Properties

Label 612.2.k.d
Level $612$
Weight $2$
Character orbit 612.k
Analytic conductor $4.887$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(217,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.88684460370\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{34})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 289 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + ( - 3 \beta_{2} + 3) q^{7} - \beta_{3} q^{11} - 5 q^{13} - \beta_{3} q^{17} + \beta_{2} q^{19} + \beta_{3} q^{23} + 12 \beta_{2} q^{25} + ( - 4 \beta_{2} - 4) q^{31} + ( - 3 \beta_{3} + 3 \beta_1) q^{35}+ \cdots + (6 \beta_{2} + 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} - 20 q^{13} - 16 q^{31} - 12 q^{37} + 68 q^{55} + 12 q^{61} - 24 q^{67} - 16 q^{73} + 20 q^{79} + 68 q^{85} - 60 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 289 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 17\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 17\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/612\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\) \(307\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
217.1
−2.91548 2.91548i
2.91548 + 2.91548i
−2.91548 + 2.91548i
2.91548 2.91548i
0 0 0 −2.91548 2.91548i 0 3.00000 3.00000i 0 0 0
217.2 0 0 0 2.91548 + 2.91548i 0 3.00000 3.00000i 0 0 0
361.1 0 0 0 −2.91548 + 2.91548i 0 3.00000 + 3.00000i 0 0 0
361.2 0 0 0 2.91548 2.91548i 0 3.00000 + 3.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
17.c even 4 1 inner
51.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.2.k.d 4
3.b odd 2 1 inner 612.2.k.d 4
4.b odd 2 1 2448.2.be.q 4
12.b even 2 1 2448.2.be.q 4
17.c even 4 1 inner 612.2.k.d 4
51.f odd 4 1 inner 612.2.k.d 4
68.f odd 4 1 2448.2.be.q 4
204.l even 4 1 2448.2.be.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
612.2.k.d 4 1.a even 1 1 trivial
612.2.k.d 4 3.b odd 2 1 inner
612.2.k.d 4 17.c even 4 1 inner
612.2.k.d 4 51.f odd 4 1 inner
2448.2.be.q 4 4.b odd 2 1
2448.2.be.q 4 12.b even 2 1
2448.2.be.q 4 68.f odd 4 1
2448.2.be.q 4 204.l even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(612, [\chi])\):

\( T_{5}^{4} + 289 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 289 \) Copy content Toggle raw display
$7$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 289 \) Copy content Toggle raw display
$13$ \( (T + 5)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 289 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 289 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T + 32)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 289 \) Copy content Toggle raw display
$43$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 136)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 136)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 34)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$67$ \( (T + 6)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 4624 \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T + 32)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 136)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 306)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 12 T + 72)^{2} \) Copy content Toggle raw display
show more
show less