Defining parameters
Level: | \( N \) | \(=\) | \( 616 = 2^{3} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 616.q (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(384\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(616, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 592 | 120 | 472 |
Cusp forms | 560 | 120 | 440 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(616, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(616, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(616, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 2}\)