Properties

Label 6120.2.h.l.1801.4
Level $6120$
Weight $2$
Character 6120.1801
Analytic conductor $48.868$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6120,2,Mod(1801,6120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6120.1801");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6120 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6120.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.8684460370\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 2040)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.4
Root \(0.264658 - 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 6120.1801
Dual form 6120.2.h.l.1801.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} -4.77846i q^{7} -4.77846i q^{11} -6.49828 q^{13} +(-3.71982 + 1.77846i) q^{17} +1.83709 q^{19} +4.49828i q^{23} -1.00000 q^{25} -6.77846i q^{29} +0.941367i q^{31} +4.77846 q^{35} -6.77846i q^{37} +4.89572i q^{41} -11.1138 q^{43} +7.60256 q^{47} -15.8337 q^{49} -0.280176 q^{53} +4.77846 q^{55} +6.38101 q^{59} +12.4983i q^{61} -6.49828i q^{65} -10.0552 q^{67} +12.9966i q^{71} -6.45264i q^{73} -22.8337 q^{77} -5.11383i q^{79} +13.4396 q^{83} +(-1.77846 - 3.71982i) q^{85} +0.941367 q^{89} +31.0518i q^{91} +1.83709i q^{95} +17.1138i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{13} - 4 q^{17} - 4 q^{19} - 6 q^{25} + 12 q^{35} + 24 q^{47} - 10 q^{49} - 20 q^{53} + 12 q^{55} + 8 q^{67} - 52 q^{77} + 44 q^{83} + 6 q^{85} + 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6120\mathbb{Z}\right)^\times\).

\(n\) \(1361\) \(3061\) \(4321\) \(4591\) \(4897\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.77846i 1.80609i −0.429549 0.903044i \(-0.641327\pi\)
0.429549 0.903044i \(-0.358673\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.77846i 1.44076i −0.693580 0.720380i \(-0.743968\pi\)
0.693580 0.720380i \(-0.256032\pi\)
\(12\) 0 0
\(13\) −6.49828 −1.80230 −0.901149 0.433509i \(-0.857275\pi\)
−0.901149 + 0.433509i \(0.857275\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.71982 + 1.77846i −0.902190 + 0.431339i
\(18\) 0 0
\(19\) 1.83709 0.421457 0.210729 0.977545i \(-0.432416\pi\)
0.210729 + 0.977545i \(0.432416\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.49828i 0.937956i 0.883210 + 0.468978i \(0.155378\pi\)
−0.883210 + 0.468978i \(0.844622\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.77846i 1.25873i −0.777111 0.629364i \(-0.783315\pi\)
0.777111 0.629364i \(-0.216685\pi\)
\(30\) 0 0
\(31\) 0.941367i 0.169074i 0.996420 + 0.0845372i \(0.0269412\pi\)
−0.996420 + 0.0845372i \(0.973059\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.77846 0.807707
\(36\) 0 0
\(37\) 6.77846i 1.11437i −0.830388 0.557186i \(-0.811881\pi\)
0.830388 0.557186i \(-0.188119\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.89572i 0.764584i 0.924042 + 0.382292i \(0.124865\pi\)
−0.924042 + 0.382292i \(0.875135\pi\)
\(42\) 0 0
\(43\) −11.1138 −1.69484 −0.847421 0.530921i \(-0.821846\pi\)
−0.847421 + 0.530921i \(0.821846\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.60256 1.10895 0.554474 0.832201i \(-0.312920\pi\)
0.554474 + 0.832201i \(0.312920\pi\)
\(48\) 0 0
\(49\) −15.8337 −2.26195
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.280176 −0.0384851 −0.0192426 0.999815i \(-0.506125\pi\)
−0.0192426 + 0.999815i \(0.506125\pi\)
\(54\) 0 0
\(55\) 4.77846 0.644327
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.38101 0.830737 0.415369 0.909653i \(-0.363653\pi\)
0.415369 + 0.909653i \(0.363653\pi\)
\(60\) 0 0
\(61\) 12.4983i 1.60024i 0.599839 + 0.800120i \(0.295231\pi\)
−0.599839 + 0.800120i \(0.704769\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.49828i 0.806013i
\(66\) 0 0
\(67\) −10.0552 −1.22844 −0.614219 0.789136i \(-0.710529\pi\)
−0.614219 + 0.789136i \(0.710529\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9966i 1.54241i 0.636588 + 0.771204i \(0.280345\pi\)
−0.636588 + 0.771204i \(0.719655\pi\)
\(72\) 0 0
\(73\) 6.45264i 0.755224i −0.925964 0.377612i \(-0.876745\pi\)
0.925964 0.377612i \(-0.123255\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −22.8337 −2.60214
\(78\) 0 0
\(79\) 5.11383i 0.575351i −0.957728 0.287675i \(-0.907118\pi\)
0.957728 0.287675i \(-0.0928824\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.4396 1.47519 0.737597 0.675242i \(-0.235961\pi\)
0.737597 + 0.675242i \(0.235961\pi\)
\(84\) 0 0
\(85\) −1.77846 3.71982i −0.192901 0.403472i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.941367 0.0997847 0.0498923 0.998755i \(-0.484112\pi\)
0.0498923 + 0.998755i \(0.484112\pi\)
\(90\) 0 0
\(91\) 31.0518i 3.25511i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.83709i 0.188481i
\(96\) 0 0
\(97\) 17.1138i 1.73765i 0.495123 + 0.868823i \(0.335123\pi\)
−0.495123 + 0.868823i \(0.664877\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.55691 0.751941 0.375971 0.926632i \(-0.377309\pi\)
0.375971 + 0.926632i \(0.377309\pi\)
\(102\) 0 0
\(103\) −0.325819 −0.0321039 −0.0160520 0.999871i \(-0.505110\pi\)
−0.0160520 + 0.999871i \(0.505110\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.44309i 0.236182i −0.993003 0.118091i \(-0.962323\pi\)
0.993003 0.118091i \(-0.0376775\pi\)
\(108\) 0 0
\(109\) 11.1138i 1.06451i 0.846584 + 0.532256i \(0.178656\pi\)
−0.846584 + 0.532256i \(0.821344\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.17246i 0.580656i −0.956927 0.290328i \(-0.906236\pi\)
0.956927 0.290328i \(-0.0937645\pi\)
\(114\) 0 0
\(115\) −4.49828 −0.419467
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.49828 + 17.7750i 0.779036 + 1.62943i
\(120\) 0 0
\(121\) −11.8337 −1.07579
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 8.49828 0.754101 0.377050 0.926193i \(-0.376938\pi\)
0.377050 + 0.926193i \(0.376938\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1138i 0.971020i 0.874231 + 0.485510i \(0.161366\pi\)
−0.874231 + 0.485510i \(0.838634\pi\)
\(132\) 0 0
\(133\) 8.77846i 0.761189i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.27674 −0.109079 −0.0545396 0.998512i \(-0.517369\pi\)
−0.0545396 + 0.998512i \(0.517369\pi\)
\(138\) 0 0
\(139\) 17.1138i 1.45158i −0.687918 0.725788i \(-0.741475\pi\)
0.687918 0.725788i \(-0.258525\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 31.0518i 2.59668i
\(144\) 0 0
\(145\) 6.77846 0.562920
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.17590 0.0963334 0.0481667 0.998839i \(-0.484662\pi\)
0.0481667 + 0.998839i \(0.484662\pi\)
\(150\) 0 0
\(151\) −5.27674 −0.429415 −0.214707 0.976678i \(-0.568880\pi\)
−0.214707 + 0.976678i \(0.568880\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.941367 −0.0756124
\(156\) 0 0
\(157\) −1.00344 −0.0800831 −0.0400415 0.999198i \(-0.512749\pi\)
−0.0400415 + 0.999198i \(0.512749\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21.4948 1.69403
\(162\) 0 0
\(163\) 2.33537i 0.182920i −0.995809 0.0914602i \(-0.970847\pi\)
0.995809 0.0914602i \(-0.0291534\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.7620i 1.60661i 0.595565 + 0.803307i \(0.296928\pi\)
−0.595565 + 0.803307i \(0.703072\pi\)
\(168\) 0 0
\(169\) 29.2277 2.24828
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.61555i 0.655028i 0.944846 + 0.327514i \(0.106211\pi\)
−0.944846 + 0.327514i \(0.893789\pi\)
\(174\) 0 0
\(175\) 4.77846i 0.361217i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.9966 1.27038 0.635191 0.772355i \(-0.280921\pi\)
0.635191 + 0.772355i \(0.280921\pi\)
\(180\) 0 0
\(181\) 7.17590i 0.533380i −0.963782 0.266690i \(-0.914070\pi\)
0.963782 0.266690i \(-0.0859301\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.77846 0.498362
\(186\) 0 0
\(187\) 8.49828 + 17.7750i 0.621456 + 1.29984i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.6155 −0.768114 −0.384057 0.923309i \(-0.625473\pi\)
−0.384057 + 0.923309i \(0.625473\pi\)
\(192\) 0 0
\(193\) 5.11383i 0.368101i −0.982917 0.184051i \(-0.941079\pi\)
0.982917 0.184051i \(-0.0589211\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.7620i 1.05175i 0.850562 + 0.525876i \(0.176262\pi\)
−0.850562 + 0.525876i \(0.823738\pi\)
\(198\) 0 0
\(199\) 7.55691i 0.535695i 0.963461 + 0.267848i \(0.0863124\pi\)
−0.963461 + 0.267848i \(0.913688\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −32.3906 −2.27337
\(204\) 0 0
\(205\) −4.89572 −0.341932
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.77846i 0.607219i
\(210\) 0 0
\(211\) 13.3484i 0.918939i −0.888194 0.459470i \(-0.848040\pi\)
0.888194 0.459470i \(-0.151960\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.1138i 0.757957i
\(216\) 0 0
\(217\) 4.49828 0.305363
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 24.1725 11.5569i 1.62602 0.777402i
\(222\) 0 0
\(223\) −10.5535 −0.706713 −0.353357 0.935489i \(-0.614960\pi\)
−0.353357 + 0.935489i \(0.614960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0552i 1.19837i −0.800612 0.599183i \(-0.795492\pi\)
0.800612 0.599183i \(-0.204508\pi\)
\(228\) 0 0
\(229\) 27.2767 1.80250 0.901249 0.433302i \(-0.142652\pi\)
0.901249 + 0.433302i \(0.142652\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.6155i 1.35057i −0.737557 0.675285i \(-0.764021\pi\)
0.737557 0.675285i \(-0.235979\pi\)
\(234\) 0 0
\(235\) 7.60256i 0.495936i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.4036 −1.64322 −0.821610 0.570050i \(-0.806924\pi\)
−0.821610 + 0.570050i \(0.806924\pi\)
\(240\) 0 0
\(241\) 15.0518i 0.969569i 0.874634 + 0.484784i \(0.161102\pi\)
−0.874634 + 0.484784i \(0.838898\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.8337i 1.01157i
\(246\) 0 0
\(247\) −11.9379 −0.759592
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.9379 1.25847 0.629235 0.777215i \(-0.283368\pi\)
0.629235 + 0.777215i \(0.283368\pi\)
\(252\) 0 0
\(253\) 21.4948 1.35137
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.6707 −1.53892 −0.769459 0.638696i \(-0.779474\pi\)
−0.769459 + 0.638696i \(0.779474\pi\)
\(258\) 0 0
\(259\) −32.3906 −2.01265
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.0388 −1.48229 −0.741147 0.671343i \(-0.765718\pi\)
−0.741147 + 0.671343i \(0.765718\pi\)
\(264\) 0 0
\(265\) 0.280176i 0.0172111i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.8957i 1.27403i 0.770849 + 0.637017i \(0.219832\pi\)
−0.770849 + 0.637017i \(0.780168\pi\)
\(270\) 0 0
\(271\) −31.2242 −1.89674 −0.948368 0.317172i \(-0.897267\pi\)
−0.948368 + 0.317172i \(0.897267\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.77846i 0.288152i
\(276\) 0 0
\(277\) 7.88273i 0.473628i −0.971555 0.236814i \(-0.923897\pi\)
0.971555 0.236814i \(-0.0761031\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 26.4458i 1.57204i 0.618203 + 0.786019i \(0.287861\pi\)
−0.618203 + 0.786019i \(0.712139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.3940 1.38090
\(288\) 0 0
\(289\) 10.6742 13.2311i 0.627893 0.778300i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.4819 −0.962880 −0.481440 0.876479i \(-0.659886\pi\)
−0.481440 + 0.876479i \(0.659886\pi\)
\(294\) 0 0
\(295\) 6.38101i 0.371517i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.2311i 1.69048i
\(300\) 0 0
\(301\) 53.1070i 3.06103i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.4983 −0.715649
\(306\) 0 0
\(307\) 3.76547 0.214907 0.107453 0.994210i \(-0.465730\pi\)
0.107453 + 0.994210i \(0.465730\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.9836i 0.679526i −0.940511 0.339763i \(-0.889653\pi\)
0.940511 0.339763i \(-0.110347\pi\)
\(312\) 0 0
\(313\) 12.5699i 0.710493i 0.934773 + 0.355246i \(0.115603\pi\)
−0.934773 + 0.355246i \(0.884397\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.50172i 0.533670i 0.963742 + 0.266835i \(0.0859778\pi\)
−0.963742 + 0.266835i \(0.914022\pi\)
\(318\) 0 0
\(319\) −32.3906 −1.81352
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.83365 + 3.26719i −0.380235 + 0.181791i
\(324\) 0 0
\(325\) 6.49828 0.360460
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 36.3285i 2.00285i
\(330\) 0 0
\(331\) 21.6026 1.18738 0.593692 0.804692i \(-0.297670\pi\)
0.593692 + 0.804692i \(0.297670\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.0552i 0.549374i
\(336\) 0 0
\(337\) 4.33537i 0.236163i −0.993004 0.118081i \(-0.962326\pi\)
0.993004 0.118081i \(-0.0376744\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.49828 0.243596
\(342\) 0 0
\(343\) 42.2112i 2.27919i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.1725i 1.51238i 0.654354 + 0.756188i \(0.272941\pi\)
−0.654354 + 0.756188i \(0.727059\pi\)
\(348\) 0 0
\(349\) −19.1855 −1.02697 −0.513487 0.858097i \(-0.671646\pi\)
−0.513487 + 0.858097i \(0.671646\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.1595 −0.593959 −0.296979 0.954884i \(-0.595979\pi\)
−0.296979 + 0.954884i \(0.595979\pi\)
\(354\) 0 0
\(355\) −12.9966 −0.689786
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0518 −0.794401 −0.397201 0.917732i \(-0.630018\pi\)
−0.397201 + 0.917732i \(0.630018\pi\)
\(360\) 0 0
\(361\) −15.6251 −0.822374
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.45264 0.337746
\(366\) 0 0
\(367\) 11.7655i 0.614152i 0.951685 + 0.307076i \(0.0993506\pi\)
−0.951685 + 0.307076i \(0.900649\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.33881i 0.0695075i
\(372\) 0 0
\(373\) −1.11383 −0.0576719 −0.0288359 0.999584i \(-0.509180\pi\)
−0.0288359 + 0.999584i \(0.509180\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 44.0483i 2.26860i
\(378\) 0 0
\(379\) 31.9931i 1.64338i −0.569937 0.821688i \(-0.693033\pi\)
0.569937 0.821688i \(-0.306967\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.3906 −0.530933 −0.265467 0.964120i \(-0.585526\pi\)
−0.265467 + 0.964120i \(0.585526\pi\)
\(384\) 0 0
\(385\) 22.8337i 1.16371i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.99656 −0.151932 −0.0759659 0.997110i \(-0.524204\pi\)
−0.0759659 + 0.997110i \(0.524204\pi\)
\(390\) 0 0
\(391\) −8.00000 16.7328i −0.404577 0.846215i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.11383 0.257305
\(396\) 0 0
\(397\) 19.8663i 0.997061i −0.866872 0.498531i \(-0.833873\pi\)
0.866872 0.498531i \(-0.166127\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.6837i 0.982959i 0.870889 + 0.491479i \(0.163544\pi\)
−0.870889 + 0.491479i \(0.836456\pi\)
\(402\) 0 0
\(403\) 6.11727i 0.304723i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −32.3906 −1.60554
\(408\) 0 0
\(409\) −17.9544 −0.887786 −0.443893 0.896080i \(-0.646403\pi\)
−0.443893 + 0.896080i \(0.646403\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 30.4914i 1.50038i
\(414\) 0 0
\(415\) 13.4396i 0.659726i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.45608i 0.168840i −0.996430 0.0844202i \(-0.973096\pi\)
0.996430 0.0844202i \(-0.0269038\pi\)
\(420\) 0 0
\(421\) 28.0388 1.36653 0.683263 0.730172i \(-0.260560\pi\)
0.683263 + 0.730172i \(0.260560\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.71982 1.77846i 0.180438 0.0862678i
\(426\) 0 0
\(427\) 59.7225 2.89017
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.68717i 0.418446i −0.977868 0.209223i \(-0.932907\pi\)
0.977868 0.209223i \(-0.0670935\pi\)
\(432\) 0 0
\(433\) 2.23453 0.107385 0.0536924 0.998558i \(-0.482901\pi\)
0.0536924 + 0.998558i \(0.482901\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.26375i 0.395309i
\(438\) 0 0
\(439\) 8.05520i 0.384453i 0.981351 + 0.192227i \(0.0615709\pi\)
−0.981351 + 0.192227i \(0.938429\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.09129 −0.289406 −0.144703 0.989475i \(-0.546223\pi\)
−0.144703 + 0.989475i \(0.546223\pi\)
\(444\) 0 0
\(445\) 0.941367i 0.0446251i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.8793i 0.607812i −0.952702 0.303906i \(-0.901709\pi\)
0.952702 0.303906i \(-0.0982908\pi\)
\(450\) 0 0
\(451\) 23.3940 1.10158
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −31.0518 −1.45573
\(456\) 0 0
\(457\) −29.7034 −1.38947 −0.694733 0.719268i \(-0.744478\pi\)
−0.694733 + 0.719268i \(0.744478\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.05176 0.421582 0.210791 0.977531i \(-0.432396\pi\)
0.210791 + 0.977531i \(0.432396\pi\)
\(462\) 0 0
\(463\) −0.996562 −0.0463142 −0.0231571 0.999732i \(-0.507372\pi\)
−0.0231571 + 0.999732i \(0.507372\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.71982 0.0795840 0.0397920 0.999208i \(-0.487330\pi\)
0.0397920 + 0.999208i \(0.487330\pi\)
\(468\) 0 0
\(469\) 48.0483i 2.21867i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 53.1070i 2.44186i
\(474\) 0 0
\(475\) −1.83709 −0.0842915
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.7620i 0.583112i 0.956554 + 0.291556i \(0.0941730\pi\)
−0.956554 + 0.291556i \(0.905827\pi\)
\(480\) 0 0
\(481\) 44.0483i 2.00843i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.1138 −0.777099
\(486\) 0 0
\(487\) 13.2311i 0.599558i 0.954009 + 0.299779i \(0.0969130\pi\)
−0.954009 + 0.299779i \(0.903087\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −14.8793 −0.671493 −0.335747 0.941952i \(-0.608989\pi\)
−0.335747 + 0.941952i \(0.608989\pi\)
\(492\) 0 0
\(493\) 12.0552 + 25.2147i 0.542939 + 1.13561i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 62.1035 2.78572
\(498\) 0 0
\(499\) 1.73625i 0.0777253i 0.999245 + 0.0388626i \(0.0123735\pi\)
−0.999245 + 0.0388626i \(0.987627\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.9706i 0.667505i 0.942661 + 0.333753i \(0.108315\pi\)
−0.942661 + 0.333753i \(0.891685\pi\)
\(504\) 0 0
\(505\) 7.55691i 0.336278i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.3845 −0.504607 −0.252303 0.967648i \(-0.581188\pi\)
−0.252303 + 0.967648i \(0.581188\pi\)
\(510\) 0 0
\(511\) −30.8337 −1.36400
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.325819i 0.0143573i
\(516\) 0 0
\(517\) 36.3285i 1.59773i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.5405i 1.55706i −0.627609 0.778528i \(-0.715966\pi\)
0.627609 0.778528i \(-0.284034\pi\)
\(522\) 0 0
\(523\) −30.1173 −1.31694 −0.658468 0.752609i \(-0.728795\pi\)
−0.658468 + 0.752609i \(0.728795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.67418 3.50172i −0.0729285 0.152537i
\(528\) 0 0
\(529\) 2.76547 0.120238
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 31.8138i 1.37801i
\(534\) 0 0
\(535\) 2.44309 0.105624
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 75.6604i 3.25893i
\(540\) 0 0
\(541\) 6.27062i 0.269595i −0.990873 0.134798i \(-0.956962\pi\)
0.990873 0.134798i \(-0.0430384\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.1138 −0.476064
\(546\) 0 0
\(547\) 1.99045i 0.0851054i −0.999094 0.0425527i \(-0.986451\pi\)
0.999094 0.0425527i \(-0.0135490\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.4526i 0.530500i
\(552\) 0 0
\(553\) −24.4362 −1.03913
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.32926 0.310551 0.155275 0.987871i \(-0.450374\pi\)
0.155275 + 0.987871i \(0.450374\pi\)
\(558\) 0 0
\(559\) 72.2208 3.05461
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.8302 −1.25719 −0.628597 0.777731i \(-0.716370\pi\)
−0.628597 + 0.777731i \(0.716370\pi\)
\(564\) 0 0
\(565\) 6.17246 0.259677
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.9018 1.00202 0.501009 0.865442i \(-0.332963\pi\)
0.501009 + 0.865442i \(0.332963\pi\)
\(570\) 0 0
\(571\) 35.7294i 1.49523i 0.664134 + 0.747614i \(0.268801\pi\)
−0.664134 + 0.747614i \(0.731199\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.49828i 0.187591i
\(576\) 0 0
\(577\) −45.4588 −1.89247 −0.946236 0.323476i \(-0.895148\pi\)
−0.946236 + 0.323476i \(0.895148\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 64.2208i 2.66433i
\(582\) 0 0
\(583\) 1.33881i 0.0554478i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.0682 1.19977 0.599886 0.800085i \(-0.295213\pi\)
0.599886 + 0.800085i \(0.295213\pi\)
\(588\) 0 0
\(589\) 1.72938i 0.0712577i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.280176 0.0115055 0.00575273 0.999983i \(-0.498169\pi\)
0.00575273 + 0.999983i \(0.498169\pi\)
\(594\) 0 0
\(595\) −17.7750 + 8.49828i −0.728705 + 0.348396i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.5604 0.840073 0.420037 0.907507i \(-0.362017\pi\)
0.420037 + 0.907507i \(0.362017\pi\)
\(600\) 0 0
\(601\) 32.8432i 1.33970i −0.742495 0.669851i \(-0.766358\pi\)
0.742495 0.669851i \(-0.233642\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.8337i 0.481106i
\(606\) 0 0
\(607\) 43.5665i 1.76831i −0.467195 0.884154i \(-0.654735\pi\)
0.467195 0.884154i \(-0.345265\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −49.4036 −1.99865
\(612\) 0 0
\(613\) −40.3189 −1.62847 −0.814233 0.580538i \(-0.802842\pi\)
−0.814233 + 0.580538i \(0.802842\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.2932i 0.776714i −0.921509 0.388357i \(-0.873043\pi\)
0.921509 0.388357i \(-0.126957\pi\)
\(618\) 0 0
\(619\) 7.99312i 0.321271i 0.987014 + 0.160635i \(0.0513543\pi\)
−0.987014 + 0.160635i \(0.948646\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.49828i 0.180220i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0552 + 25.2147i 0.480672 + 1.00537i
\(630\) 0 0
\(631\) −21.7458 −0.865687 −0.432843 0.901469i \(-0.642490\pi\)
−0.432843 + 0.901469i \(0.642490\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.49828i 0.337244i
\(636\) 0 0
\(637\) 102.892 4.07671
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.3614i 0.567239i 0.958937 + 0.283620i \(0.0915353\pi\)
−0.958937 + 0.283620i \(0.908465\pi\)
\(642\) 0 0
\(643\) 34.4458i 1.35841i −0.733949 0.679204i \(-0.762325\pi\)
0.733949 0.679204i \(-0.237675\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.3224 0.602385 0.301192 0.953563i \(-0.402615\pi\)
0.301192 + 0.953563i \(0.402615\pi\)
\(648\) 0 0
\(649\) 30.4914i 1.19689i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.7846i 0.695964i −0.937501 0.347982i \(-0.886867\pi\)
0.937501 0.347982i \(-0.113133\pi\)
\(654\) 0 0
\(655\) −11.1138 −0.434253
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.6604 −1.54495 −0.772475 0.635045i \(-0.780982\pi\)
−0.772475 + 0.635045i \(0.780982\pi\)
\(660\) 0 0
\(661\) 26.1560 1.01735 0.508676 0.860958i \(-0.330135\pi\)
0.508676 + 0.860958i \(0.330135\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.77846 0.340414
\(666\) 0 0
\(667\) 30.4914 1.18063
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 59.7225 2.30556
\(672\) 0 0
\(673\) 6.00000i 0.231283i 0.993291 + 0.115642i \(0.0368924\pi\)
−0.993291 + 0.115642i \(0.963108\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.67074i 0.102645i 0.998682 + 0.0513225i \(0.0163436\pi\)
−0.998682 + 0.0513225i \(0.983656\pi\)
\(678\) 0 0
\(679\) 81.7777 3.13834
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.00344i 0.114923i 0.998348 + 0.0574617i \(0.0183007\pi\)
−0.998348 + 0.0574617i \(0.981699\pi\)
\(684\) 0 0
\(685\) 1.27674i 0.0487817i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.82066 0.0693617
\(690\) 0 0
\(691\) 7.23109i 0.275084i −0.990496 0.137542i \(-0.956080\pi\)
0.990496 0.137542i \(-0.0439202\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.1138 0.649165
\(696\) 0 0
\(697\) −8.70683 18.2112i −0.329795 0.689799i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.41043 −0.0532713 −0.0266356 0.999645i \(-0.508479\pi\)
−0.0266356 + 0.999645i \(0.508479\pi\)
\(702\) 0 0
\(703\) 12.4526i 0.469660i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.1104i 1.35807i
\(708\) 0 0
\(709\) 6.20855i 0.233167i 0.993181 + 0.116584i \(0.0371943\pi\)
−0.993181 + 0.116584i \(0.962806\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.23453 −0.158584
\(714\) 0 0
\(715\) −31.0518 −1.16127
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.9767i 1.26712i 0.773695 + 0.633558i \(0.218406\pi\)
−0.773695 + 0.633558i \(0.781594\pi\)
\(720\) 0 0
\(721\) 1.55691i 0.0579825i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.77846i 0.251746i
\(726\) 0 0
\(727\) −33.1398 −1.22909 −0.614544 0.788883i \(-0.710660\pi\)
−0.614544 + 0.788883i \(0.710660\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 41.3415 19.7655i 1.52907 0.731052i
\(732\) 0 0
\(733\) 15.7103 0.580272 0.290136 0.956985i \(-0.406299\pi\)
0.290136 + 0.956985i \(0.406299\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 48.0483i 1.76988i
\(738\) 0 0
\(739\) 25.2311 0.928141 0.464070 0.885798i \(-0.346388\pi\)
0.464070 + 0.885798i \(0.346388\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.0912868i 0.00334899i 0.999999 + 0.00167449i \(0.000533008\pi\)
−0.999999 + 0.00167449i \(0.999467\pi\)
\(744\) 0 0
\(745\) 1.17590i 0.0430816i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6742 −0.426565
\(750\) 0 0
\(751\) 17.6121i 0.642675i 0.946965 + 0.321338i \(0.104132\pi\)
−0.946965 + 0.321338i \(0.895868\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.27674i 0.192040i
\(756\) 0 0
\(757\) 0.117266 0.00426212 0.00213106 0.999998i \(-0.499322\pi\)
0.00213106 + 0.999998i \(0.499322\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.0846 −0.474317 −0.237158 0.971471i \(-0.576216\pi\)
−0.237158 + 0.971471i \(0.576216\pi\)
\(762\) 0 0
\(763\) 53.1070 1.92260
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.4656 −1.49724
\(768\) 0 0
\(769\) −16.6904 −0.601871 −0.300936 0.953644i \(-0.597299\pi\)
−0.300936 + 0.953644i \(0.597299\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.371463 −0.0133606 −0.00668029 0.999978i \(-0.502126\pi\)
−0.00668029 + 0.999978i \(0.502126\pi\)
\(774\) 0 0
\(775\) 0.941367i 0.0338149i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.99389i 0.322239i
\(780\) 0 0
\(781\) 62.1035 2.22224
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.00344i 0.0358142i
\(786\) 0 0
\(787\) 7.13026i 0.254166i 0.991892 + 0.127083i \(0.0405615\pi\)
−0.991892 + 0.127083i \(0.959439\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −29.4948 −1.04872
\(792\) 0 0
\(793\) 81.2173i 2.88411i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.28361 0.116312 0.0581558 0.998308i \(-0.481478\pi\)
0.0581558 + 0.998308i \(0.481478\pi\)
\(798\) 0 0
\(799\) −28.2802 + 13.5208i −1.00048 + 0.478332i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.8337 −1.08810
\(804\) 0 0
\(805\) 21.4948i 0.757594i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.9966i 0.527251i −0.964625 0.263626i \(-0.915082\pi\)
0.964625 0.263626i \(-0.0849183\pi\)
\(810\) 0 0
\(811\) 18.8241i 0.661004i −0.943805 0.330502i \(-0.892782\pi\)
0.943805 0.330502i \(-0.107218\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.33537 0.0818045
\(816\) 0 0
\(817\) −20.4171 −0.714304
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.34836i 0.186659i 0.995635 + 0.0933295i \(0.0297510\pi\)
−0.995635 + 0.0933295i \(0.970249\pi\)
\(822\) 0 0
\(823\) 34.8957i 1.21639i 0.793788 + 0.608194i \(0.208106\pi\)
−0.793788 + 0.608194i \(0.791894\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.9639i 0.624666i 0.949973 + 0.312333i \(0.101111\pi\)
−0.949973 + 0.312333i \(0.898889\pi\)
\(828\) 0 0
\(829\) −54.5922 −1.89607 −0.948034 0.318171i \(-0.896932\pi\)
−0.948034 + 0.318171i \(0.896932\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 58.8984 28.1595i 2.04071 0.975668i
\(834\) 0 0
\(835\) −20.7620 −0.718500
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.2406i 1.07855i 0.842131 + 0.539273i \(0.181301\pi\)
−0.842131 + 0.539273i \(0.818699\pi\)
\(840\) 0 0
\(841\) −16.9475 −0.584396
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 29.2277i 1.00546i
\(846\) 0 0
\(847\) 56.5466i 1.94296i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.4914 1.04523
\(852\) 0 0
\(853\) 16.2277i 0.555624i −0.960635 0.277812i \(-0.910391\pi\)
0.960635 0.277812i \(-0.0896093\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.3189i 1.10399i −0.833846 0.551997i \(-0.813866\pi\)
0.833846 0.551997i \(-0.186134\pi\)
\(858\) 0 0
\(859\) 25.1526 0.858196 0.429098 0.903258i \(-0.358832\pi\)
0.429098 + 0.903258i \(0.358832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.3974 0.966660 0.483330 0.875438i \(-0.339427\pi\)
0.483330 + 0.875438i \(0.339427\pi\)
\(864\) 0 0
\(865\) −8.61555 −0.292937
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −24.4362 −0.828942
\(870\) 0 0
\(871\) 65.3415 2.21401
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.77846 −0.161541
\(876\) 0 0
\(877\) 33.4423i 1.12927i −0.825342 0.564634i \(-0.809018\pi\)
0.825342 0.564634i \(-0.190982\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.8888i 1.31020i −0.755543 0.655099i \(-0.772627\pi\)
0.755543 0.655099i \(-0.227373\pi\)
\(882\) 0 0
\(883\) −31.2863 −1.05287 −0.526434 0.850216i \(-0.676471\pi\)
−0.526434 + 0.850216i \(0.676471\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.6639i 0.760978i 0.924785 + 0.380489i \(0.124244\pi\)
−0.924785 + 0.380489i \(0.875756\pi\)
\(888\) 0 0
\(889\) 40.6087i 1.36197i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.9666 0.467374
\(894\) 0 0
\(895\) 16.9966i 0.568132i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.38101 0.212819
\(900\) 0 0
\(901\) 1.04221 0.498281i 0.0347209 0.0166001i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.17590 0.238535
\(906\) 0 0
\(907\) 18.8629i 0.626331i 0.949699 + 0.313166i \(0.101389\pi\)
−0.949699 + 0.313166i \(0.898611\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 50.9148i 1.68688i 0.537221 + 0.843442i \(0.319474\pi\)
−0.537221 + 0.843442i \(0.680526\pi\)
\(912\) 0 0
\(913\) 64.2208i 2.12540i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 53.1070 1.75375
\(918\) 0 0
\(919\) −5.18545 −0.171052 −0.0855261 0.996336i \(-0.527257\pi\)
−0.0855261 + 0.996336i \(0.527257\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 84.4553i 2.77988i
\(924\) 0 0
\(925\) 6.77846i 0.222874i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50.2372i 1.64823i 0.566423 + 0.824115i \(0.308327\pi\)
−0.566423 + 0.824115i \(0.691673\pi\)
\(930\) 0 0
\(931\) −29.0878 −0.953316
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.7750 + 8.49828i −0.581305 + 0.277924i
\(936\) 0 0
\(937\) 53.1950 1.73781 0.868903 0.494983i \(-0.164826\pi\)
0.868903 + 0.494983i \(0.164826\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31.3415i 1.02170i 0.859669 + 0.510852i \(0.170670\pi\)
−0.859669 + 0.510852i \(0.829330\pi\)
\(942\) 0 0
\(943\) −22.0223 −0.717146
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.7949i 0.545760i 0.962048 + 0.272880i \(0.0879763\pi\)
−0.962048 + 0.272880i \(0.912024\pi\)
\(948\) 0 0
\(949\) 41.9311i 1.36114i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −39.3803 −1.27565 −0.637826 0.770181i \(-0.720166\pi\)
−0.637826 + 0.770181i \(0.720166\pi\)
\(954\) 0 0
\(955\) 10.6155i 0.343511i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.10084i 0.197006i
\(960\) 0 0
\(961\) 30.1138 0.971414
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.11383 0.164620
\(966\) 0 0
\(967\) −2.28973 −0.0736327 −0.0368163 0.999322i \(-0.511722\pi\)
−0.0368163 + 0.999322i \(0.511722\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50.8172 1.63080 0.815401 0.578896i \(-0.196516\pi\)
0.815401 + 0.578896i \(0.196516\pi\)
\(972\) 0 0
\(973\) −81.7777 −2.62167
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.2571 −1.00000 −0.500001 0.866025i \(-0.666667\pi\)
−0.500001 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 4.49828i 0.143766i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.72250i 0.118729i −0.998236 0.0593647i \(-0.981093\pi\)
0.998236 0.0593647i \(-0.0189075\pi\)
\(984\) 0 0
\(985\) −14.7620 −0.470357
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 49.9931i 1.58969i
\(990\) 0 0
\(991\) 16.1465i 0.512910i 0.966556 + 0.256455i \(0.0825545\pi\)
−0.966556 + 0.256455i \(0.917445\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.55691 −0.239570
\(996\) 0 0
\(997\) 61.5336i 1.94879i −0.224845 0.974395i \(-0.572188\pi\)
0.224845 0.974395i \(-0.427812\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6120.2.h.l.1801.4 6
3.2 odd 2 2040.2.h.i.1801.4 yes 6
12.11 even 2 4080.2.h.r.3841.3 6
17.16 even 2 inner 6120.2.h.l.1801.3 6
51.50 odd 2 2040.2.h.i.1801.3 6
204.203 even 2 4080.2.h.r.3841.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.h.i.1801.3 6 51.50 odd 2
2040.2.h.i.1801.4 yes 6 3.2 odd 2
4080.2.h.r.3841.3 6 12.11 even 2
4080.2.h.r.3841.4 6 204.203 even 2
6120.2.h.l.1801.3 6 17.16 even 2 inner
6120.2.h.l.1801.4 6 1.1 even 1 trivial