Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [616,2,Mod(9,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([0, 0, 10, 18]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 616.bw (of order \(15\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.91878476451\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −2.58064 | − | 1.14897i | 0 | 0.790449 | + | 0.168015i | 0 | −2.48787 | + | 0.900269i | 0 | 3.33215 | + | 3.70073i | 0 | ||||||||||
9.2 | 0 | −2.48929 | − | 1.10830i | 0 | 4.09501 | + | 0.870421i | 0 | 2.53615 | − | 0.753612i | 0 | 2.96084 | + | 3.28835i | 0 | ||||||||||
9.3 | 0 | −2.16291 | − | 0.962991i | 0 | −3.79797 | − | 0.807283i | 0 | −1.08776 | − | 2.41180i | 0 | 1.74345 | + | 1.93630i | 0 | ||||||||||
9.4 | 0 | −1.63732 | − | 0.728981i | 0 | −1.76997 | − | 0.376220i | 0 | 2.36549 | + | 1.18510i | 0 | 0.142008 | + | 0.157716i | 0 | ||||||||||
9.5 | 0 | −1.46878 | − | 0.653941i | 0 | 0.236112 | + | 0.0501871i | 0 | −1.54893 | + | 2.14495i | 0 | −0.277730 | − | 0.308450i | 0 | ||||||||||
9.6 | 0 | −0.258235 | − | 0.114974i | 0 | 0.279761 | + | 0.0594650i | 0 | 2.23433 | − | 1.41697i | 0 | −1.95393 | − | 2.17005i | 0 | ||||||||||
9.7 | 0 | 0.171513 | + | 0.0763627i | 0 | 3.90687 | + | 0.830432i | 0 | −2.12786 | − | 1.57232i | 0 | −1.98381 | − | 2.20324i | 0 | ||||||||||
9.8 | 0 | 1.09424 | + | 0.487186i | 0 | 2.77006 | + | 0.588795i | 0 | 1.03405 | + | 2.43531i | 0 | −1.04739 | − | 1.16324i | 0 | ||||||||||
9.9 | 0 | 1.13046 | + | 0.503313i | 0 | −1.64736 | − | 0.350157i | 0 | −1.84936 | + | 1.89205i | 0 | −0.982776 | − | 1.09148i | 0 | ||||||||||
9.10 | 0 | 1.65728 | + | 0.737868i | 0 | −2.98976 | − | 0.635493i | 0 | −1.95619 | − | 1.78138i | 0 | 0.194734 | + | 0.216274i | 0 | ||||||||||
9.11 | 0 | 2.03125 | + | 0.904372i | 0 | −0.801161 | − | 0.170292i | 0 | 2.64018 | + | 0.171552i | 0 | 1.30071 | + | 1.44458i | 0 | ||||||||||
9.12 | 0 | 2.68534 | + | 1.19559i | 0 | 2.46693 | + | 0.524361i | 0 | −0.432037 | − | 2.61024i | 0 | 3.77421 | + | 4.19168i | 0 | ||||||||||
25.1 | 0 | −2.92414 | − | 0.621545i | 0 | 0.424764 | − | 4.04136i | 0 | 2.33990 | + | 1.23485i | 0 | 5.42364 | + | 2.41476i | 0 | ||||||||||
25.2 | 0 | −2.51342 | − | 0.534245i | 0 | −0.226421 | + | 2.15425i | 0 | 2.52533 | − | 0.789122i | 0 | 3.29125 | + | 1.46536i | 0 | ||||||||||
25.3 | 0 | −2.25684 | − | 0.479705i | 0 | −0.100588 | + | 0.957030i | 0 | −2.09175 | − | 1.62005i | 0 | 2.12255 | + | 0.945022i | 0 | ||||||||||
25.4 | 0 | −1.33634 | − | 0.284048i | 0 | −0.00194692 | + | 0.0185237i | 0 | −0.886493 | + | 2.49282i | 0 | −1.03551 | − | 0.461039i | 0 | ||||||||||
25.5 | 0 | −0.227792 | − | 0.0484186i | 0 | 0.298475 | − | 2.83980i | 0 | 1.34842 | − | 2.27635i | 0 | −2.69109 | − | 1.19815i | 0 | ||||||||||
25.6 | 0 | −0.0275529 | − | 0.00585654i | 0 | 0.0415095 | − | 0.394937i | 0 | 0.188898 | + | 2.63900i | 0 | −2.73991 | − | 1.21989i | 0 | ||||||||||
25.7 | 0 | 0.337058 | + | 0.0716438i | 0 | −0.393273 | + | 3.74174i | 0 | −2.63607 | − | 0.226126i | 0 | −2.63216 | − | 1.17191i | 0 | ||||||||||
25.8 | 0 | 1.04060 | + | 0.221187i | 0 | −0.00568803 | + | 0.0541180i | 0 | 2.19956 | − | 1.47036i | 0 | −1.70670 | − | 0.759873i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
11.c | even | 5 | 1 | inner |
77.m | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 616.2.bw.a | ✓ | 96 |
7.c | even | 3 | 1 | inner | 616.2.bw.a | ✓ | 96 |
11.c | even | 5 | 1 | inner | 616.2.bw.a | ✓ | 96 |
77.m | even | 15 | 1 | inner | 616.2.bw.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
616.2.bw.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
616.2.bw.a | ✓ | 96 | 7.c | even | 3 | 1 | inner |
616.2.bw.a | ✓ | 96 | 11.c | even | 5 | 1 | inner |
616.2.bw.a | ✓ | 96 | 77.m | even | 15 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{96} + 2 T_{3}^{95} - 25 T_{3}^{94} - 66 T_{3}^{93} + 230 T_{3}^{92} + 756 T_{3}^{91} + \cdots + 96059601 \) acting on \(S_{2}^{\mathrm{new}}(616, [\chi])\).