Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [616,2,Mod(51,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([15, 15, 10, 21]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 616.cf (of order \(30\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.91878476451\) |
Analytic rank: | \(0\) |
Dimension: | \(736\) |
Relative dimension: | \(92\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41169 | − | 0.0844492i | −2.99930 | + | 0.637521i | 1.98574 | + | 0.238432i | 0.695182 | − | 0.0730666i | 4.28792 | − | 0.646693i | −1.86517 | + | 1.87647i | −2.78311 | − | 0.504286i | 5.84872 | − | 2.60402i | −0.987552 | + | 0.0444397i |
51.2 | −1.40999 | − | 0.109229i | 1.97246 | − | 0.419258i | 1.97614 | + | 0.308025i | −1.48697 | + | 0.156287i | −2.82694 | + | 0.375699i | −2.02544 | + | 1.70223i | −2.75269 | − | 0.650164i | 0.974165 | − | 0.433726i | 2.11368 | − | 0.0579419i |
51.3 | −1.40799 | + | 0.132557i | 1.67650 | − | 0.356351i | 1.96486 | − | 0.373278i | −3.32660 | + | 0.349640i | −2.31326 | + | 0.723971i | −0.234433 | − | 2.63534i | −2.71701 | + | 0.786027i | −0.0569647 | + | 0.0253623i | 4.63746 | − | 0.933254i |
51.4 | −1.40659 | − | 0.146647i | 0.680000 | − | 0.144539i | 1.95699 | + | 0.412543i | 1.47432 | − | 0.154957i | −0.977678 | + | 0.103587i | 2.64484 | − | 0.0693628i | −2.69218 | − | 0.867265i | −2.29913 | + | 1.02364i | −2.09649 | + | 0.00175716i |
51.5 | −1.38602 | − | 0.280983i | 2.48521 | − | 0.528248i | 1.84210 | + | 0.778894i | 4.09963 | − | 0.430888i | −3.59298 | + | 0.0338608i | −1.05533 | + | 2.42617i | −2.33433 | − | 1.59716i | 3.15660 | − | 1.40541i | −5.80323 | − | 0.554704i |
51.6 | −1.37688 | + | 0.322818i | −0.588994 | + | 0.125195i | 1.79158 | − | 0.888960i | 3.61881 | − | 0.380353i | 0.770558 | − | 0.362515i | −1.79507 | − | 1.94364i | −2.17981 | + | 1.80234i | −2.40940 | + | 1.07273i | −4.85987 | + | 1.69192i |
51.7 | −1.37415 | − | 0.334228i | −2.36635 | + | 0.502983i | 1.77658 | + | 0.918559i | −2.99460 | + | 0.314746i | 3.41983 | + | 0.0997248i | 2.26166 | − | 1.37292i | −2.13429 | − | 1.85602i | 2.60598 | − | 1.16026i | 4.22024 | + | 0.568372i |
51.8 | −1.36302 | − | 0.377057i | −0.0163400 | + | 0.00347317i | 1.71566 | + | 1.02787i | 0.739653 | − | 0.0777407i | 0.0235813 | + | 0.00142710i | 1.14899 | − | 2.38324i | −1.95091 | − | 2.04791i | −2.74038 | + | 1.22010i | −1.03748 | − | 0.172929i |
51.9 | −1.35707 | − | 0.397932i | −1.83873 | + | 0.390834i | 1.68330 | + | 1.08005i | −0.578730 | + | 0.0608270i | 2.65082 | + | 0.201298i | −2.11729 | − | 1.58654i | −1.85458 | − | 2.13554i | 0.487535 | − | 0.217065i | 0.809584 | + | 0.147748i |
51.10 | −1.34805 | + | 0.427497i | −0.900599 | + | 0.191428i | 1.63449 | − | 1.15258i | −1.83379 | + | 0.192739i | 1.13222 | − | 0.643058i | −1.09808 | + | 2.40712i | −1.71066 | + | 2.25247i | −1.96620 | + | 0.875410i | 2.38965 | − | 1.04376i |
51.11 | −1.34434 | + | 0.439028i | −0.915055 | + | 0.194501i | 1.61451 | − | 1.18041i | 0.860030 | − | 0.0903928i | 1.14476 | − | 0.663211i | 1.99733 | + | 1.73513i | −1.65222 | + | 2.29569i | −1.94114 | + | 0.864252i | −1.11649 | + | 0.499096i |
51.12 | −1.32992 | + | 0.480938i | 1.19186 | − | 0.253337i | 1.53740 | − | 1.27922i | 1.40132 | − | 0.147284i | −1.46324 | + | 0.910130i | −2.47696 | − | 0.929875i | −1.42939 | + | 2.44066i | −1.38429 | + | 0.616326i | −1.79281 | + | 0.869824i |
51.13 | −1.29648 | + | 0.564935i | −3.09335 | + | 0.657512i | 1.36170 | − | 1.46485i | 2.66505 | − | 0.280108i | 3.63900 | − | 2.59999i | 2.55037 | − | 0.703989i | −0.937862 | + | 2.66841i | 6.39587 | − | 2.84762i | −3.29693 | + | 1.86873i |
51.14 | −1.29182 | − | 0.575508i | −0.233347 | + | 0.0495995i | 1.33758 | + | 1.48690i | −3.64337 | + | 0.382933i | 0.329987 | + | 0.0702199i | −0.115064 | + | 2.64325i | −0.872184 | − | 2.69059i | −2.68865 | + | 1.19706i | 4.92694 | + | 1.60211i |
51.15 | −1.26003 | − | 0.642133i | 3.23791 | − | 0.688239i | 1.17533 | + | 1.61821i | −1.15744 | + | 0.121652i | −4.52179 | − | 1.21197i | 2.59490 | + | 0.516239i | −0.441839 | − | 2.79370i | 7.26976 | − | 3.23670i | 1.53652 | + | 0.589946i |
51.16 | −1.24599 | + | 0.668957i | 3.19991 | − | 0.680162i | 1.10499 | − | 1.66703i | 1.44966 | − | 0.152366i | −3.53207 | + | 2.98808i | 0.628560 | − | 2.57000i | −0.261644 | + | 2.81630i | 7.03618 | − | 3.13271i | −1.70434 | + | 1.15961i |
51.17 | −1.19993 | − | 0.748444i | 2.53079 | − | 0.537936i | 0.879663 | + | 1.79616i | −1.22485 | + | 0.128737i | −3.43938 | − | 1.24867i | −1.61622 | − | 2.09472i | 0.288793 | − | 2.81365i | 3.37488 | − | 1.50259i | 1.56609 | + | 0.762258i |
51.18 | −1.19739 | + | 0.752505i | −1.95444 | + | 0.415428i | 0.867474 | − | 1.80208i | −3.14392 | + | 0.330439i | 2.02761 | − | 1.96815i | −2.19655 | − | 1.47484i | 0.317371 | + | 2.81057i | 0.906602 | − | 0.403645i | 3.51583 | − | 2.76148i |
51.19 | −1.14655 | − | 0.827899i | −2.23736 | + | 0.475565i | 0.629168 | + | 1.89846i | 3.57136 | − | 0.375365i | 2.95897 | + | 1.30704i | 2.47613 | − | 0.932082i | 0.850357 | − | 2.69757i | 2.03896 | − | 0.907805i | −4.40552 | − | 2.52635i |
51.20 | −1.13554 | + | 0.842936i | 0.664577 | − | 0.141260i | 0.578919 | − | 1.91438i | −2.98592 | + | 0.313833i | −0.635583 | + | 0.720603i | 2.14808 | − | 1.54459i | 0.956312 | + | 2.66185i | −2.31893 | + | 1.03245i | 3.12610 | − | 2.87331i |
See next 80 embeddings (of 736 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
8.d | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
56.k | odd | 6 | 1 | inner |
77.o | odd | 30 | 1 | inner |
88.k | even | 10 | 1 | inner |
616.cf | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 616.2.cf.a | ✓ | 736 |
7.c | even | 3 | 1 | inner | 616.2.cf.a | ✓ | 736 |
8.d | odd | 2 | 1 | inner | 616.2.cf.a | ✓ | 736 |
11.d | odd | 10 | 1 | inner | 616.2.cf.a | ✓ | 736 |
56.k | odd | 6 | 1 | inner | 616.2.cf.a | ✓ | 736 |
77.o | odd | 30 | 1 | inner | 616.2.cf.a | ✓ | 736 |
88.k | even | 10 | 1 | inner | 616.2.cf.a | ✓ | 736 |
616.cf | even | 30 | 1 | inner | 616.2.cf.a | ✓ | 736 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
616.2.cf.a | ✓ | 736 | 1.a | even | 1 | 1 | trivial |
616.2.cf.a | ✓ | 736 | 7.c | even | 3 | 1 | inner |
616.2.cf.a | ✓ | 736 | 8.d | odd | 2 | 1 | inner |
616.2.cf.a | ✓ | 736 | 11.d | odd | 10 | 1 | inner |
616.2.cf.a | ✓ | 736 | 56.k | odd | 6 | 1 | inner |
616.2.cf.a | ✓ | 736 | 77.o | odd | 30 | 1 | inner |
616.2.cf.a | ✓ | 736 | 88.k | even | 10 | 1 | inner |
616.2.cf.a | ✓ | 736 | 616.cf | even | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(616, [\chi])\).