Properties

Label 612.2.i.d
Level $612$
Weight $2$
Character orbit 612.i
Analytic conductor $4.887$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(205,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.205");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.88684460370\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.1425109843323.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 5x^{8} + 12x^{7} + 9x^{6} - 54x^{5} + 27x^{4} + 108x^{3} - 135x^{2} - 81x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( - \beta_{7} + \beta_{2} + 1) q^{5} + ( - \beta_{9} + \beta_{8} + \cdots + \beta_1) q^{7} + (\beta_{9} + \beta_{7} - \beta_{3} + \cdots + 1) q^{9} + ( - \beta_{9} + \beta_{8} + \beta_{2}) q^{11}+ \cdots + ( - 2 \beta_{9} + 2 \beta_{8} + \cdots + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{3} + 4 q^{5} + 11 q^{9} - 4 q^{11} + 10 q^{13} - 7 q^{15} + 10 q^{17} + 10 q^{19} - 15 q^{21} - 3 q^{23} + 5 q^{25} + 20 q^{27} + 8 q^{29} + 8 q^{31} + 7 q^{33} - 12 q^{35} - 20 q^{37} - 13 q^{39}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - x^{9} - 5x^{8} + 12x^{7} + 9x^{6} - 54x^{5} + 27x^{4} + 108x^{3} - 135x^{2} - 81x + 243 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{9} + 4\nu^{8} - 7\nu^{7} + 9\nu^{6} + 18\nu^{5} - 54\nu^{4} + 27\nu^{3} + 135\nu^{2} - 270\nu + 81 ) / 162 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{9} - \nu^{8} - 5\nu^{7} + 12\nu^{6} + 9\nu^{5} - 54\nu^{4} + 27\nu^{3} + 108\nu^{2} - 135\nu - 81 ) / 81 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{9} + 4\nu^{8} - 7\nu^{7} - 9\nu^{6} + 36\nu^{5} - 18\nu^{4} - 81\nu^{3} + 135\nu^{2} - 81 ) / 54 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{9} + 9\nu^{7} - 19\nu^{6} + 72\nu^{4} - 81\nu^{3} - 81\nu^{2} + 270\nu - 189 ) / 54 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{9} - 2\nu^{8} - 10\nu^{7} + 33\nu^{6} - 18\nu^{5} - 72\nu^{4} + 162\nu^{3} + 27\nu^{2} - 351\nu + 405 ) / 81 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{9} + 8\nu^{8} - 5\nu^{7} - 27\nu^{6} + 54\nu^{5} + 18\nu^{4} - 135\nu^{3} + 135\nu^{2} + 27\nu - 81 ) / 81 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{9} + \nu^{8} + 5\nu^{7} - 15\nu^{6} + 3\nu^{5} + 42\nu^{4} - 63\nu^{3} - 18\nu^{2} + 135\nu - 135 ) / 27 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 2\nu^{9} - 11\nu^{8} + 8\nu^{7} + 42\nu^{6} - 90\nu^{5} - 45\nu^{4} + 297\nu^{3} - 216\nu^{2} - 270\nu + 405 ) / 81 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} + \beta_{6} + \beta_{3} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} + 2\beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} - \beta_{2} + 2\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{8} + 4\beta_{6} + 3\beta_{5} + \beta_{4} + \beta_{3} - \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{9} - 5\beta_{8} + 4\beta_{7} + 8\beta_{5} + \beta_{4} + 3\beta_{3} + \beta_{2} - 3\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -4\beta_{9} - 3\beta_{8} - 8\beta_{7} + 2\beta_{6} + 8\beta_{5} - \beta_{3} + 16\beta_{2} - 2\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 3 \beta_{9} - 4 \beta_{8} + 3 \beta_{7} - 10 \beta_{6} + 3 \beta_{5} - 16 \beta_{4} + 11 \beta_{3} + \cdots + 35 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 20 \beta_{9} + 5 \beta_{8} - 4 \beta_{7} - 9 \beta_{6} - 26 \beta_{5} - 37 \beta_{4} - 12 \beta_{3} + \cdots - 10 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 32 \beta_{9} + 12 \beta_{8} + 17 \beta_{7} - 2 \beta_{6} - 44 \beta_{5} - 72 \beta_{4} + 28 \beta_{3} + \cdots + 30 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/612\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\) \(307\)
\(\chi(n)\) \(1\) \(-1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
205.1
1.66673 + 0.471168i
1.24119 1.20808i
0.829999 + 1.52023i
−1.60328 + 0.655366i
−1.63464 0.572661i
1.66673 0.471168i
1.24119 + 1.20808i
0.829999 1.52023i
−1.60328 0.655366i
−1.63464 + 0.572661i
0 −1.66673 + 0.471168i 0 −0.0966301 0.167368i 0 0.0625819 0.108395i 0 2.55600 1.57062i 0
205.2 0 −1.24119 1.20808i 0 0.791229 + 1.37045i 0 2.00327 3.46976i 0 0.0810929 + 2.99890i 0
205.3 0 −0.829999 + 1.52023i 0 1.66189 + 2.87848i 0 −0.603137 + 1.04466i 0 −1.62220 2.52358i 0
205.4 0 1.60328 + 0.655366i 0 −1.05551 1.82820i 0 0.600832 1.04067i 0 2.14099 + 2.10147i 0
205.5 0 1.63464 0.572661i 0 0.699022 + 1.21074i 0 −2.06355 + 3.57417i 0 2.34412 1.87219i 0
409.1 0 −1.66673 0.471168i 0 −0.0966301 + 0.167368i 0 0.0625819 + 0.108395i 0 2.55600 + 1.57062i 0
409.2 0 −1.24119 + 1.20808i 0 0.791229 1.37045i 0 2.00327 + 3.46976i 0 0.0810929 2.99890i 0
409.3 0 −0.829999 1.52023i 0 1.66189 2.87848i 0 −0.603137 1.04466i 0 −1.62220 + 2.52358i 0
409.4 0 1.60328 0.655366i 0 −1.05551 + 1.82820i 0 0.600832 + 1.04067i 0 2.14099 2.10147i 0
409.5 0 1.63464 + 0.572661i 0 0.699022 1.21074i 0 −2.06355 3.57417i 0 2.34412 + 1.87219i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 205.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.2.i.d 10
3.b odd 2 1 1836.2.i.d 10
9.c even 3 1 inner 612.2.i.d 10
9.c even 3 1 5508.2.a.k 5
9.d odd 6 1 1836.2.i.d 10
9.d odd 6 1 5508.2.a.l 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
612.2.i.d 10 1.a even 1 1 trivial
612.2.i.d 10 9.c even 3 1 inner
1836.2.i.d 10 3.b odd 2 1
1836.2.i.d 10 9.d odd 6 1
5508.2.a.k 5 9.c even 3 1
5508.2.a.l 5 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{10} - 4T_{5}^{9} + 18T_{5}^{8} - 28T_{5}^{7} + 88T_{5}^{6} - 135T_{5}^{5} + 288T_{5}^{4} - 228T_{5}^{3} + 198T_{5}^{2} + 36T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(612, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( T^{10} + T^{9} + \cdots + 243 \) Copy content Toggle raw display
$5$ \( T^{10} - 4 T^{9} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{10} + 18 T^{8} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{10} + 4 T^{9} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( T^{10} - 10 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T - 1)^{10} \) Copy content Toggle raw display
$19$ \( (T^{5} - 5 T^{4} - 8 T^{3} + \cdots - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + 3 T^{9} + \cdots + 136161 \) Copy content Toggle raw display
$29$ \( T^{10} - 8 T^{9} + \cdots + 40401 \) Copy content Toggle raw display
$31$ \( T^{10} - 8 T^{9} + \cdots + 889249 \) Copy content Toggle raw display
$37$ \( (T^{5} + 10 T^{4} + \cdots - 146)^{2} \) Copy content Toggle raw display
$41$ \( T^{10} + 5 T^{9} + \cdots + 700569 \) Copy content Toggle raw display
$43$ \( T^{10} - 15 T^{9} + \cdots + 15116544 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 319801689 \) Copy content Toggle raw display
$53$ \( (T^{5} - 18 T^{4} + \cdots - 486)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} - 15 T^{9} + \cdots + 363609 \) Copy content Toggle raw display
$61$ \( T^{10} + 4 T^{9} + \cdots + 822649 \) Copy content Toggle raw display
$67$ \( T^{10} - 27 T^{9} + \cdots + 25431849 \) Copy content Toggle raw display
$71$ \( (T^{5} + 3 T^{4} + \cdots - 1296)^{2} \) Copy content Toggle raw display
$73$ \( (T^{5} + 16 T^{4} + \cdots - 14606)^{2} \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 28757037241 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 286387929 \) Copy content Toggle raw display
$89$ \( (T^{5} + 12 T^{4} + \cdots + 15426)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 869247289 \) Copy content Toggle raw display
show more
show less