Properties

Label 624.2.bv.g.49.2
Level $624$
Weight $2$
Character 624.49
Analytic conductor $4.983$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(49,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.bv (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.649638144.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 75x^{4} - 170x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(-2.34138 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 624.49
Dual form 624.2.bv.g.433.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} -0.475353i q^{5} +(-3.94508 - 2.27769i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.43069 - 0.826009i) q^{11} +(2.88139 - 2.16739i) q^{13} +(0.411667 - 0.237676i) q^{15} +(3.96973 - 6.87577i) q^{17} +(2.25402 + 1.30136i) q^{19} -4.55539i q^{21} +(-1.90604 - 3.30136i) q^{23} +4.77404 q^{25} -1.00000 q^{27} +(-0.411667 - 0.713029i) q^{29} -1.79260i q^{31} +(1.43069 + 0.826009i) q^{33} +(-1.08271 + 1.87530i) q^{35} +(-1.62174 + 0.936315i) q^{37} +(3.31771 + 1.41167i) q^{39} +(-9.26841 + 5.35112i) q^{41} +(4.94508 - 8.56513i) q^{43} +(0.411667 + 0.237676i) q^{45} +7.29869i q^{47} +(6.87577 + 11.9092i) q^{49} +7.93945 q^{51} -10.0063 q^{53} +(-0.392645 - 0.680082i) q^{55} +2.60272i q^{57} +(-1.28744 - 0.743302i) q^{59} +(5.87014 - 10.1674i) q^{61} +(3.94508 - 2.27769i) q^{63} +(-1.03027 - 1.36968i) q^{65} +(-2.87826 + 1.66176i) q^{67} +(1.90604 - 3.30136i) q^{69} +(-1.65130 - 0.953379i) q^{71} +6.14686i q^{73} +(2.38702 + 4.13444i) q^{75} -7.52558 q^{77} +10.7515 q^{79} +(-0.500000 - 0.866025i) q^{81} -14.7628i q^{83} +(-3.26841 - 1.88702i) q^{85} +(0.411667 - 0.713029i) q^{87} +(-6.32548 + 3.65202i) q^{89} +(-16.3040 + 1.98758i) q^{91} +(1.55243 - 0.896298i) q^{93} +(0.618606 - 1.07146i) q^{95} +(-3.62423 - 2.09245i) q^{97} +1.65202i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{9} + 6 q^{11} - 6 q^{13} - 6 q^{15} + 12 q^{17} - 6 q^{19} + 2 q^{23} - 4 q^{25} - 8 q^{27} + 6 q^{29} + 6 q^{33} - 10 q^{35} - 24 q^{41} + 8 q^{43} - 6 q^{45} + 18 q^{49} + 24 q^{51}+ \cdots - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.475353i 0.212584i −0.994335 0.106292i \(-0.966102\pi\)
0.994335 0.106292i \(-0.0338979\pi\)
\(6\) 0 0
\(7\) −3.94508 2.27769i −1.49110 0.860887i −0.491152 0.871074i \(-0.663424\pi\)
−0.999948 + 0.0101870i \(0.996757\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.43069 0.826009i 0.431369 0.249051i −0.268561 0.963263i \(-0.586548\pi\)
0.699930 + 0.714212i \(0.253215\pi\)
\(12\) 0 0
\(13\) 2.88139 2.16739i 0.799155 0.601125i
\(14\) 0 0
\(15\) 0.411667 0.237676i 0.106292 0.0613678i
\(16\) 0 0
\(17\) 3.96973 6.87577i 0.962800 1.66762i 0.247388 0.968917i \(-0.420428\pi\)
0.715412 0.698702i \(-0.246239\pi\)
\(18\) 0 0
\(19\) 2.25402 + 1.30136i 0.517109 + 0.298553i 0.735751 0.677252i \(-0.236829\pi\)
−0.218642 + 0.975805i \(0.570163\pi\)
\(20\) 0 0
\(21\) 4.55539i 0.994067i
\(22\) 0 0
\(23\) −1.90604 3.30136i −0.397437 0.688381i 0.595972 0.803005i \(-0.296767\pi\)
−0.993409 + 0.114624i \(0.963434\pi\)
\(24\) 0 0
\(25\) 4.77404 0.954808
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −0.411667 0.713029i −0.0764447 0.132406i 0.825269 0.564740i \(-0.191024\pi\)
−0.901714 + 0.432334i \(0.857690\pi\)
\(30\) 0 0
\(31\) 1.79260i 0.321960i −0.986958 0.160980i \(-0.948535\pi\)
0.986958 0.160980i \(-0.0514654\pi\)
\(32\) 0 0
\(33\) 1.43069 + 0.826009i 0.249051 + 0.143790i
\(34\) 0 0
\(35\) −1.08271 + 1.87530i −0.183011 + 0.316984i
\(36\) 0 0
\(37\) −1.62174 + 0.936315i −0.266613 + 0.153929i −0.627348 0.778739i \(-0.715859\pi\)
0.360734 + 0.932669i \(0.382526\pi\)
\(38\) 0 0
\(39\) 3.31771 + 1.41167i 0.531259 + 0.226048i
\(40\) 0 0
\(41\) −9.26841 + 5.35112i −1.44748 + 0.835705i −0.998331 0.0577505i \(-0.981607\pi\)
−0.449152 + 0.893455i \(0.648274\pi\)
\(42\) 0 0
\(43\) 4.94508 8.56513i 0.754118 1.30617i −0.191694 0.981455i \(-0.561398\pi\)
0.945812 0.324715i \(-0.105268\pi\)
\(44\) 0 0
\(45\) 0.411667 + 0.237676i 0.0613678 + 0.0354307i
\(46\) 0 0
\(47\) 7.29869i 1.06462i 0.846549 + 0.532311i \(0.178676\pi\)
−0.846549 + 0.532311i \(0.821324\pi\)
\(48\) 0 0
\(49\) 6.87577 + 11.9092i 0.982253 + 1.70131i
\(50\) 0 0
\(51\) 7.93945 1.11175
\(52\) 0 0
\(53\) −10.0063 −1.37447 −0.687234 0.726436i \(-0.741175\pi\)
−0.687234 + 0.726436i \(0.741175\pi\)
\(54\) 0 0
\(55\) −0.392645 0.680082i −0.0529443 0.0917022i
\(56\) 0 0
\(57\) 2.60272i 0.344739i
\(58\) 0 0
\(59\) −1.28744 0.743302i −0.167610 0.0967696i 0.413848 0.910346i \(-0.364184\pi\)
−0.581458 + 0.813576i \(0.697518\pi\)
\(60\) 0 0
\(61\) 5.87014 10.1674i 0.751595 1.30180i −0.195455 0.980713i \(-0.562618\pi\)
0.947049 0.321088i \(-0.104048\pi\)
\(62\) 0 0
\(63\) 3.94508 2.27769i 0.497033 0.286962i
\(64\) 0 0
\(65\) −1.03027 1.36968i −0.127790 0.169888i
\(66\) 0 0
\(67\) −2.87826 + 1.66176i −0.351635 + 0.203016i −0.665405 0.746482i \(-0.731741\pi\)
0.313770 + 0.949499i \(0.398408\pi\)
\(68\) 0 0
\(69\) 1.90604 3.30136i 0.229460 0.397437i
\(70\) 0 0
\(71\) −1.65130 0.953379i −0.195973 0.113145i 0.398803 0.917037i \(-0.369426\pi\)
−0.594776 + 0.803892i \(0.702759\pi\)
\(72\) 0 0
\(73\) 6.14686i 0.719435i 0.933061 + 0.359718i \(0.117127\pi\)
−0.933061 + 0.359718i \(0.882873\pi\)
\(74\) 0 0
\(75\) 2.38702 + 4.13444i 0.275629 + 0.477404i
\(76\) 0 0
\(77\) −7.52558 −0.857619
\(78\) 0 0
\(79\) 10.7515 1.20964 0.604821 0.796361i \(-0.293245\pi\)
0.604821 + 0.796361i \(0.293245\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 14.7628i 1.62043i −0.586135 0.810213i \(-0.699351\pi\)
0.586135 0.810213i \(-0.300649\pi\)
\(84\) 0 0
\(85\) −3.26841 1.88702i −0.354509 0.204676i
\(86\) 0 0
\(87\) 0.411667 0.713029i 0.0441354 0.0764447i
\(88\) 0 0
\(89\) −6.32548 + 3.65202i −0.670500 + 0.387113i −0.796266 0.604947i \(-0.793194\pi\)
0.125766 + 0.992060i \(0.459861\pi\)
\(90\) 0 0
\(91\) −16.3040 + 1.98758i −1.70912 + 0.208355i
\(92\) 0 0
\(93\) 1.55243 0.896298i 0.160980 0.0929418i
\(94\) 0 0
\(95\) 0.618606 1.07146i 0.0634676 0.109929i
\(96\) 0 0
\(97\) −3.62423 2.09245i −0.367985 0.212456i 0.304593 0.952483i \(-0.401480\pi\)
−0.672578 + 0.740026i \(0.734813\pi\)
\(98\) 0 0
\(99\) 1.65202i 0.166034i
\(100\) 0 0
\(101\) −2.75965 4.77985i −0.274595 0.475613i 0.695438 0.718587i \(-0.255211\pi\)
−0.970033 + 0.242973i \(0.921877\pi\)
\(102\) 0 0
\(103\) 11.8902 1.17157 0.585786 0.810466i \(-0.300786\pi\)
0.585786 + 0.810466i \(0.300786\pi\)
\(104\) 0 0
\(105\) −2.16541 −0.211323
\(106\) 0 0
\(107\) 2.98412 + 5.16864i 0.288486 + 0.499672i 0.973448 0.228906i \(-0.0735150\pi\)
−0.684963 + 0.728578i \(0.740182\pi\)
\(108\) 0 0
\(109\) 9.79260i 0.937961i 0.883209 + 0.468980i \(0.155378\pi\)
−0.883209 + 0.468980i \(0.844622\pi\)
\(110\) 0 0
\(111\) −1.62174 0.936315i −0.153929 0.0888711i
\(112\) 0 0
\(113\) 0.969727 1.67962i 0.0912243 0.158005i −0.816802 0.576918i \(-0.804255\pi\)
0.908027 + 0.418913i \(0.137589\pi\)
\(114\) 0 0
\(115\) −1.56931 + 0.906042i −0.146339 + 0.0844888i
\(116\) 0 0
\(117\) 0.436315 + 3.57905i 0.0403373 + 0.330884i
\(118\) 0 0
\(119\) −31.3218 + 18.0836i −2.87126 + 1.65772i
\(120\) 0 0
\(121\) −4.13542 + 7.16276i −0.375947 + 0.651160i
\(122\) 0 0
\(123\) −9.26841 5.35112i −0.835705 0.482494i
\(124\) 0 0
\(125\) 4.64611i 0.415561i
\(126\) 0 0
\(127\) 4.43631 + 7.68392i 0.393659 + 0.681838i 0.992929 0.118709i \(-0.0378756\pi\)
−0.599270 + 0.800547i \(0.704542\pi\)
\(128\) 0 0
\(129\) 9.89016 0.870780
\(130\) 0 0
\(131\) 3.97750 0.347516 0.173758 0.984788i \(-0.444409\pi\)
0.173758 + 0.984788i \(0.444409\pi\)
\(132\) 0 0
\(133\) −5.92820 10.2679i −0.514040 0.890344i
\(134\) 0 0
\(135\) 0.475353i 0.0409118i
\(136\) 0 0
\(137\) 15.1527 + 8.74840i 1.29458 + 0.747426i 0.979462 0.201627i \(-0.0646227\pi\)
0.315118 + 0.949053i \(0.397956\pi\)
\(138\) 0 0
\(139\) −10.1386 + 17.5605i −0.859941 + 1.48946i 0.0120427 + 0.999927i \(0.496167\pi\)
−0.871984 + 0.489534i \(0.837167\pi\)
\(140\) 0 0
\(141\) −6.32085 + 3.64934i −0.532311 + 0.307330i
\(142\) 0 0
\(143\) 2.33210 5.48091i 0.195020 0.458337i
\(144\) 0 0
\(145\) −0.338940 + 0.195687i −0.0281474 + 0.0162509i
\(146\) 0 0
\(147\) −6.87577 + 11.9092i −0.567104 + 0.982253i
\(148\) 0 0
\(149\) 6.65516 + 3.84236i 0.545212 + 0.314778i 0.747188 0.664612i \(-0.231403\pi\)
−0.201977 + 0.979390i \(0.564737\pi\)
\(150\) 0 0
\(151\) 1.65202i 0.134439i −0.997738 0.0672196i \(-0.978587\pi\)
0.997738 0.0672196i \(-0.0214128\pi\)
\(152\) 0 0
\(153\) 3.96973 + 6.87577i 0.320933 + 0.555873i
\(154\) 0 0
\(155\) −0.852115 −0.0684436
\(156\) 0 0
\(157\) −13.4855 −1.07626 −0.538132 0.842861i \(-0.680870\pi\)
−0.538132 + 0.842861i \(0.680870\pi\)
\(158\) 0 0
\(159\) −5.00314 8.66569i −0.396775 0.687234i
\(160\) 0 0
\(161\) 17.3655i 1.36859i
\(162\) 0 0
\(163\) 16.4045 + 9.47117i 1.28490 + 0.741839i 0.977741 0.209818i \(-0.0672870\pi\)
0.307163 + 0.951657i \(0.400620\pi\)
\(164\) 0 0
\(165\) 0.392645 0.680082i 0.0305674 0.0529443i
\(166\) 0 0
\(167\) 2.42015 1.39728i 0.187277 0.108125i −0.403430 0.915010i \(-0.632182\pi\)
0.590707 + 0.806886i \(0.298849\pi\)
\(168\) 0 0
\(169\) 3.60487 12.4902i 0.277298 0.960784i
\(170\) 0 0
\(171\) −2.25402 + 1.30136i −0.172370 + 0.0995176i
\(172\) 0 0
\(173\) 3.47535 6.01949i 0.264226 0.457653i −0.703134 0.711057i \(-0.748217\pi\)
0.967361 + 0.253404i \(0.0815501\pi\)
\(174\) 0 0
\(175\) −18.8340 10.8738i −1.42371 0.821982i
\(176\) 0 0
\(177\) 1.48660i 0.111740i
\(178\) 0 0
\(179\) −4.97287 8.61326i −0.371689 0.643785i 0.618136 0.786071i \(-0.287888\pi\)
−0.989826 + 0.142286i \(0.954555\pi\)
\(180\) 0 0
\(181\) 12.9887 0.965446 0.482723 0.875773i \(-0.339648\pi\)
0.482723 + 0.875773i \(0.339648\pi\)
\(182\) 0 0
\(183\) 11.7403 0.867867
\(184\) 0 0
\(185\) 0.445080 + 0.770901i 0.0327229 + 0.0566777i
\(186\) 0 0
\(187\) 13.1161i 0.959146i
\(188\) 0 0
\(189\) 3.94508 + 2.27769i 0.286962 + 0.165678i
\(190\) 0 0
\(191\) −5.82333 + 10.0863i −0.421362 + 0.729820i −0.996073 0.0885364i \(-0.971781\pi\)
0.574711 + 0.818356i \(0.305114\pi\)
\(192\) 0 0
\(193\) 0.538044 0.310640i 0.0387292 0.0223603i −0.480510 0.876989i \(-0.659549\pi\)
0.519240 + 0.854629i \(0.326215\pi\)
\(194\) 0 0
\(195\) 0.671040 1.57708i 0.0480542 0.112937i
\(196\) 0 0
\(197\) −1.60770 + 0.928203i −0.114544 + 0.0661317i −0.556177 0.831064i \(-0.687732\pi\)
0.441634 + 0.897195i \(0.354399\pi\)
\(198\) 0 0
\(199\) −6.89578 + 11.9438i −0.488829 + 0.846677i −0.999917 0.0128512i \(-0.995909\pi\)
0.511088 + 0.859528i \(0.329243\pi\)
\(200\) 0 0
\(201\) −2.87826 1.66176i −0.203016 0.117212i
\(202\) 0 0
\(203\) 3.75061i 0.263241i
\(204\) 0 0
\(205\) 2.54367 + 4.40576i 0.177658 + 0.307712i
\(206\) 0 0
\(207\) 3.81208 0.264958
\(208\) 0 0
\(209\) 4.29974 0.297420
\(210\) 0 0
\(211\) 11.4313 + 19.7997i 0.786966 + 1.36307i 0.927817 + 0.373034i \(0.121683\pi\)
−0.140851 + 0.990031i \(0.544984\pi\)
\(212\) 0 0
\(213\) 1.90676i 0.130649i
\(214\) 0 0
\(215\) −4.07146 2.35066i −0.277671 0.160313i
\(216\) 0 0
\(217\) −4.08298 + 7.07194i −0.277171 + 0.480074i
\(218\) 0 0
\(219\) −5.32333 + 3.07343i −0.359718 + 0.207683i
\(220\) 0 0
\(221\) −3.46410 28.4157i −0.233021 1.91145i
\(222\) 0 0
\(223\) 6.39821 3.69401i 0.428456 0.247369i −0.270233 0.962795i \(-0.587101\pi\)
0.698689 + 0.715426i \(0.253767\pi\)
\(224\) 0 0
\(225\) −2.38702 + 4.13444i −0.159135 + 0.275629i
\(226\) 0 0
\(227\) −8.27690 4.77867i −0.549357 0.317172i 0.199505 0.979897i \(-0.436066\pi\)
−0.748863 + 0.662725i \(0.769400\pi\)
\(228\) 0 0
\(229\) 17.6017i 1.16315i −0.813492 0.581575i \(-0.802437\pi\)
0.813492 0.581575i \(-0.197563\pi\)
\(230\) 0 0
\(231\) −3.76279 6.51734i −0.247573 0.428810i
\(232\) 0 0
\(233\) −19.3391 −1.26695 −0.633473 0.773765i \(-0.718371\pi\)
−0.633473 + 0.773765i \(0.718371\pi\)
\(234\) 0 0
\(235\) 3.46945 0.226322
\(236\) 0 0
\(237\) 5.37577 + 9.31111i 0.349194 + 0.604821i
\(238\) 0 0
\(239\) 18.6417i 1.20583i 0.797805 + 0.602916i \(0.205994\pi\)
−0.797805 + 0.602916i \(0.794006\pi\)
\(240\) 0 0
\(241\) −0.0524342 0.0302729i −0.00337758 0.00195005i 0.498310 0.866999i \(-0.333954\pi\)
−0.501688 + 0.865049i \(0.667287\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 5.66106 3.26841i 0.361672 0.208811i
\(246\) 0 0
\(247\) 9.31529 1.13561i 0.592717 0.0722569i
\(248\) 0 0
\(249\) 12.7850 7.38139i 0.810213 0.467777i
\(250\) 0 0
\(251\) 9.29869 16.1058i 0.586928 1.01659i −0.407704 0.913114i \(-0.633671\pi\)
0.994632 0.103475i \(-0.0329962\pi\)
\(252\) 0 0
\(253\) −5.45391 3.14882i −0.342884 0.197964i
\(254\) 0 0
\(255\) 3.77404i 0.236340i
\(256\) 0 0
\(257\) 14.9531 + 25.8996i 0.932750 + 1.61557i 0.778597 + 0.627524i \(0.215932\pi\)
0.154154 + 0.988047i \(0.450735\pi\)
\(258\) 0 0
\(259\) 8.53055 0.530063
\(260\) 0 0
\(261\) 0.823335 0.0509631
\(262\) 0 0
\(263\) −5.03341 8.71813i −0.310373 0.537583i 0.668070 0.744099i \(-0.267121\pi\)
−0.978443 + 0.206516i \(0.933787\pi\)
\(264\) 0 0
\(265\) 4.75651i 0.292190i
\(266\) 0 0
\(267\) −6.32548 3.65202i −0.387113 0.223500i
\(268\) 0 0
\(269\) −14.0668 + 24.3645i −0.857669 + 1.48553i 0.0164768 + 0.999864i \(0.494755\pi\)
−0.874146 + 0.485663i \(0.838578\pi\)
\(270\) 0 0
\(271\) 22.5593 13.0246i 1.37038 0.791188i 0.379402 0.925232i \(-0.376130\pi\)
0.990975 + 0.134044i \(0.0427962\pi\)
\(272\) 0 0
\(273\) −9.87328 13.1259i −0.597558 0.794413i
\(274\) 0 0
\(275\) 6.83017 3.94340i 0.411875 0.237796i
\(276\) 0 0
\(277\) −3.92578 + 6.79965i −0.235877 + 0.408551i −0.959527 0.281616i \(-0.909130\pi\)
0.723650 + 0.690167i \(0.242463\pi\)
\(278\) 0 0
\(279\) 1.55243 + 0.896298i 0.0929418 + 0.0536600i
\(280\) 0 0
\(281\) 1.26064i 0.0752037i −0.999293 0.0376018i \(-0.988028\pi\)
0.999293 0.0376018i \(-0.0119719\pi\)
\(282\) 0 0
\(283\) 1.30966 + 2.26840i 0.0778513 + 0.134842i 0.902323 0.431061i \(-0.141861\pi\)
−0.824471 + 0.565904i \(0.808527\pi\)
\(284\) 0 0
\(285\) 1.23721 0.0732861
\(286\) 0 0
\(287\) 48.7528 2.87779
\(288\) 0 0
\(289\) −23.0175 39.8674i −1.35397 2.34514i
\(290\) 0 0
\(291\) 4.18490i 0.245323i
\(292\) 0 0
\(293\) 22.0305 + 12.7193i 1.28703 + 0.743070i 0.978124 0.208021i \(-0.0667023\pi\)
0.308910 + 0.951091i \(0.400036\pi\)
\(294\) 0 0
\(295\) −0.353330 + 0.611986i −0.0205717 + 0.0356312i
\(296\) 0 0
\(297\) −1.43069 + 0.826009i −0.0830170 + 0.0479299i
\(298\) 0 0
\(299\) −12.6474 5.38139i −0.731417 0.311214i
\(300\) 0 0
\(301\) −39.0175 + 22.5267i −2.24893 + 1.29842i
\(302\) 0 0
\(303\) 2.75965 4.77985i 0.158538 0.274595i
\(304\) 0 0
\(305\) −4.83309 2.79039i −0.276742 0.159777i
\(306\) 0 0
\(307\) 15.5100i 0.885203i −0.896718 0.442601i \(-0.854056\pi\)
0.896718 0.442601i \(-0.145944\pi\)
\(308\) 0 0
\(309\) 5.94508 + 10.2972i 0.338204 + 0.585786i
\(310\) 0 0
\(311\) −19.0829 −1.08209 −0.541047 0.840993i \(-0.681972\pi\)
−0.541047 + 0.840993i \(0.681972\pi\)
\(312\) 0 0
\(313\) 12.3406 0.697535 0.348767 0.937209i \(-0.386600\pi\)
0.348767 + 0.937209i \(0.386600\pi\)
\(314\) 0 0
\(315\) −1.08271 1.87530i −0.0610036 0.105661i
\(316\) 0 0
\(317\) 19.5636i 1.09880i −0.835559 0.549401i \(-0.814856\pi\)
0.835559 0.549401i \(-0.185144\pi\)
\(318\) 0 0
\(319\) −1.17794 0.680082i −0.0659518 0.0380773i
\(320\) 0 0
\(321\) −2.98412 + 5.16864i −0.166557 + 0.288486i
\(322\) 0 0
\(323\) 17.8957 10.3321i 0.995745 0.574893i
\(324\) 0 0
\(325\) 13.7559 10.3472i 0.763040 0.573959i
\(326\) 0 0
\(327\) −8.48064 + 4.89630i −0.468980 + 0.270766i
\(328\) 0 0
\(329\) 16.6242 28.7939i 0.916520 1.58746i
\(330\) 0 0
\(331\) −22.2820 12.8645i −1.22473 0.707099i −0.258808 0.965929i \(-0.583330\pi\)
−0.965923 + 0.258830i \(0.916663\pi\)
\(332\) 0 0
\(333\) 1.87263i 0.102619i
\(334\) 0 0
\(335\) 0.789923 + 1.36819i 0.0431581 + 0.0747520i
\(336\) 0 0
\(337\) 4.90141 0.266997 0.133498 0.991049i \(-0.457379\pi\)
0.133498 + 0.991049i \(0.457379\pi\)
\(338\) 0 0
\(339\) 1.93945 0.105337
\(340\) 0 0
\(341\) −1.48070 2.56465i −0.0801844 0.138884i
\(342\) 0 0
\(343\) 30.7559i 1.66066i
\(344\) 0 0
\(345\) −1.56931 0.906042i −0.0844888 0.0487797i
\(346\) 0 0
\(347\) 9.48091 16.4214i 0.508962 0.881548i −0.490984 0.871169i \(-0.663363\pi\)
0.999946 0.0103797i \(-0.00330403\pi\)
\(348\) 0 0
\(349\) 10.4045 6.00707i 0.556943 0.321551i −0.194975 0.980808i \(-0.562462\pi\)
0.751918 + 0.659257i \(0.229129\pi\)
\(350\) 0 0
\(351\) −2.88139 + 2.16739i −0.153797 + 0.115687i
\(352\) 0 0
\(353\) 12.3074 7.10567i 0.655056 0.378197i −0.135334 0.990800i \(-0.543211\pi\)
0.790391 + 0.612603i \(0.209878\pi\)
\(354\) 0 0
\(355\) −0.453191 + 0.784950i −0.0240529 + 0.0416608i
\(356\) 0 0
\(357\) −31.3218 18.0836i −1.65772 0.957088i
\(358\) 0 0
\(359\) 14.2766i 0.753488i −0.926317 0.376744i \(-0.877044\pi\)
0.926317 0.376744i \(-0.122956\pi\)
\(360\) 0 0
\(361\) −6.11292 10.5879i −0.321732 0.557257i
\(362\) 0 0
\(363\) −8.27084 −0.434106
\(364\) 0 0
\(365\) 2.92192 0.152941
\(366\) 0 0
\(367\) 8.61854 + 14.9278i 0.449884 + 0.779222i 0.998378 0.0569323i \(-0.0181319\pi\)
−0.548494 + 0.836155i \(0.684799\pi\)
\(368\) 0 0
\(369\) 10.7022i 0.557137i
\(370\) 0 0
\(371\) 39.4756 + 22.7912i 2.04947 + 1.18326i
\(372\) 0 0
\(373\) −4.76528 + 8.25370i −0.246737 + 0.427360i −0.962618 0.270861i \(-0.912692\pi\)
0.715882 + 0.698221i \(0.246025\pi\)
\(374\) 0 0
\(375\) 4.02365 2.32306i 0.207781 0.119962i
\(376\) 0 0
\(377\) −2.73159 1.16227i −0.140684 0.0598602i
\(378\) 0 0
\(379\) 1.95064 1.12620i 0.100198 0.0578492i −0.449064 0.893500i \(-0.648242\pi\)
0.549262 + 0.835651i \(0.314909\pi\)
\(380\) 0 0
\(381\) −4.43631 + 7.68392i −0.227279 + 0.393659i
\(382\) 0 0
\(383\) 32.9004 + 18.9950i 1.68113 + 0.970601i 0.960913 + 0.276852i \(0.0892910\pi\)
0.720217 + 0.693749i \(0.244042\pi\)
\(384\) 0 0
\(385\) 3.57730i 0.182316i
\(386\) 0 0
\(387\) 4.94508 + 8.56513i 0.251373 + 0.435390i
\(388\) 0 0
\(389\) 32.0413 1.62456 0.812280 0.583267i \(-0.198226\pi\)
0.812280 + 0.583267i \(0.198226\pi\)
\(390\) 0 0
\(391\) −30.2659 −1.53061
\(392\) 0 0
\(393\) 1.98875 + 3.44461i 0.100319 + 0.173758i
\(394\) 0 0
\(395\) 5.11077i 0.257151i
\(396\) 0 0
\(397\) 30.0512 + 17.3501i 1.50823 + 0.870776i 0.999954 + 0.00957973i \(0.00304937\pi\)
0.508273 + 0.861196i \(0.330284\pi\)
\(398\) 0 0
\(399\) 5.92820 10.2679i 0.296781 0.514040i
\(400\) 0 0
\(401\) −24.9439 + 14.4013i −1.24564 + 0.719169i −0.970236 0.242161i \(-0.922144\pi\)
−0.275401 + 0.961329i \(0.588811\pi\)
\(402\) 0 0
\(403\) −3.88525 5.16518i −0.193538 0.257296i
\(404\) 0 0
\(405\) −0.411667 + 0.237676i −0.0204559 + 0.0118102i
\(406\) 0 0
\(407\) −1.54681 + 2.67915i −0.0766725 + 0.132801i
\(408\) 0 0
\(409\) 25.4140 + 14.6728i 1.25664 + 0.725521i 0.972420 0.233238i \(-0.0749320\pi\)
0.284220 + 0.958759i \(0.408265\pi\)
\(410\) 0 0
\(411\) 17.4968i 0.863053i
\(412\) 0 0
\(413\) 3.38603 + 5.86477i 0.166615 + 0.288586i
\(414\) 0 0
\(415\) −7.01753 −0.344477
\(416\) 0 0
\(417\) −20.2771 −0.992975
\(418\) 0 0
\(419\) −11.3709 19.6949i −0.555503 0.962159i −0.997864 0.0653223i \(-0.979192\pi\)
0.442361 0.896837i \(-0.354141\pi\)
\(420\) 0 0
\(421\) 0.831698i 0.0405345i 0.999795 + 0.0202672i \(0.00645170\pi\)
−0.999795 + 0.0202672i \(0.993548\pi\)
\(422\) 0 0
\(423\) −6.32085 3.64934i −0.307330 0.177437i
\(424\) 0 0
\(425\) 18.9516 32.8252i 0.919289 1.59226i
\(426\) 0 0
\(427\) −46.3164 + 26.7408i −2.24141 + 1.29408i
\(428\) 0 0
\(429\) 5.91266 0.720800i 0.285466 0.0348005i
\(430\) 0 0
\(431\) −22.7562 + 13.1383i −1.09613 + 0.632849i −0.935201 0.354118i \(-0.884781\pi\)
−0.160925 + 0.986967i \(0.551448\pi\)
\(432\) 0 0
\(433\) −2.73224 + 4.73238i −0.131303 + 0.227423i −0.924179 0.381959i \(-0.875249\pi\)
0.792876 + 0.609383i \(0.208583\pi\)
\(434\) 0 0
\(435\) −0.338940 0.195687i −0.0162509 0.00938248i
\(436\) 0 0
\(437\) 9.92180i 0.474624i
\(438\) 0 0
\(439\) 6.65230 + 11.5221i 0.317497 + 0.549920i 0.979965 0.199169i \(-0.0638244\pi\)
−0.662468 + 0.749090i \(0.730491\pi\)
\(440\) 0 0
\(441\) −13.7515 −0.654835
\(442\) 0 0
\(443\) 14.0879 0.669336 0.334668 0.942336i \(-0.391376\pi\)
0.334668 + 0.942336i \(0.391376\pi\)
\(444\) 0 0
\(445\) 1.73600 + 3.00683i 0.0822941 + 0.142538i
\(446\) 0 0
\(447\) 7.68471i 0.363474i
\(448\) 0 0
\(449\) −7.89016 4.55539i −0.372360 0.214982i 0.302129 0.953267i \(-0.402303\pi\)
−0.674489 + 0.738285i \(0.735636\pi\)
\(450\) 0 0
\(451\) −8.84015 + 15.3116i −0.416266 + 0.720994i
\(452\) 0 0
\(453\) 1.43069 0.826009i 0.0672196 0.0388093i
\(454\) 0 0
\(455\) 0.944802 + 7.75014i 0.0442930 + 0.363332i
\(456\) 0 0
\(457\) −7.42323 + 4.28580i −0.347244 + 0.200481i −0.663471 0.748202i \(-0.730917\pi\)
0.316227 + 0.948684i \(0.397584\pi\)
\(458\) 0 0
\(459\) −3.96973 + 6.87577i −0.185291 + 0.320933i
\(460\) 0 0
\(461\) 34.2647 + 19.7827i 1.59587 + 0.921374i 0.992272 + 0.124083i \(0.0395989\pi\)
0.603595 + 0.797291i \(0.293734\pi\)
\(462\) 0 0
\(463\) 11.4836i 0.533688i 0.963740 + 0.266844i \(0.0859808\pi\)
−0.963740 + 0.266844i \(0.914019\pi\)
\(464\) 0 0
\(465\) −0.426058 0.737954i −0.0197580 0.0342218i
\(466\) 0 0
\(467\) 25.9125 1.19909 0.599545 0.800341i \(-0.295348\pi\)
0.599545 + 0.800341i \(0.295348\pi\)
\(468\) 0 0
\(469\) 15.1399 0.699097
\(470\) 0 0
\(471\) −6.74277 11.6788i −0.310691 0.538132i
\(472\) 0 0
\(473\) 16.3387i 0.751255i
\(474\) 0 0
\(475\) 10.7608 + 6.21275i 0.493739 + 0.285061i
\(476\) 0 0
\(477\) 5.00314 8.66569i 0.229078 0.396775i
\(478\) 0 0
\(479\) −29.7135 + 17.1551i −1.35764 + 0.783836i −0.989306 0.145856i \(-0.953407\pi\)
−0.368338 + 0.929692i \(0.620073\pi\)
\(480\) 0 0
\(481\) −2.64353 + 6.21284i −0.120535 + 0.283281i
\(482\) 0 0
\(483\) −15.0390 + 8.68276i −0.684297 + 0.395079i
\(484\) 0 0
\(485\) −0.994652 + 1.72279i −0.0451648 + 0.0782278i
\(486\) 0 0
\(487\) −35.2110 20.3291i −1.59556 0.921199i −0.992328 0.123636i \(-0.960545\pi\)
−0.603235 0.797563i \(-0.706122\pi\)
\(488\) 0 0
\(489\) 18.9423i 0.856602i
\(490\) 0 0
\(491\) 8.44822 + 14.6327i 0.381263 + 0.660367i 0.991243 0.132050i \(-0.0421560\pi\)
−0.609980 + 0.792417i \(0.708823\pi\)
\(492\) 0 0
\(493\) −6.53683 −0.294404
\(494\) 0 0
\(495\) 0.785291 0.0352962
\(496\) 0 0
\(497\) 4.34301 + 7.52231i 0.194811 + 0.337422i
\(498\) 0 0
\(499\) 24.6899i 1.10527i −0.833422 0.552637i \(-0.813622\pi\)
0.833422 0.552637i \(-0.186378\pi\)
\(500\) 0 0
\(501\) 2.42015 + 1.39728i 0.108125 + 0.0624257i
\(502\) 0 0
\(503\) −15.7181 + 27.2246i −0.700837 + 1.21388i 0.267337 + 0.963603i \(0.413856\pi\)
−0.968173 + 0.250281i \(0.919477\pi\)
\(504\) 0 0
\(505\) −2.27212 + 1.31181i −0.101108 + 0.0583746i
\(506\) 0 0
\(507\) 12.6193 3.12319i 0.560441 0.138706i
\(508\) 0 0
\(509\) −22.9856 + 13.2707i −1.01882 + 0.588216i −0.913762 0.406251i \(-0.866836\pi\)
−0.105058 + 0.994466i \(0.533503\pi\)
\(510\) 0 0
\(511\) 14.0007 24.2498i 0.619352 1.07275i
\(512\) 0 0
\(513\) −2.25402 1.30136i −0.0995176 0.0574565i
\(514\) 0 0
\(515\) 5.65202i 0.249058i
\(516\) 0 0
\(517\) 6.02878 + 10.4422i 0.265145 + 0.459245i
\(518\) 0 0
\(519\) 6.95071 0.305102
\(520\) 0 0
\(521\) 16.0605 0.703625 0.351813 0.936070i \(-0.385565\pi\)
0.351813 + 0.936070i \(0.385565\pi\)
\(522\) 0 0
\(523\) 0.497514 + 0.861719i 0.0217548 + 0.0376804i 0.876698 0.481041i \(-0.159741\pi\)
−0.854943 + 0.518722i \(0.826408\pi\)
\(524\) 0 0
\(525\) 21.7476i 0.949143i
\(526\) 0 0
\(527\) −12.3255 7.11612i −0.536906 0.309983i
\(528\) 0 0
\(529\) 4.23401 7.33352i 0.184087 0.318849i
\(530\) 0 0
\(531\) 1.28744 0.743302i 0.0558700 0.0322565i
\(532\) 0 0
\(533\) −15.1080 + 35.5069i −0.654400 + 1.53798i
\(534\) 0 0
\(535\) 2.45693 1.41851i 0.106222 0.0613274i
\(536\) 0 0
\(537\) 4.97287 8.61326i 0.214595 0.371689i
\(538\) 0 0
\(539\) 19.6742 + 11.3589i 0.847427 + 0.489262i
\(540\) 0 0
\(541\) 10.8825i 0.467874i 0.972252 + 0.233937i \(0.0751610\pi\)
−0.972252 + 0.233937i \(0.924839\pi\)
\(542\) 0 0
\(543\) 6.49437 + 11.2486i 0.278700 + 0.482723i
\(544\) 0 0
\(545\) 4.65494 0.199396
\(546\) 0 0
\(547\) −18.1985 −0.778111 −0.389056 0.921214i \(-0.627199\pi\)
−0.389056 + 0.921214i \(0.627199\pi\)
\(548\) 0 0
\(549\) 5.87014 + 10.1674i 0.250532 + 0.433933i
\(550\) 0 0
\(551\) 2.14291i 0.0912911i
\(552\) 0 0
\(553\) −42.4157 24.4887i −1.80370 1.04137i
\(554\) 0 0
\(555\) −0.445080 + 0.770901i −0.0188926 + 0.0327229i
\(556\) 0 0
\(557\) 4.84699 2.79841i 0.205373 0.118572i −0.393786 0.919202i \(-0.628835\pi\)
0.599159 + 0.800630i \(0.295502\pi\)
\(558\) 0 0
\(559\) −4.31522 35.3974i −0.182514 1.49715i
\(560\) 0 0
\(561\) 11.3589 6.55806i 0.479573 0.276881i
\(562\) 0 0
\(563\) 12.2381 21.1971i 0.515776 0.893351i −0.484056 0.875037i \(-0.660837\pi\)
0.999832 0.0183136i \(-0.00582972\pi\)
\(564\) 0 0
\(565\) −0.798410 0.460962i −0.0335894 0.0193928i
\(566\) 0 0
\(567\) 4.55539i 0.191308i
\(568\) 0 0
\(569\) −8.93411 15.4743i −0.374537 0.648717i 0.615720 0.787965i \(-0.288865\pi\)
−0.990258 + 0.139247i \(0.955532\pi\)
\(570\) 0 0
\(571\) 1.74669 0.0730968 0.0365484 0.999332i \(-0.488364\pi\)
0.0365484 + 0.999332i \(0.488364\pi\)
\(572\) 0 0
\(573\) −11.6467 −0.486547
\(574\) 0 0
\(575\) −9.09952 15.7608i −0.379476 0.657272i
\(576\) 0 0
\(577\) 10.6236i 0.442267i −0.975244 0.221133i \(-0.929024\pi\)
0.975244 0.221133i \(-0.0709756\pi\)
\(578\) 0 0
\(579\) 0.538044 + 0.310640i 0.0223603 + 0.0129097i
\(580\) 0 0
\(581\) −33.6251 + 58.2404i −1.39500 + 2.41622i
\(582\) 0 0
\(583\) −14.3159 + 8.26528i −0.592903 + 0.342313i
\(584\) 0 0
\(585\) 1.70131 0.207403i 0.0703406 0.00857507i
\(586\) 0 0
\(587\) −38.8023 + 22.4025i −1.60154 + 0.924651i −0.610364 + 0.792121i \(0.708977\pi\)
−0.991179 + 0.132530i \(0.957690\pi\)
\(588\) 0 0
\(589\) 2.33282 4.04056i 0.0961220 0.166488i
\(590\) 0 0
\(591\) −1.60770 0.928203i −0.0661317 0.0381812i
\(592\) 0 0
\(593\) 34.9834i 1.43660i −0.695736 0.718298i \(-0.744921\pi\)
0.695736 0.718298i \(-0.255079\pi\)
\(594\) 0 0
\(595\) 8.59610 + 14.8889i 0.352406 + 0.610385i
\(596\) 0 0
\(597\) −13.7916 −0.564451
\(598\) 0 0
\(599\) −21.9569 −0.897133 −0.448566 0.893749i \(-0.648065\pi\)
−0.448566 + 0.893749i \(0.648065\pi\)
\(600\) 0 0
\(601\) 2.88702 + 5.00047i 0.117764 + 0.203973i 0.918881 0.394534i \(-0.129094\pi\)
−0.801117 + 0.598507i \(0.795761\pi\)
\(602\) 0 0
\(603\) 3.32352i 0.135344i
\(604\) 0 0
\(605\) 3.40483 + 1.96578i 0.138426 + 0.0799204i
\(606\) 0 0
\(607\) −9.72276 + 16.8403i −0.394635 + 0.683527i −0.993054 0.117656i \(-0.962462\pi\)
0.598420 + 0.801183i \(0.295795\pi\)
\(608\) 0 0
\(609\) −3.24812 + 1.87530i −0.131621 + 0.0759911i
\(610\) 0 0
\(611\) 15.8191 + 21.0304i 0.639971 + 0.850799i
\(612\) 0 0
\(613\) −8.21222 + 4.74133i −0.331689 + 0.191500i −0.656591 0.754247i \(-0.728002\pi\)
0.324902 + 0.945748i \(0.394669\pi\)
\(614\) 0 0
\(615\) −2.54367 + 4.40576i −0.102571 + 0.177658i
\(616\) 0 0
\(617\) −37.6567 21.7411i −1.51600 0.875263i −0.999824 0.0187816i \(-0.994021\pi\)
−0.516177 0.856482i \(-0.672645\pi\)
\(618\) 0 0
\(619\) 5.40607i 0.217288i 0.994081 + 0.108644i \(0.0346509\pi\)
−0.994081 + 0.108644i \(0.965349\pi\)
\(620\) 0 0
\(621\) 1.90604 + 3.30136i 0.0764868 + 0.132479i
\(622\) 0 0
\(623\) 33.2727 1.33304
\(624\) 0 0
\(625\) 21.6617 0.866466
\(626\) 0 0
\(627\) 2.14987 + 3.72369i 0.0858576 + 0.148710i
\(628\) 0 0
\(629\) 14.8677i 0.592812i
\(630\) 0 0
\(631\) 14.4714 + 8.35505i 0.576096 + 0.332609i 0.759581 0.650413i \(-0.225404\pi\)
−0.183484 + 0.983023i \(0.558738\pi\)
\(632\) 0 0
\(633\) −11.4313 + 19.7997i −0.454355 + 0.786966i
\(634\) 0 0
\(635\) 3.65257 2.10881i 0.144948 0.0836857i
\(636\) 0 0
\(637\) 45.6236 + 19.4126i 1.80767 + 0.769155i
\(638\) 0 0
\(639\) 1.65130 0.953379i 0.0653245 0.0377151i
\(640\) 0 0
\(641\) 0.0468720 0.0811847i 0.00185133 0.00320660i −0.865098 0.501602i \(-0.832744\pi\)
0.866950 + 0.498396i \(0.166077\pi\)
\(642\) 0 0
\(643\) 14.8696 + 8.58496i 0.586399 + 0.338558i 0.763672 0.645604i \(-0.223394\pi\)
−0.177273 + 0.984162i \(0.556728\pi\)
\(644\) 0 0
\(645\) 4.70131i 0.185114i
\(646\) 0 0
\(647\) 16.1224 + 27.9248i 0.633837 + 1.09784i 0.986760 + 0.162185i \(0.0518543\pi\)
−0.352923 + 0.935652i \(0.614812\pi\)
\(648\) 0 0
\(649\) −2.45590 −0.0964023
\(650\) 0 0
\(651\) −8.16597 −0.320050
\(652\) 0 0
\(653\) −3.32119 5.75247i −0.129968 0.225111i 0.793696 0.608315i \(-0.208154\pi\)
−0.923664 + 0.383203i \(0.874821\pi\)
\(654\) 0 0
\(655\) 1.89071i 0.0738763i
\(656\) 0 0
\(657\) −5.32333 3.07343i −0.207683 0.119906i
\(658\) 0 0
\(659\) −4.78529 + 8.28837i −0.186408 + 0.322869i −0.944050 0.329802i \(-0.893018\pi\)
0.757642 + 0.652671i \(0.226351\pi\)
\(660\) 0 0
\(661\) −25.6891 + 14.8316i −0.999189 + 0.576882i −0.908008 0.418953i \(-0.862397\pi\)
−0.0911805 + 0.995834i \(0.529064\pi\)
\(662\) 0 0
\(663\) 22.8767 17.2079i 0.888457 0.668298i
\(664\) 0 0
\(665\) −4.88090 + 2.81799i −0.189273 + 0.109277i
\(666\) 0 0
\(667\) −1.56931 + 2.71813i −0.0607640 + 0.105246i
\(668\) 0 0
\(669\) 6.39821 + 3.69401i 0.247369 + 0.142819i
\(670\) 0 0
\(671\) 19.3952i 0.748742i
\(672\) 0 0
\(673\) 5.57180 + 9.65064i 0.214777 + 0.372005i 0.953204 0.302329i \(-0.0977642\pi\)
−0.738427 + 0.674334i \(0.764431\pi\)
\(674\) 0 0
\(675\) −4.77404 −0.183753
\(676\) 0 0
\(677\) −5.44763 −0.209369 −0.104685 0.994505i \(-0.533383\pi\)
−0.104685 + 0.994505i \(0.533383\pi\)
\(678\) 0 0
\(679\) 9.53192 + 16.5098i 0.365802 + 0.633587i
\(680\) 0 0
\(681\) 9.55734i 0.366238i
\(682\) 0 0
\(683\) −25.3654 14.6447i −0.970579 0.560364i −0.0711666 0.997464i \(-0.522672\pi\)
−0.899413 + 0.437100i \(0.856006\pi\)
\(684\) 0 0
\(685\) 4.15857 7.20286i 0.158891 0.275207i
\(686\) 0 0
\(687\) 15.2435 8.80083i 0.581575 0.335773i
\(688\) 0 0
\(689\) −28.8320 + 21.6875i −1.09841 + 0.826227i
\(690\) 0 0
\(691\) 20.5580 11.8692i 0.782063 0.451524i −0.0550979 0.998481i \(-0.517547\pi\)
0.837161 + 0.546957i \(0.184214\pi\)
\(692\) 0 0
\(693\) 3.76279 6.51734i 0.142937 0.247573i
\(694\) 0 0
\(695\) 8.34743 + 4.81939i 0.316636 + 0.182810i
\(696\) 0 0
\(697\) 84.9700i 3.21847i
\(698\) 0 0
\(699\) −9.66955 16.7481i −0.365736 0.633473i
\(700\) 0 0
\(701\) 7.62417 0.287961 0.143980 0.989581i \(-0.454010\pi\)
0.143980 + 0.989581i \(0.454010\pi\)
\(702\) 0 0
\(703\) −4.87394 −0.183824
\(704\) 0 0
\(705\) 1.73472 + 3.00463i 0.0653335 + 0.113161i
\(706\) 0 0
\(707\) 25.1425i 0.945582i
\(708\) 0 0
\(709\) −26.4127 15.2494i −0.991950 0.572702i −0.0860931 0.996287i \(-0.527438\pi\)
−0.905857 + 0.423585i \(0.860772\pi\)
\(710\) 0 0
\(711\) −5.37577 + 9.31111i −0.201607 + 0.349194i
\(712\) 0 0
\(713\) −5.91801 + 3.41676i −0.221631 + 0.127959i
\(714\) 0 0
\(715\) −2.60537 1.10857i −0.0974352 0.0414582i
\(716\) 0 0
\(717\) −16.1442 + 9.32085i −0.602916 + 0.348093i
\(718\) 0 0
\(719\) 3.31529 5.74224i 0.123639 0.214150i −0.797561 0.603238i \(-0.793877\pi\)
0.921200 + 0.389089i \(0.127210\pi\)
\(720\) 0 0
\(721\) −46.9076 27.0821i −1.74693 1.00859i
\(722\) 0 0
\(723\) 0.0605458i 0.00225172i
\(724\) 0 0
\(725\) −1.96532 3.40403i −0.0729900 0.126422i
\(726\) 0 0
\(727\) −17.4607 −0.647583 −0.323792 0.946128i \(-0.604958\pi\)
−0.323792 + 0.946128i \(0.604958\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −39.2612 68.0025i −1.45213 2.51516i
\(732\) 0 0
\(733\) 23.3284i 0.861653i −0.902435 0.430826i \(-0.858222\pi\)
0.902435 0.430826i \(-0.141778\pi\)
\(734\) 0 0
\(735\) 5.66106 + 3.26841i 0.208811 + 0.120557i
\(736\) 0 0
\(737\) −2.74526 + 4.75493i −0.101123 + 0.175150i
\(738\) 0 0
\(739\) 1.88090 1.08594i 0.0691899 0.0399468i −0.465006 0.885308i \(-0.653948\pi\)
0.534196 + 0.845361i \(0.320614\pi\)
\(740\) 0 0
\(741\) 5.64111 + 7.49947i 0.207231 + 0.275500i
\(742\) 0 0
\(743\) 40.3332 23.2864i 1.47968 0.854296i 0.479948 0.877297i \(-0.340656\pi\)
0.999735 + 0.0230015i \(0.00732227\pi\)
\(744\) 0 0
\(745\) 1.82647 3.16355i 0.0669168 0.115903i
\(746\) 0 0
\(747\) 12.7850 + 7.38139i 0.467777 + 0.270071i
\(748\) 0 0
\(749\) 27.1876i 0.993414i
\(750\) 0 0
\(751\) 21.1998 + 36.7191i 0.773590 + 1.33990i 0.935583 + 0.353106i \(0.114874\pi\)
−0.161993 + 0.986792i \(0.551792\pi\)
\(752\) 0 0
\(753\) 18.5974 0.677726
\(754\) 0 0
\(755\) −0.785291 −0.0285797
\(756\) 0 0
\(757\) 0.402625 + 0.697367i 0.0146337 + 0.0253462i 0.873250 0.487273i \(-0.162008\pi\)
−0.858616 + 0.512620i \(0.828675\pi\)
\(758\) 0 0
\(759\) 6.29763i 0.228589i
\(760\) 0 0
\(761\) 1.04395 + 0.602723i 0.0378430 + 0.0218487i 0.518802 0.854894i \(-0.326378\pi\)
−0.480959 + 0.876743i \(0.659711\pi\)
\(762\) 0 0
\(763\) 22.3045 38.6326i 0.807478 1.39859i
\(764\) 0 0
\(765\) 3.26841 1.88702i 0.118170 0.0682254i
\(766\) 0 0
\(767\) −5.32063 + 0.648627i −0.192117 + 0.0234206i
\(768\) 0 0
\(769\) −13.1878 + 7.61397i −0.475564 + 0.274567i −0.718566 0.695459i \(-0.755201\pi\)
0.243002 + 0.970026i \(0.421868\pi\)
\(770\) 0 0
\(771\) −14.9531 + 25.8996i −0.538524 + 0.932750i
\(772\) 0 0
\(773\) 15.7092 + 9.06971i 0.565021 + 0.326215i 0.755158 0.655543i \(-0.227560\pi\)
−0.190137 + 0.981757i \(0.560893\pi\)
\(774\) 0 0
\(775\) 8.55793i 0.307410i
\(776\) 0 0
\(777\) 4.26528 + 7.38767i 0.153016 + 0.265031i
\(778\) 0 0
\(779\) −27.8550 −0.998008
\(780\) 0 0
\(781\) −3.15000 −0.112716
\(782\) 0 0
\(783\) 0.411667 + 0.713029i 0.0147118 + 0.0254816i
\(784\) 0 0
\(785\) 6.41039i 0.228797i
\(786\) 0 0
\(787\) −15.1991 8.77521i −0.541790 0.312802i 0.204014 0.978968i \(-0.434601\pi\)
−0.745804 + 0.666166i \(0.767934\pi\)
\(788\) 0 0
\(789\) 5.03341 8.71813i 0.179194 0.310373i
\(790\) 0 0
\(791\) −7.65130 + 4.41748i −0.272049 + 0.157068i
\(792\) 0 0
\(793\) −5.12246 42.0191i −0.181904 1.49214i
\(794\) 0 0
\(795\) −4.11926 + 2.37826i −0.146095 + 0.0843480i
\(796\) 0 0
\(797\) 9.67937 16.7652i 0.342861 0.593852i −0.642102 0.766619i \(-0.721937\pi\)
0.984963 + 0.172767i \(0.0552708\pi\)
\(798\) 0 0
\(799\) 50.1841 + 28.9738i 1.77539 + 1.02502i
\(800\) 0 0
\(801\) 7.30404i 0.258075i
\(802\) 0 0
\(803\) 5.07736 + 8.79424i 0.179176 + 0.310342i
\(804\) 0 0
\(805\) 8.25474 0.290941
\(806\) 0 0
\(807\) −28.1336 −0.990351
\(808\) 0 0
\(809\) −5.23429 9.06605i −0.184028 0.318745i 0.759221 0.650833i \(-0.225580\pi\)
−0.943248 + 0.332088i \(0.892247\pi\)
\(810\) 0 0
\(811\) 38.1332i 1.33904i 0.742795 + 0.669518i \(0.233500\pi\)
−0.742795 + 0.669518i \(0.766500\pi\)
\(812\) 0 0
\(813\) 22.5593 + 13.0246i 0.791188 + 0.456793i
\(814\) 0 0
\(815\) 4.50215 7.79794i 0.157703 0.273150i
\(816\) 0 0
\(817\) 22.2927 12.8707i 0.779921 0.450288i
\(818\) 0 0
\(819\) 6.43069 15.1134i 0.224706 0.528107i
\(820\) 0 0
\(821\) 9.47772 5.47196i 0.330775 0.190973i −0.325410 0.945573i \(-0.605502\pi\)
0.656185 + 0.754600i \(0.272169\pi\)
\(822\) 0 0
\(823\) 19.7578 34.2215i 0.688714 1.19289i −0.283540 0.958960i \(-0.591509\pi\)
0.972254 0.233928i \(-0.0751578\pi\)
\(824\) 0 0
\(825\) 6.83017 + 3.94340i 0.237796 + 0.137292i
\(826\) 0 0
\(827\) 38.3552i 1.33374i −0.745174 0.666870i \(-0.767633\pi\)
0.745174 0.666870i \(-0.232367\pi\)
\(828\) 0 0
\(829\) 0.548578 + 0.950166i 0.0190529 + 0.0330006i 0.875395 0.483409i \(-0.160602\pi\)
−0.856342 + 0.516410i \(0.827268\pi\)
\(830\) 0 0
\(831\) −7.85156 −0.272368
\(832\) 0 0
\(833\) 109.180 3.78285
\(834\) 0 0
\(835\) −0.664199 1.15043i −0.0229856 0.0398122i
\(836\) 0 0
\(837\) 1.79260i 0.0619612i
\(838\) 0 0
\(839\) −9.92981 5.73298i −0.342815 0.197924i 0.318701 0.947855i \(-0.396753\pi\)
−0.661516 + 0.749931i \(0.730087\pi\)
\(840\) 0 0
\(841\) 14.1611 24.5277i 0.488312 0.845782i
\(842\) 0 0
\(843\) 1.09175 0.630322i 0.0376018 0.0217094i
\(844\) 0 0
\(845\) −5.93725 1.71358i −0.204247 0.0589491i
\(846\) 0 0
\(847\) 32.6291 18.8384i 1.12115 0.647296i
\(848\) 0 0
\(849\) −1.30966 + 2.26840i −0.0449474 + 0.0778513i
\(850\) 0 0
\(851\) 6.18223 + 3.56931i 0.211924 + 0.122354i
\(852\) 0 0
\(853\) 18.6403i 0.638232i −0.947716 0.319116i \(-0.896614\pi\)
0.947716 0.319116i \(-0.103386\pi\)
\(854\) 0 0
\(855\) 0.618606 + 1.07146i 0.0211559 + 0.0366430i
\(856\) 0 0
\(857\) −41.9413 −1.43269 −0.716344 0.697747i \(-0.754186\pi\)
−0.716344 + 0.697747i \(0.754186\pi\)
\(858\) 0 0
\(859\) −8.80656 −0.300476 −0.150238 0.988650i \(-0.548004\pi\)
−0.150238 + 0.988650i \(0.548004\pi\)
\(860\) 0 0
\(861\) 24.3764 + 42.2212i 0.830746 + 1.43889i
\(862\) 0 0
\(863\) 20.0833i 0.683643i 0.939765 + 0.341822i \(0.111044\pi\)
−0.939765 + 0.341822i \(0.888956\pi\)
\(864\) 0 0
\(865\) −2.86138 1.65202i −0.0972898 0.0561703i
\(866\) 0 0
\(867\) 23.0175 39.8674i 0.781714 1.35397i
\(868\) 0 0
\(869\) 15.3821 8.88087i 0.521802 0.301263i
\(870\) 0 0
\(871\) −4.69171 + 11.0265i −0.158972 + 0.373618i
\(872\) 0 0
\(873\) 3.62423 2.09245i 0.122662 0.0708187i
\(874\) 0 0
\(875\) −10.5824 + 18.3293i −0.357751 + 0.619643i
\(876\) 0 0
\(877\) −29.0698 16.7835i −0.981617 0.566737i −0.0788594 0.996886i \(-0.525128\pi\)
−0.902758 + 0.430149i \(0.858461\pi\)
\(878\) 0 0
\(879\) 25.4386i 0.858023i
\(880\) 0 0
\(881\) 17.6280 + 30.5326i 0.593903 + 1.02867i 0.993701 + 0.112067i \(0.0357471\pi\)
−0.399797 + 0.916604i \(0.630920\pi\)
\(882\) 0 0
\(883\) −7.59185 −0.255486 −0.127743 0.991807i \(-0.540773\pi\)
−0.127743 + 0.991807i \(0.540773\pi\)
\(884\) 0 0
\(885\) −0.706661 −0.0237541
\(886\) 0 0
\(887\) 15.9073 + 27.5523i 0.534115 + 0.925115i 0.999206 + 0.0398516i \(0.0126885\pi\)
−0.465090 + 0.885263i \(0.653978\pi\)
\(888\) 0 0
\(889\) 40.4182i 1.35558i
\(890\) 0 0
\(891\) −1.43069 0.826009i −0.0479299 0.0276723i
\(892\) 0 0
\(893\) −9.49823 + 16.4514i −0.317846 + 0.550526i
\(894\) 0 0
\(895\) −4.09433 + 2.36386i −0.136858 + 0.0790153i
\(896\) 0 0
\(897\) −1.66327 13.6437i −0.0555349 0.455548i
\(898\) 0 0
\(899\) −1.27817 + 0.737954i −0.0426295 + 0.0246121i
\(900\) 0 0
\(901\) −39.7222 + 68.8009i −1.32334 + 2.29209i
\(902\) 0 0
\(903\) −39.0175 22.5267i −1.29842 0.749643i
\(904\) 0 0
\(905\) 6.17424i 0.205239i
\(906\) 0 0
\(907\) −12.4320 21.5328i −0.412796 0.714984i 0.582398 0.812904i \(-0.302115\pi\)
−0.995194 + 0.0979194i \(0.968781\pi\)
\(908\) 0 0
\(909\) 5.51930 0.183064
\(910\) 0 0
\(911\) −28.9183 −0.958105 −0.479052 0.877786i \(-0.659020\pi\)
−0.479052 + 0.877786i \(0.659020\pi\)
\(912\) 0 0
\(913\) −12.1942 21.1210i −0.403569 0.699002i
\(914\) 0 0
\(915\) 5.58078i 0.184495i
\(916\) 0 0
\(917\) −15.6915 9.05952i −0.518181 0.299172i
\(918\) 0 0
\(919\) −9.62560 + 16.6720i −0.317519 + 0.549960i −0.979970 0.199146i \(-0.936183\pi\)
0.662451 + 0.749106i \(0.269516\pi\)
\(920\) 0 0
\(921\) 13.4321 7.75500i 0.442601 0.255536i
\(922\) 0 0
\(923\) −6.82439 + 0.831947i −0.224628 + 0.0273839i
\(924\) 0 0
\(925\) −7.74227 + 4.47000i −0.254564 + 0.146973i
\(926\) 0 0
\(927\) −5.94508 + 10.2972i −0.195262 + 0.338204i
\(928\) 0 0
\(929\) 13.1348 + 7.58336i 0.430938 + 0.248802i 0.699746 0.714392i \(-0.253296\pi\)
−0.268808 + 0.963194i \(0.586630\pi\)
\(930\) 0 0
\(931\) 35.7914i 1.17302i
\(932\) 0 0
\(933\) −9.54146 16.5263i −0.312373 0.541047i
\(934\) 0 0
\(935\) −6.23478 −0.203899
\(936\) 0 0
\(937\) 49.2136 1.60774 0.803869 0.594807i \(-0.202771\pi\)
0.803869 + 0.594807i \(0.202771\pi\)
\(938\) 0 0
\(939\) 6.17032 + 10.6873i 0.201361 + 0.348767i
\(940\) 0 0
\(941\) 46.2058i 1.50627i −0.657868 0.753133i \(-0.728541\pi\)
0.657868 0.753133i \(-0.271459\pi\)
\(942\) 0 0
\(943\) 35.3320 + 20.3989i 1.15057 + 0.664280i
\(944\) 0 0
\(945\) 1.08271 1.87530i 0.0352205 0.0610036i
\(946\) 0 0
\(947\) −17.6367 + 10.1826i −0.573117 + 0.330889i −0.758393 0.651797i \(-0.774015\pi\)
0.185277 + 0.982686i \(0.440682\pi\)
\(948\) 0 0
\(949\) 13.3226 + 17.7115i 0.432470 + 0.574940i
\(950\) 0 0
\(951\) 16.9426 9.78181i 0.549401 0.317197i
\(952\) 0 0
\(953\) 15.8233 27.4068i 0.512568 0.887794i −0.487326 0.873220i \(-0.662028\pi\)
0.999894 0.0145737i \(-0.00463912\pi\)
\(954\) 0 0
\(955\) 4.79455 + 2.76814i 0.155148 + 0.0895748i
\(956\) 0 0
\(957\) 1.36016i 0.0439678i
\(958\) 0 0
\(959\) −39.8523 69.0263i −1.28690 2.22897i
\(960\) 0 0
\(961\) 27.7866 0.896342
\(962\) 0 0
\(963\) −5.96823 −0.192324
\(964\) 0 0
\(965\) −0.147663 0.255761i −0.00475345 0.00823322i
\(966\) 0 0
\(967\) 16.7482i 0.538585i 0.963058 + 0.269293i \(0.0867899\pi\)
−0.963058 + 0.269293i \(0.913210\pi\)
\(968\) 0 0
\(969\) 17.8957 + 10.3321i 0.574893 + 0.331915i
\(970\) 0 0
\(971\) −2.70131 + 4.67881i −0.0866892 + 0.150150i −0.906110 0.423043i \(-0.860962\pi\)
0.819421 + 0.573193i \(0.194295\pi\)
\(972\) 0 0
\(973\) 79.9948 46.1850i 2.56452 1.48062i
\(974\) 0 0
\(975\) 15.8389 + 6.73936i 0.507250 + 0.215832i
\(976\) 0 0
\(977\) −33.3556 + 19.2579i −1.06714 + 0.616114i −0.927399 0.374074i \(-0.877961\pi\)
−0.139742 + 0.990188i \(0.544627\pi\)
\(978\) 0 0
\(979\) −6.03320 + 10.4498i −0.192822 + 0.333977i
\(980\) 0 0
\(981\) −8.48064 4.89630i −0.270766 0.156327i
\(982\) 0 0
\(983\) 32.5378i 1.03779i −0.854837 0.518897i \(-0.826343\pi\)
0.854837 0.518897i \(-0.173657\pi\)
\(984\) 0 0
\(985\) 0.441224 + 0.764222i 0.0140586 + 0.0243501i
\(986\) 0 0
\(987\) 33.2483 1.05831
\(988\) 0 0
\(989\) −37.7021 −1.19886
\(990\) 0 0
\(991\) −0.491235 0.850844i −0.0156046 0.0270280i 0.858118 0.513453i \(-0.171634\pi\)
−0.873722 + 0.486425i \(0.838301\pi\)
\(992\) 0 0
\(993\) 25.7291i 0.816487i
\(994\) 0 0
\(995\) 5.67754 + 3.27793i 0.179990 + 0.103917i
\(996\) 0 0
\(997\) 25.0536 43.3942i 0.793457 1.37431i −0.130358 0.991467i \(-0.541613\pi\)
0.923814 0.382840i \(-0.125054\pi\)
\(998\) 0 0
\(999\) 1.62174 0.936315i 0.0513097 0.0296237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.bv.g.49.2 8
3.2 odd 2 1872.2.by.m.1297.3 8
4.3 odd 2 312.2.bf.b.49.2 8
12.11 even 2 936.2.bi.c.361.3 8
13.2 odd 12 8112.2.a.cs.1.2 4
13.4 even 6 inner 624.2.bv.g.433.3 8
13.11 odd 12 8112.2.a.cq.1.3 4
39.17 odd 6 1872.2.by.m.433.2 8
52.3 odd 6 4056.2.c.p.337.4 8
52.11 even 12 4056.2.a.bd.1.3 4
52.15 even 12 4056.2.a.be.1.2 4
52.23 odd 6 4056.2.c.p.337.5 8
52.43 odd 6 312.2.bf.b.121.3 yes 8
156.95 even 6 936.2.bi.c.433.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.b.49.2 8 4.3 odd 2
312.2.bf.b.121.3 yes 8 52.43 odd 6
624.2.bv.g.49.2 8 1.1 even 1 trivial
624.2.bv.g.433.3 8 13.4 even 6 inner
936.2.bi.c.361.3 8 12.11 even 2
936.2.bi.c.433.2 8 156.95 even 6
1872.2.by.m.433.2 8 39.17 odd 6
1872.2.by.m.1297.3 8 3.2 odd 2
4056.2.a.bd.1.3 4 52.11 even 12
4056.2.a.be.1.2 4 52.15 even 12
4056.2.c.p.337.4 8 52.3 odd 6
4056.2.c.p.337.5 8 52.23 odd 6
8112.2.a.cq.1.3 4 13.11 odd 12
8112.2.a.cs.1.2 4 13.2 odd 12