.c.p 4 12.b even 2 1
2448.2.c.p 4 68.d odd 2 1
2448.2.c.p 4 204.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 13T_{5}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(612, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 49T^{2} + 256 \) Copy content Toggle raw display
$13$ \( (T^{2} - T - 38)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 17)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 5 T - 32)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 121T^{2} + 2704 \) Copy content Toggle raw display
$29$ \( (T^{2} + 68)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 229 T^{2} + 11236 \) Copy content Toggle raw display
$43$ \( (T^{2} + 11 T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T - 8)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 272)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less