Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [616,2,Mod(41,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.41");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 616.bs (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.91878476451\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | 0 | −3.27750 | + | 1.06492i | 0 | −0.994198 | + | 1.36840i | 0 | 1.65506 | − | 2.06417i | 0 | 7.18090 | − | 5.21723i | 0 | ||||||||||
41.2 | 0 | −2.71747 | + | 0.882959i | 0 | 0.894789 | − | 1.23157i | 0 | −2.11752 | + | 1.58622i | 0 | 4.17797 | − | 3.03547i | 0 | ||||||||||
41.3 | 0 | −2.67340 | + | 0.868639i | 0 | −1.17661 | + | 1.61946i | 0 | −2.63412 | − | 0.247838i | 0 | 3.96546 | − | 2.88107i | 0 | ||||||||||
41.4 | 0 | −2.31908 | + | 0.753515i | 0 | 2.02191 | − | 2.78292i | 0 | 1.25317 | − | 2.33015i | 0 | 2.38330 | − | 1.73157i | 0 | ||||||||||
41.5 | 0 | −1.82637 | + | 0.593422i | 0 | −0.261077 | + | 0.359341i | 0 | 2.60311 | − | 0.473070i | 0 | 0.556410 | − | 0.404255i | 0 | ||||||||||
41.6 | 0 | −1.74058 | + | 0.565549i | 0 | −2.00195 | + | 2.75545i | 0 | 0.810582 | + | 2.51852i | 0 | 0.282723 | − | 0.205410i | 0 | ||||||||||
41.7 | 0 | −1.52261 | + | 0.494727i | 0 | −1.49894 | + | 2.06311i | 0 | 1.29160 | + | 2.30906i | 0 | −0.353456 | + | 0.256801i | 0 | ||||||||||
41.8 | 0 | −1.19972 | + | 0.389811i | 0 | 1.72755 | − | 2.37777i | 0 | 1.75602 | + | 1.97899i | 0 | −1.13969 | + | 0.828031i | 0 | ||||||||||
41.9 | 0 | −1.13683 | + | 0.369378i | 0 | 0.421636 | − | 0.580332i | 0 | 0.160066 | − | 2.64090i | 0 | −1.27111 | + | 0.923516i | 0 | ||||||||||
41.10 | 0 | −0.811253 | + | 0.263592i | 0 | 1.07118 | − | 1.47435i | 0 | −2.00771 | − | 1.72311i | 0 | −1.83840 | + | 1.33568i | 0 | ||||||||||
41.11 | 0 | −0.796503 | + | 0.258800i | 0 | 1.93911 | − | 2.66896i | 0 | −2.30970 | + | 1.29046i | 0 | −1.85961 | + | 1.35109i | 0 | ||||||||||
41.12 | 0 | −0.238236 | + | 0.0774075i | 0 | −0.542378 | + | 0.746520i | 0 | −0.962116 | − | 2.46462i | 0 | −2.37629 | + | 1.72647i | 0 | ||||||||||
41.13 | 0 | 0.238236 | − | 0.0774075i | 0 | 0.542378 | − | 0.746520i | 0 | −2.22703 | + | 1.42840i | 0 | −2.37629 | + | 1.72647i | 0 | ||||||||||
41.14 | 0 | 0.796503 | − | 0.258800i | 0 | −1.93911 | + | 2.66896i | 0 | −1.11007 | − | 2.40161i | 0 | −1.85961 | + | 1.35109i | 0 | ||||||||||
41.15 | 0 | 0.811253 | − | 0.263592i | 0 | −1.07118 | + | 1.47435i | 0 | −2.63709 | + | 0.213920i | 0 | −1.83840 | + | 1.33568i | 0 | ||||||||||
41.16 | 0 | 1.13683 | − | 0.369378i | 0 | −0.421636 | + | 0.580332i | 0 | −1.42279 | + | 2.23062i | 0 | −1.27111 | + | 0.923516i | 0 | ||||||||||
41.17 | 0 | 1.19972 | − | 0.389811i | 0 | −1.72755 | + | 2.37777i | 0 | 2.58387 | − | 0.568876i | 0 | −1.13969 | + | 0.828031i | 0 | ||||||||||
41.18 | 0 | 1.52261 | − | 0.494727i | 0 | 1.49894 | − | 2.06311i | 0 | 2.40216 | − | 1.10889i | 0 | −0.353456 | + | 0.256801i | 0 | ||||||||||
41.19 | 0 | 1.74058 | − | 0.565549i | 0 | 2.00195 | − | 2.75545i | 0 | 2.13612 | − | 1.56108i | 0 | 0.282723 | − | 0.205410i | 0 | ||||||||||
41.20 | 0 | 1.82637 | − | 0.593422i | 0 | 0.261077 | − | 0.359341i | 0 | 1.82790 | + | 1.91279i | 0 | 0.556410 | − | 0.404255i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
77.l | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 616.2.bs.a | ✓ | 96 |
7.b | odd | 2 | 1 | inner | 616.2.bs.a | ✓ | 96 |
11.d | odd | 10 | 1 | inner | 616.2.bs.a | ✓ | 96 |
77.l | even | 10 | 1 | inner | 616.2.bs.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
616.2.bs.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
616.2.bs.a | ✓ | 96 | 7.b | odd | 2 | 1 | inner |
616.2.bs.a | ✓ | 96 | 11.d | odd | 10 | 1 | inner |
616.2.bs.a | ✓ | 96 | 77.l | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(616, [\chi])\).