Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [616,2,Mod(27,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 5, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.27");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 616.bp (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.91878476451\) |
Analytic rank: | \(0\) |
Dimension: | \(352\) |
Relative dimension: | \(88\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27.1 | −1.41358 | − | 0.0421964i | −0.639605 | + | 0.880341i | 1.99644 | + | 0.119296i | −1.27214 | + | 3.91523i | 0.941283 | − | 1.21745i | −0.0153490 | − | 2.64571i | −2.81710 | − | 0.252878i | 0.561146 | + | 1.72703i | 1.96348 | − | 5.48083i |
27.2 | −1.41358 | − | 0.0421964i | 0.639605 | − | 0.880341i | 1.99644 | + | 0.119296i | 1.27214 | − | 3.91523i | −0.941283 | + | 1.21745i | −2.51147 | − | 0.832166i | −2.81710 | − | 0.252878i | 0.561146 | + | 1.72703i | −1.96348 | + | 5.48083i |
27.3 | −1.40439 | + | 0.166420i | −0.157507 | + | 0.216789i | 1.94461 | − | 0.467435i | 1.02719 | − | 3.16137i | 0.185122 | − | 0.330669i | 2.39093 | − | 1.13291i | −2.65319 | + | 0.980081i | 0.904862 | + | 2.78488i | −0.916460 | + | 4.61073i |
27.4 | −1.40439 | + | 0.166420i | 0.157507 | − | 0.216789i | 1.94461 | − | 0.467435i | −1.02719 | + | 3.16137i | −0.185122 | + | 0.330669i | −1.81629 | + | 1.92382i | −2.65319 | + | 0.980081i | 0.904862 | + | 2.78488i | 0.916460 | − | 4.61073i |
27.5 | −1.37858 | − | 0.315464i | −0.891388 | + | 1.22689i | 1.80096 | + | 0.869785i | −0.0834388 | + | 0.256798i | 1.61589 | − | 1.41016i | 1.62621 | − | 2.08697i | −2.20839 | − | 1.76721i | 0.216364 | + | 0.665900i | 0.196038 | − | 0.327695i |
27.6 | −1.37858 | − | 0.315464i | 0.891388 | − | 1.22689i | 1.80096 | + | 0.869785i | 0.0834388 | − | 0.256798i | −1.61589 | + | 1.41016i | −2.48735 | + | 0.901708i | −2.20839 | − | 1.76721i | 0.216364 | + | 0.665900i | −0.196038 | + | 0.327695i |
27.7 | −1.37736 | − | 0.320751i | −0.817396 | + | 1.12505i | 1.79424 | + | 0.883580i | 0.552411 | − | 1.70015i | 1.48671 | − | 1.28742i | 1.84190 | + | 1.89932i | −2.18790 | − | 1.79251i | 0.329451 | + | 1.01395i | −1.30619 | + | 2.16452i |
27.8 | −1.37736 | − | 0.320751i | 0.817396 | − | 1.12505i | 1.79424 | + | 0.883580i | −0.552411 | + | 1.70015i | −1.48671 | + | 1.28742i | 1.23718 | + | 2.33867i | −2.18790 | − | 1.79251i | 0.329451 | + | 1.01395i | 1.30619 | − | 2.16452i |
27.9 | −1.36072 | + | 0.385294i | −1.25998 | + | 1.73421i | 1.70310 | − | 1.04855i | 0.0436016 | − | 0.134192i | 1.04629 | − | 2.84523i | −2.64209 | − | 0.139117i | −1.91343 | + | 2.08298i | −0.492894 | − | 1.51697i | −0.00762601 | + | 0.199397i |
27.10 | −1.36072 | + | 0.385294i | 1.25998 | − | 1.73421i | 1.70310 | − | 1.04855i | −0.0436016 | + | 0.134192i | −1.04629 | + | 2.84523i | 0.684143 | − | 2.55577i | −1.91343 | + | 2.08298i | −0.492894 | − | 1.51697i | 0.00762601 | − | 0.199397i |
27.11 | −1.35633 | + | 0.400474i | −1.82748 | + | 2.51531i | 1.67924 | − | 1.08635i | −0.705747 | + | 2.17207i | 1.47134 | − | 4.14344i | 1.70685 | + | 2.02155i | −1.84254 | + | 2.14593i | −2.06006 | − | 6.34020i | 0.0873670 | − | 3.22866i |
27.12 | −1.35633 | + | 0.400474i | 1.82748 | − | 2.51531i | 1.67924 | − | 1.08635i | 0.705747 | − | 2.17207i | −1.47134 | + | 4.14344i | 1.39516 | + | 2.24800i | −1.84254 | + | 2.14593i | −2.06006 | − | 6.34020i | −0.0873670 | + | 3.22866i |
27.13 | −1.30368 | − | 0.548105i | −1.45558 | + | 2.00343i | 1.39916 | + | 1.42911i | 0.401910 | − | 1.23695i | 2.99570 | − | 1.81402i | −1.21393 | + | 2.35083i | −1.04076 | − | 2.62999i | −0.967981 | − | 2.97914i | −1.20194 | + | 1.39230i |
27.14 | −1.30368 | − | 0.548105i | 1.45558 | − | 2.00343i | 1.39916 | + | 1.42911i | −0.401910 | + | 1.23695i | −2.99570 | + | 1.81402i | 2.61089 | − | 0.428069i | −1.04076 | − | 2.62999i | −0.967981 | − | 2.97914i | 1.20194 | − | 1.39230i |
27.15 | −1.19374 | + | 0.758283i | −0.793216 | + | 1.09177i | 0.850015 | − | 1.81038i | −0.358256 | + | 1.10260i | 0.119022 | − | 1.90477i | 2.45449 | + | 0.987654i | 0.358085 | + | 2.80567i | 0.364285 | + | 1.12115i | −0.408418 | − | 1.58787i |
27.16 | −1.19374 | + | 0.758283i | 0.793216 | − | 1.09177i | 0.850015 | − | 1.81038i | 0.358256 | − | 1.10260i | −0.119022 | + | 1.90477i | 0.180835 | + | 2.63956i | 0.358085 | + | 2.80567i | 0.364285 | + | 1.12115i | 0.408418 | + | 1.58787i |
27.17 | −1.05400 | − | 0.942910i | −1.34043 | + | 1.84494i | 0.221842 | + | 1.98766i | 1.27821 | − | 3.93392i | 3.15243 | − | 0.680670i | −1.37149 | − | 2.26252i | 1.64036 | − | 2.30417i | −0.680011 | − | 2.09286i | −5.05656 | + | 2.94112i |
27.18 | −1.05400 | − | 0.942910i | 1.34043 | − | 1.84494i | 0.221842 | + | 1.98766i | −1.27821 | + | 3.93392i | −3.15243 | + | 0.680670i | −1.72797 | − | 2.00352i | 1.64036 | − | 2.30417i | −0.680011 | − | 2.09286i | 5.05656 | − | 2.94112i |
27.19 | −1.04343 | + | 0.954597i | −1.29235 | + | 1.77877i | 0.177487 | − | 1.99211i | 1.23186 | − | 3.79128i | −0.349532 | − | 3.08970i | −1.69416 | + | 2.03220i | 1.71647 | + | 2.24805i | −0.566803 | − | 1.74444i | 2.33379 | + | 5.13186i |
27.20 | −1.04343 | + | 0.954597i | 1.29235 | − | 1.77877i | 0.177487 | − | 1.99211i | −1.23186 | + | 3.79128i | 0.349532 | + | 3.08970i | 2.45626 | − | 0.983259i | 1.71647 | + | 2.24805i | −0.566803 | − | 1.74444i | −2.33379 | − | 5.13186i |
See next 80 embeddings (of 352 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
56.e | even | 2 | 1 | inner |
77.j | odd | 10 | 1 | inner |
88.l | odd | 10 | 1 | inner |
616.bp | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 616.2.bp.c | ✓ | 352 |
7.b | odd | 2 | 1 | inner | 616.2.bp.c | ✓ | 352 |
8.d | odd | 2 | 1 | inner | 616.2.bp.c | ✓ | 352 |
11.c | even | 5 | 1 | inner | 616.2.bp.c | ✓ | 352 |
56.e | even | 2 | 1 | inner | 616.2.bp.c | ✓ | 352 |
77.j | odd | 10 | 1 | inner | 616.2.bp.c | ✓ | 352 |
88.l | odd | 10 | 1 | inner | 616.2.bp.c | ✓ | 352 |
616.bp | even | 10 | 1 | inner | 616.2.bp.c | ✓ | 352 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
616.2.bp.c | ✓ | 352 | 1.a | even | 1 | 1 | trivial |
616.2.bp.c | ✓ | 352 | 7.b | odd | 2 | 1 | inner |
616.2.bp.c | ✓ | 352 | 8.d | odd | 2 | 1 | inner |
616.2.bp.c | ✓ | 352 | 11.c | even | 5 | 1 | inner |
616.2.bp.c | ✓ | 352 | 56.e | even | 2 | 1 | inner |
616.2.bp.c | ✓ | 352 | 77.j | odd | 10 | 1 | inner |
616.2.bp.c | ✓ | 352 | 88.l | odd | 10 | 1 | inner |
616.2.bp.c | ✓ | 352 | 616.bp | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(616, [\chi])\):
\( T_{3}^{176} - 87 T_{3}^{174} + 4107 T_{3}^{172} - 139603 T_{3}^{170} + 3825410 T_{3}^{168} + \cdots + 71\!\cdots\!36 \)
|
\( T_{29}^{176} - 495 T_{29}^{174} + 141387 T_{29}^{172} - 30356430 T_{29}^{170} + 5443913335 T_{29}^{168} + \cdots + 75\!\cdots\!00 \)
|