Properties

Label 624.1.bi
Level $624$
Weight $1$
Character orbit 624.bi
Rep. character $\chi_{624}(77,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 624.bi (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 624 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(624, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 8 8 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 8 q^{12} + 8 q^{22} - 8 q^{30} - 8 q^{43} - 8 q^{49} - 8 q^{52} + 8 q^{75} - 8 q^{81} - 8 q^{88} - 8 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(624, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
624.1.bi.a 624.bi 624.ai $8$ $0.311$ \(\Q(\zeta_{16})\) $D_{8}$ \(\Q(\sqrt{-39}) \) None 624.1.bi.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{16}^{3}q^{2}-\zeta_{16}^{2}q^{3}+\zeta_{16}^{6}q^{4}+\cdots\)