Defining parameters
Level: | \( N \) | \(=\) | \( 624 = 2^{4} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 624.bi (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 624 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(624, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 16 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 8 | 8 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(624, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
624.1.bi.a | $8$ | $0.311$ | \(\Q(\zeta_{16})\) | $D_{8}$ | \(\Q(\sqrt{-39}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{16}^{3}q^{2}-\zeta_{16}^{2}q^{3}+\zeta_{16}^{6}q^{4}+\cdots\) |