Properties

Label 624.2.bv.g.49.3
Level $624$
Weight $2$
Character 624.49
Analytic conductor $4.983$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(49,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.bv (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.649638144.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 75x^{4} - 170x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(-1.42055 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 624.49
Dual form 624.2.bv.g.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +1.28657i q^{5} +(-1.69781 - 0.980228i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-4.77611 + 2.75749i) q^{11} +(-1.70297 + 3.17803i) q^{13} +(-1.11420 + 0.643285i) q^{15} +(0.911235 - 1.57830i) q^{17} +(-7.00452 - 4.04406i) q^{19} -1.96046i q^{21} +(3.48954 + 6.04406i) q^{23} +3.34474 q^{25} -1.00000 q^{27} +(1.11420 + 1.92986i) q^{29} +4.44548i q^{31} +(-4.77611 - 2.75749i) q^{33} +(1.26113 - 2.18435i) q^{35} +(-2.42621 + 1.40077i) q^{37} +(-3.60374 + 0.114203i) q^{39} +(-3.96940 + 2.29173i) q^{41} +(2.69781 - 4.67274i) q^{43} +(-1.11420 - 0.643285i) q^{45} -5.05816i q^{47} +(-1.57830 - 2.73370i) q^{49} +1.82247 q^{51} -2.44649 q^{53} +(-3.54770 - 6.14480i) q^{55} -8.08812i q^{57} +(8.69251 + 5.01862i) q^{59} +(-6.45364 + 11.1780i) q^{61} +(1.69781 - 0.980228i) q^{63} +(-4.08877 - 2.19099i) q^{65} +(-2.07379 + 1.19730i) q^{67} +(-3.48954 + 6.04406i) q^{69} +(13.0926 + 7.55904i) q^{71} +2.62301i q^{73} +(1.67237 + 2.89663i) q^{75} +10.8119 q^{77} -6.15661 q^{79} +(-0.500000 - 0.866025i) q^{81} +5.59406i q^{83} +(2.03060 + 1.17237i) q^{85} +(-1.11420 + 1.92986i) q^{87} +(13.0163 - 7.51498i) q^{89} +(6.00651 - 3.72638i) q^{91} +(-3.84990 + 2.22274i) q^{93} +(5.20297 - 9.01181i) q^{95} +(-12.0783 - 6.97341i) q^{97} -5.51498i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{9} + 6 q^{11} - 6 q^{13} - 6 q^{15} + 12 q^{17} - 6 q^{19} + 2 q^{23} - 4 q^{25} - 8 q^{27} + 6 q^{29} + 6 q^{33} - 10 q^{35} - 24 q^{41} + 8 q^{43} - 6 q^{45} + 18 q^{49} + 24 q^{51}+ \cdots - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.28657i 0.575372i 0.957725 + 0.287686i \(0.0928859\pi\)
−0.957725 + 0.287686i \(0.907114\pi\)
\(6\) 0 0
\(7\) −1.69781 0.980228i −0.641710 0.370492i 0.143563 0.989641i \(-0.454144\pi\)
−0.785273 + 0.619150i \(0.787477\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −4.77611 + 2.75749i −1.44005 + 0.831414i −0.997852 0.0655030i \(-0.979135\pi\)
−0.442199 + 0.896917i \(0.645801\pi\)
\(12\) 0 0
\(13\) −1.70297 + 3.17803i −0.472318 + 0.881428i
\(14\) 0 0
\(15\) −1.11420 + 0.643285i −0.287686 + 0.166096i
\(16\) 0 0
\(17\) 0.911235 1.57830i 0.221007 0.382795i −0.734107 0.679034i \(-0.762399\pi\)
0.955114 + 0.296239i \(0.0957323\pi\)
\(18\) 0 0
\(19\) −7.00452 4.04406i −1.60695 0.927771i −0.990048 0.140728i \(-0.955056\pi\)
−0.616898 0.787043i \(-0.711611\pi\)
\(20\) 0 0
\(21\) 1.96046i 0.427807i
\(22\) 0 0
\(23\) 3.48954 + 6.04406i 0.727619 + 1.26027i 0.957887 + 0.287146i \(0.0927065\pi\)
−0.230268 + 0.973127i \(0.573960\pi\)
\(24\) 0 0
\(25\) 3.34474 0.668947
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.11420 + 1.92986i 0.206902 + 0.358365i 0.950737 0.309998i \(-0.100328\pi\)
−0.743835 + 0.668363i \(0.766995\pi\)
\(30\) 0 0
\(31\) 4.44548i 0.798432i 0.916857 + 0.399216i \(0.130718\pi\)
−0.916857 + 0.399216i \(0.869282\pi\)
\(32\) 0 0
\(33\) −4.77611 2.75749i −0.831414 0.480017i
\(34\) 0 0
\(35\) 1.26113 2.18435i 0.213170 0.369222i
\(36\) 0 0
\(37\) −2.42621 + 1.40077i −0.398867 + 0.230286i −0.685995 0.727606i \(-0.740633\pi\)
0.287128 + 0.957892i \(0.407299\pi\)
\(38\) 0 0
\(39\) −3.60374 + 0.114203i −0.577061 + 0.0182871i
\(40\) 0 0
\(41\) −3.96940 + 2.29173i −0.619916 + 0.357909i −0.776836 0.629703i \(-0.783177\pi\)
0.156920 + 0.987611i \(0.449843\pi\)
\(42\) 0 0
\(43\) 2.69781 4.67274i 0.411411 0.712586i −0.583633 0.812018i \(-0.698369\pi\)
0.995044 + 0.0994321i \(0.0317026\pi\)
\(44\) 0 0
\(45\) −1.11420 0.643285i −0.166096 0.0958953i
\(46\) 0 0
\(47\) 5.05816i 0.737809i −0.929467 0.368905i \(-0.879733\pi\)
0.929467 0.368905i \(-0.120267\pi\)
\(48\) 0 0
\(49\) −1.57830 2.73370i −0.225472 0.390529i
\(50\) 0 0
\(51\) 1.82247 0.255197
\(52\) 0 0
\(53\) −2.44649 −0.336051 −0.168025 0.985783i \(-0.553739\pi\)
−0.168025 + 0.985783i \(0.553739\pi\)
\(54\) 0 0
\(55\) −3.54770 6.14480i −0.478372 0.828565i
\(56\) 0 0
\(57\) 8.08812i 1.07130i
\(58\) 0 0
\(59\) 8.69251 + 5.01862i 1.13167 + 0.653369i 0.944354 0.328931i \(-0.106688\pi\)
0.187314 + 0.982300i \(0.440022\pi\)
\(60\) 0 0
\(61\) −6.45364 + 11.1780i −0.826304 + 1.43120i 0.0746146 + 0.997212i \(0.476227\pi\)
−0.900919 + 0.433988i \(0.857106\pi\)
\(62\) 0 0
\(63\) 1.69781 0.980228i 0.213903 0.123497i
\(64\) 0 0
\(65\) −4.08877 2.19099i −0.507149 0.271759i
\(66\) 0 0
\(67\) −2.07379 + 1.19730i −0.253354 + 0.146274i −0.621299 0.783574i \(-0.713395\pi\)
0.367945 + 0.929847i \(0.380061\pi\)
\(68\) 0 0
\(69\) −3.48954 + 6.04406i −0.420091 + 0.727619i
\(70\) 0 0
\(71\) 13.0926 + 7.55904i 1.55381 + 0.897093i 0.997826 + 0.0658992i \(0.0209916\pi\)
0.555984 + 0.831193i \(0.312342\pi\)
\(72\) 0 0
\(73\) 2.62301i 0.307000i 0.988149 + 0.153500i \(0.0490545\pi\)
−0.988149 + 0.153500i \(0.950945\pi\)
\(74\) 0 0
\(75\) 1.67237 + 2.89663i 0.193108 + 0.334474i
\(76\) 0 0
\(77\) 10.8119 1.23213
\(78\) 0 0
\(79\) −6.15661 −0.692673 −0.346336 0.938110i \(-0.612574\pi\)
−0.346336 + 0.938110i \(0.612574\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 5.59406i 0.614028i 0.951705 + 0.307014i \(0.0993299\pi\)
−0.951705 + 0.307014i \(0.900670\pi\)
\(84\) 0 0
\(85\) 2.03060 + 1.17237i 0.220250 + 0.127161i
\(86\) 0 0
\(87\) −1.11420 + 1.92986i −0.119455 + 0.206902i
\(88\) 0 0
\(89\) 13.0163 7.51498i 1.37973 0.796586i 0.387601 0.921827i \(-0.373304\pi\)
0.992126 + 0.125241i \(0.0399705\pi\)
\(90\) 0 0
\(91\) 6.00651 3.72638i 0.629653 0.390631i
\(92\) 0 0
\(93\) −3.84990 + 2.22274i −0.399216 + 0.230487i
\(94\) 0 0
\(95\) 5.20297 9.01181i 0.533813 0.924592i
\(96\) 0 0
\(97\) −12.0783 6.97341i −1.22637 0.708043i −0.260098 0.965582i \(-0.583755\pi\)
−0.966268 + 0.257539i \(0.917088\pi\)
\(98\) 0 0
\(99\) 5.51498i 0.554276i
\(100\) 0 0
\(101\) 2.62918 + 4.55387i 0.261613 + 0.453127i 0.966671 0.256023i \(-0.0824122\pi\)
−0.705058 + 0.709150i \(0.749079\pi\)
\(102\) 0 0
\(103\) 7.39561 0.728711 0.364356 0.931260i \(-0.381289\pi\)
0.364356 + 0.931260i \(0.381289\pi\)
\(104\) 0 0
\(105\) 2.52227 0.246148
\(106\) 0 0
\(107\) 3.88515 + 6.72928i 0.375592 + 0.650544i 0.990415 0.138121i \(-0.0441062\pi\)
−0.614824 + 0.788665i \(0.710773\pi\)
\(108\) 0 0
\(109\) 12.4455i 1.19206i −0.802962 0.596030i \(-0.796744\pi\)
0.802962 0.596030i \(-0.203256\pi\)
\(110\) 0 0
\(111\) −2.42621 1.40077i −0.230286 0.132956i
\(112\) 0 0
\(113\) −2.08877 + 3.61785i −0.196495 + 0.340338i −0.947389 0.320083i \(-0.896289\pi\)
0.750895 + 0.660422i \(0.229622\pi\)
\(114\) 0 0
\(115\) −7.77611 + 4.48954i −0.725126 + 0.418652i
\(116\) 0 0
\(117\) −1.90077 3.06383i −0.175727 0.283251i
\(118\) 0 0
\(119\) −3.09420 + 1.78644i −0.283645 + 0.163762i
\(120\) 0 0
\(121\) 9.70748 16.8139i 0.882499 1.52853i
\(122\) 0 0
\(123\) −3.96940 2.29173i −0.357909 0.206639i
\(124\) 0 0
\(125\) 10.7361i 0.960265i
\(126\) 0 0
\(127\) 2.09923 + 3.63597i 0.186276 + 0.322640i 0.944006 0.329929i \(-0.107025\pi\)
−0.757730 + 0.652569i \(0.773691\pi\)
\(128\) 0 0
\(129\) 5.39561 0.475057
\(130\) 0 0
\(131\) −11.5013 −1.00488 −0.502439 0.864613i \(-0.667564\pi\)
−0.502439 + 0.864613i \(0.667564\pi\)
\(132\) 0 0
\(133\) 7.92820 + 13.7321i 0.687462 + 1.19072i
\(134\) 0 0
\(135\) 1.28657i 0.110730i
\(136\) 0 0
\(137\) 7.58613 + 4.37985i 0.648127 + 0.374196i 0.787738 0.616010i \(-0.211252\pi\)
−0.139612 + 0.990206i \(0.544585\pi\)
\(138\) 0 0
\(139\) 7.48424 12.9631i 0.634805 1.09951i −0.351751 0.936093i \(-0.614414\pi\)
0.986556 0.163421i \(-0.0522529\pi\)
\(140\) 0 0
\(141\) 4.38050 2.52908i 0.368905 0.212987i
\(142\) 0 0
\(143\) −0.629827 19.8746i −0.0526688 1.66199i
\(144\) 0 0
\(145\) −2.48290 + 1.43350i −0.206193 + 0.119046i
\(146\) 0 0
\(147\) 1.57830 2.73370i 0.130176 0.225472i
\(148\) 0 0
\(149\) 6.73822 + 3.89031i 0.552016 + 0.318707i 0.749935 0.661512i \(-0.230085\pi\)
−0.197918 + 0.980218i \(0.563418\pi\)
\(150\) 0 0
\(151\) 5.51498i 0.448802i 0.974497 + 0.224401i \(0.0720426\pi\)
−0.974497 + 0.224401i \(0.927957\pi\)
\(152\) 0 0
\(153\) 0.911235 + 1.57830i 0.0736690 + 0.127598i
\(154\) 0 0
\(155\) −5.71942 −0.459395
\(156\) 0 0
\(157\) 20.5104 1.63691 0.818453 0.574573i \(-0.194832\pi\)
0.818453 + 0.574573i \(0.194832\pi\)
\(158\) 0 0
\(159\) −1.22324 2.11872i −0.0970095 0.168025i
\(160\) 0 0
\(161\) 13.6822i 1.07831i
\(162\) 0 0
\(163\) 15.8695 + 9.16228i 1.24300 + 0.717645i 0.969703 0.244286i \(-0.0785535\pi\)
0.273294 + 0.961931i \(0.411887\pi\)
\(164\) 0 0
\(165\) 3.54770 6.14480i 0.276188 0.478372i
\(166\) 0 0
\(167\) 7.08083 4.08812i 0.547931 0.316348i −0.200356 0.979723i \(-0.564210\pi\)
0.748287 + 0.663375i \(0.230877\pi\)
\(168\) 0 0
\(169\) −7.19980 10.8242i −0.553831 0.832629i
\(170\) 0 0
\(171\) 7.00452 4.04406i 0.535649 0.309257i
\(172\) 0 0
\(173\) 4.28657 7.42456i 0.325902 0.564479i −0.655793 0.754941i \(-0.727665\pi\)
0.981694 + 0.190462i \(0.0609987\pi\)
\(174\) 0 0
\(175\) −5.67871 3.27860i −0.429270 0.247839i
\(176\) 0 0
\(177\) 10.0372i 0.754445i
\(178\) 0 0
\(179\) 1.86552 + 3.23118i 0.139436 + 0.241510i 0.927283 0.374361i \(-0.122138\pi\)
−0.787847 + 0.615870i \(0.788804\pi\)
\(180\) 0 0
\(181\) 5.24933 0.390179 0.195090 0.980785i \(-0.437500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(182\) 0 0
\(183\) −12.9073 −0.954134
\(184\) 0 0
\(185\) −1.80219 3.12149i −0.132500 0.229497i
\(186\) 0 0
\(187\) 10.0509i 0.734993i
\(188\) 0 0
\(189\) 1.69781 + 0.980228i 0.123497 + 0.0713011i
\(190\) 0 0
\(191\) −2.77159 + 4.80054i −0.200546 + 0.347355i −0.948704 0.316165i \(-0.897605\pi\)
0.748159 + 0.663520i \(0.230938\pi\)
\(192\) 0 0
\(193\) −8.82381 + 5.09443i −0.635152 + 0.366705i −0.782745 0.622343i \(-0.786181\pi\)
0.147593 + 0.989048i \(0.452848\pi\)
\(194\) 0 0
\(195\) −0.146930 4.63647i −0.0105219 0.332024i
\(196\) 0 0
\(197\) −22.3923 + 12.9282i −1.59539 + 0.921096i −0.603025 + 0.797722i \(0.706038\pi\)
−0.992360 + 0.123374i \(0.960628\pi\)
\(198\) 0 0
\(199\) −6.27095 + 10.8616i −0.444536 + 0.769958i −0.998020 0.0629014i \(-0.979965\pi\)
0.553484 + 0.832860i \(0.313298\pi\)
\(200\) 0 0
\(201\) −2.07379 1.19730i −0.146274 0.0844512i
\(202\) 0 0
\(203\) 4.36869i 0.306622i
\(204\) 0 0
\(205\) −2.94848 5.10691i −0.205931 0.356682i
\(206\) 0 0
\(207\) −6.97908 −0.485079
\(208\) 0 0
\(209\) 44.6058 3.08545
\(210\) 0 0
\(211\) −6.20496 10.7473i −0.427167 0.739875i 0.569453 0.822024i \(-0.307155\pi\)
−0.996620 + 0.0821488i \(0.973822\pi\)
\(212\) 0 0
\(213\) 15.1181i 1.03587i
\(214\) 0 0
\(215\) 6.01181 + 3.47092i 0.410002 + 0.236715i
\(216\) 0 0
\(217\) 4.35759 7.54756i 0.295812 0.512362i
\(218\) 0 0
\(219\) −2.27159 + 1.31151i −0.153500 + 0.0886233i
\(220\) 0 0
\(221\) 3.46410 + 5.58374i 0.233021 + 0.375603i
\(222\) 0 0
\(223\) −16.6134 + 9.59176i −1.11252 + 0.642312i −0.939480 0.342603i \(-0.888691\pi\)
−0.173037 + 0.984915i \(0.555358\pi\)
\(224\) 0 0
\(225\) −1.67237 + 2.89663i −0.111491 + 0.193108i
\(226\) 0 0
\(227\) −9.16443 5.29109i −0.608265 0.351182i 0.164021 0.986457i \(-0.447553\pi\)
−0.772286 + 0.635275i \(0.780887\pi\)
\(228\) 0 0
\(229\) 19.4595i 1.28592i −0.765900 0.642960i \(-0.777706\pi\)
0.765900 0.642960i \(-0.222294\pi\)
\(230\) 0 0
\(231\) 5.40594 + 9.36336i 0.355685 + 0.616064i
\(232\) 0 0
\(233\) −27.4243 −1.79662 −0.898312 0.439358i \(-0.855206\pi\)
−0.898312 + 0.439358i \(0.855206\pi\)
\(234\) 0 0
\(235\) 6.50769 0.424515
\(236\) 0 0
\(237\) −3.07830 5.33178i −0.199957 0.346336i
\(238\) 0 0
\(239\) 2.76100i 0.178594i 0.996005 + 0.0892971i \(0.0284621\pi\)
−0.996005 + 0.0892971i \(0.971538\pi\)
\(240\) 0 0
\(241\) 5.34990 + 3.08877i 0.344617 + 0.198965i 0.662312 0.749228i \(-0.269575\pi\)
−0.317695 + 0.948193i \(0.602909\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 3.51710 2.03060i 0.224699 0.129730i
\(246\) 0 0
\(247\) 24.7806 15.3737i 1.57675 0.978204i
\(248\) 0 0
\(249\) −4.84460 + 2.79703i −0.307014 + 0.177255i
\(250\) 0 0
\(251\) 7.05816 12.2251i 0.445507 0.771641i −0.552580 0.833460i \(-0.686357\pi\)
0.998087 + 0.0618184i \(0.0196900\pi\)
\(252\) 0 0
\(253\) −33.3328 19.2447i −2.09562 1.20991i
\(254\) 0 0
\(255\) 2.34474i 0.146833i
\(256\) 0 0
\(257\) −5.81123 10.0653i −0.362494 0.627859i 0.625876 0.779922i \(-0.284741\pi\)
−0.988371 + 0.152064i \(0.951408\pi\)
\(258\) 0 0
\(259\) 5.49231 0.341276
\(260\) 0 0
\(261\) −2.22841 −0.137935
\(262\) 0 0
\(263\) −4.31201 7.46862i −0.265890 0.460535i 0.701907 0.712269i \(-0.252332\pi\)
−0.967796 + 0.251734i \(0.918999\pi\)
\(264\) 0 0
\(265\) 3.14758i 0.193354i
\(266\) 0 0
\(267\) 13.0163 + 7.51498i 0.796586 + 0.459909i
\(268\) 0 0
\(269\) −12.6240 + 21.8654i −0.769700 + 1.33316i 0.168026 + 0.985783i \(0.446261\pi\)
−0.937726 + 0.347377i \(0.887073\pi\)
\(270\) 0 0
\(271\) −2.59632 + 1.49898i −0.157715 + 0.0910568i −0.576780 0.816899i \(-0.695691\pi\)
0.419065 + 0.907956i \(0.362358\pi\)
\(272\) 0 0
\(273\) 6.23040 + 3.33860i 0.377081 + 0.202061i
\(274\) 0 0
\(275\) −15.9748 + 9.22307i −0.963318 + 0.556172i
\(276\) 0 0
\(277\) −12.4562 + 21.5747i −0.748418 + 1.29630i 0.200162 + 0.979763i \(0.435853\pi\)
−0.948581 + 0.316536i \(0.897480\pi\)
\(278\) 0 0
\(279\) −3.84990 2.22274i −0.230487 0.133072i
\(280\) 0 0
\(281\) 8.38198i 0.500027i 0.968242 + 0.250013i \(0.0804351\pi\)
−0.968242 + 0.250013i \(0.919565\pi\)
\(282\) 0 0
\(283\) 12.9053 + 22.3526i 0.767140 + 1.32873i 0.939108 + 0.343623i \(0.111654\pi\)
−0.171968 + 0.985103i \(0.555013\pi\)
\(284\) 0 0
\(285\) 10.4059 0.616394
\(286\) 0 0
\(287\) 8.98569 0.530409
\(288\) 0 0
\(289\) 6.83930 + 11.8460i 0.402312 + 0.696825i
\(290\) 0 0
\(291\) 13.9468i 0.817577i
\(292\) 0 0
\(293\) −11.0441 6.37634i −0.645206 0.372510i 0.141411 0.989951i \(-0.454836\pi\)
−0.786617 + 0.617441i \(0.788169\pi\)
\(294\) 0 0
\(295\) −6.45681 + 11.1835i −0.375930 + 0.651130i
\(296\) 0 0
\(297\) 4.77611 2.75749i 0.277138 0.160006i
\(298\) 0 0
\(299\) −25.1508 + 0.797032i −1.45451 + 0.0460935i
\(300\) 0 0
\(301\) −9.16070 + 5.28893i −0.528014 + 0.304849i
\(302\) 0 0
\(303\) −2.62918 + 4.55387i −0.151042 + 0.261613i
\(304\) 0 0
\(305\) −14.3813 8.30307i −0.823473 0.475432i
\(306\) 0 0
\(307\) 16.6307i 0.949167i −0.880210 0.474583i \(-0.842599\pi\)
0.880210 0.474583i \(-0.157401\pi\)
\(308\) 0 0
\(309\) 3.69781 + 6.40479i 0.210361 + 0.364356i
\(310\) 0 0
\(311\) 19.3940 1.09974 0.549868 0.835252i \(-0.314678\pi\)
0.549868 + 0.835252i \(0.314678\pi\)
\(312\) 0 0
\(313\) −26.5091 −1.49838 −0.749191 0.662354i \(-0.769557\pi\)
−0.749191 + 0.662354i \(0.769557\pi\)
\(314\) 0 0
\(315\) 1.26113 + 2.18435i 0.0710568 + 0.123074i
\(316\) 0 0
\(317\) 8.13569i 0.456946i −0.973550 0.228473i \(-0.926627\pi\)
0.973550 0.228473i \(-0.0733732\pi\)
\(318\) 0 0
\(319\) −10.6431 6.14480i −0.595900 0.344043i
\(320\) 0 0
\(321\) −3.88515 + 6.72928i −0.216848 + 0.375592i
\(322\) 0 0
\(323\) −12.7655 + 7.37017i −0.710292 + 0.410087i
\(324\) 0 0
\(325\) −5.69598 + 10.6297i −0.315956 + 0.589629i
\(326\) 0 0
\(327\) 10.7781 6.22274i 0.596030 0.344118i
\(328\) 0 0
\(329\) −4.95816 + 8.58778i −0.273352 + 0.473460i
\(330\) 0 0
\(331\) 27.7008 + 15.9930i 1.52257 + 0.879057i 0.999644 + 0.0266797i \(0.00849342\pi\)
0.522927 + 0.852377i \(0.324840\pi\)
\(332\) 0 0
\(333\) 2.80155i 0.153524i
\(334\) 0 0
\(335\) −1.54041 2.66808i −0.0841618 0.145773i
\(336\) 0 0
\(337\) 8.14628 0.443756 0.221878 0.975074i \(-0.428781\pi\)
0.221878 + 0.975074i \(0.428781\pi\)
\(338\) 0 0
\(339\) −4.17753 −0.226892
\(340\) 0 0
\(341\) −12.2584 21.2321i −0.663827 1.14978i
\(342\) 0 0
\(343\) 19.9116i 1.07512i
\(344\) 0 0
\(345\) −7.77611 4.48954i −0.418652 0.241709i
\(346\) 0 0
\(347\) −15.8746 + 27.4955i −0.852191 + 1.47604i 0.0270362 + 0.999634i \(0.491393\pi\)
−0.879227 + 0.476403i \(0.841940\pi\)
\(348\) 0 0
\(349\) 9.86953 5.69817i 0.528304 0.305016i −0.212022 0.977265i \(-0.568005\pi\)
0.740325 + 0.672249i \(0.234671\pi\)
\(350\) 0 0
\(351\) 1.70297 3.17803i 0.0908977 0.169631i
\(352\) 0 0
\(353\) −19.8797 + 11.4776i −1.05809 + 0.610889i −0.924903 0.380202i \(-0.875854\pi\)
−0.133187 + 0.991091i \(0.542521\pi\)
\(354\) 0 0
\(355\) −9.72523 + 16.8446i −0.516162 + 0.894019i
\(356\) 0 0
\(357\) −3.09420 1.78644i −0.163762 0.0945482i
\(358\) 0 0
\(359\) 8.77558i 0.463157i −0.972816 0.231579i \(-0.925611\pi\)
0.972816 0.231579i \(-0.0743891\pi\)
\(360\) 0 0
\(361\) 23.2088 + 40.1989i 1.22152 + 2.11573i
\(362\) 0 0
\(363\) 19.4150 1.01902
\(364\) 0 0
\(365\) −3.37469 −0.176639
\(366\) 0 0
\(367\) −16.8335 29.1565i −0.878701 1.52196i −0.852767 0.522291i \(-0.825077\pi\)
−0.0259341 0.999664i \(-0.508256\pi\)
\(368\) 0 0
\(369\) 4.58347i 0.238606i
\(370\) 0 0
\(371\) 4.15366 + 2.39811i 0.215647 + 0.124504i
\(372\) 0 0
\(373\) −3.24616 + 5.62251i −0.168080 + 0.291122i −0.937745 0.347326i \(-0.887090\pi\)
0.769665 + 0.638448i \(0.220423\pi\)
\(374\) 0 0
\(375\) −9.29773 + 5.36805i −0.480133 + 0.277205i
\(376\) 0 0
\(377\) −8.03060 + 0.254491i −0.413597 + 0.0131069i
\(378\) 0 0
\(379\) −26.4633 + 15.2786i −1.35933 + 0.784809i −0.989533 0.144304i \(-0.953906\pi\)
−0.369796 + 0.929113i \(0.620572\pi\)
\(380\) 0 0
\(381\) −2.09923 + 3.63597i −0.107547 + 0.186276i
\(382\) 0 0
\(383\) −6.40134 3.69581i −0.327093 0.188847i 0.327457 0.944866i \(-0.393808\pi\)
−0.654550 + 0.756019i \(0.727142\pi\)
\(384\) 0 0
\(385\) 13.9102i 0.708932i
\(386\) 0 0
\(387\) 2.69781 + 4.67274i 0.137137 + 0.237529i
\(388\) 0 0
\(389\) 24.8408 1.25948 0.629739 0.776807i \(-0.283162\pi\)
0.629739 + 0.776807i \(0.283162\pi\)
\(390\) 0 0
\(391\) 12.7192 0.643235
\(392\) 0 0
\(393\) −5.75067 9.96046i −0.290083 0.502439i
\(394\) 0 0
\(395\) 7.92091i 0.398544i
\(396\) 0 0
\(397\) 23.4127 + 13.5173i 1.17505 + 0.678416i 0.954864 0.297042i \(-0.0960002\pi\)
0.220186 + 0.975458i \(0.429334\pi\)
\(398\) 0 0
\(399\) −7.92820 + 13.7321i −0.396907 + 0.687462i
\(400\) 0 0
\(401\) −21.4604 + 12.3902i −1.07168 + 0.618736i −0.928641 0.370981i \(-0.879022\pi\)
−0.143042 + 0.989717i \(0.545688\pi\)
\(402\) 0 0
\(403\) −14.1279 7.57051i −0.703760 0.377114i
\(404\) 0 0
\(405\) 1.11420 0.643285i 0.0553652 0.0319651i
\(406\) 0 0
\(407\) 7.72523 13.3805i 0.382926 0.663247i
\(408\) 0 0
\(409\) 13.5393 + 7.81689i 0.669473 + 0.386520i 0.795877 0.605458i \(-0.207010\pi\)
−0.126404 + 0.991979i \(0.540344\pi\)
\(410\) 0 0
\(411\) 8.75970i 0.432084i
\(412\) 0 0
\(413\) −9.83879 17.0413i −0.484135 0.838547i
\(414\) 0 0
\(415\) −7.19716 −0.353295
\(416\) 0 0
\(417\) 14.9685 0.733010
\(418\) 0 0
\(419\) −17.6540 30.5776i −0.862453 1.49381i −0.869554 0.493837i \(-0.835594\pi\)
0.00710136 0.999975i \(-0.497740\pi\)
\(420\) 0 0
\(421\) 36.6693i 1.78715i −0.448912 0.893576i \(-0.648188\pi\)
0.448912 0.893576i \(-0.351812\pi\)
\(422\) 0 0
\(423\) 4.38050 + 2.52908i 0.212987 + 0.122968i
\(424\) 0 0
\(425\) 3.04784 5.27901i 0.147842 0.256070i
\(426\) 0 0
\(427\) 21.9141 12.6521i 1.06050 0.612277i
\(428\) 0 0
\(429\) 16.8970 10.4827i 0.815793 0.506111i
\(430\) 0 0
\(431\) 2.79243 1.61221i 0.134507 0.0776575i −0.431237 0.902239i \(-0.641923\pi\)
0.565743 + 0.824581i \(0.308589\pi\)
\(432\) 0 0
\(433\) 3.39825 5.88594i 0.163309 0.282860i −0.772744 0.634718i \(-0.781116\pi\)
0.936054 + 0.351857i \(0.114450\pi\)
\(434\) 0 0
\(435\) −2.48290 1.43350i −0.119046 0.0687311i
\(436\) 0 0
\(437\) 56.4476i 2.70026i
\(438\) 0 0
\(439\) 4.41852 + 7.65311i 0.210885 + 0.365263i 0.951992 0.306124i \(-0.0990322\pi\)
−0.741107 + 0.671387i \(0.765699\pi\)
\(440\) 0 0
\(441\) 3.15661 0.150315
\(442\) 0 0
\(443\) −9.08986 −0.431872 −0.215936 0.976407i \(-0.569280\pi\)
−0.215936 + 0.976407i \(0.569280\pi\)
\(444\) 0 0
\(445\) 9.66855 + 16.7464i 0.458333 + 0.793856i
\(446\) 0 0
\(447\) 7.78063i 0.368011i
\(448\) 0 0
\(449\) −3.39561 1.96046i −0.160249 0.0925197i 0.417731 0.908571i \(-0.362825\pi\)
−0.577980 + 0.816051i \(0.696159\pi\)
\(450\) 0 0
\(451\) 12.6389 21.8911i 0.595141 1.03081i
\(452\) 0 0
\(453\) −4.77611 + 2.75749i −0.224401 + 0.129558i
\(454\) 0 0
\(455\) 4.79426 + 7.72780i 0.224758 + 0.362285i
\(456\) 0 0
\(457\) 21.7324 12.5472i 1.01660 0.586933i 0.103482 0.994631i \(-0.467002\pi\)
0.913117 + 0.407698i \(0.133668\pi\)
\(458\) 0 0
\(459\) −0.911235 + 1.57830i −0.0425328 + 0.0736690i
\(460\) 0 0
\(461\) 20.0799 + 11.5931i 0.935215 + 0.539947i 0.888457 0.458960i \(-0.151778\pi\)
0.0467579 + 0.998906i \(0.485111\pi\)
\(462\) 0 0
\(463\) 8.88866i 0.413091i 0.978437 + 0.206546i \(0.0662222\pi\)
−0.978437 + 0.206546i \(0.933778\pi\)
\(464\) 0 0
\(465\) −2.85971 4.95317i −0.132616 0.229698i
\(466\) 0 0
\(467\) −23.1760 −1.07246 −0.536228 0.844073i \(-0.680151\pi\)
−0.536228 + 0.844073i \(0.680151\pi\)
\(468\) 0 0
\(469\) 4.69452 0.216773
\(470\) 0 0
\(471\) 10.2552 + 17.7625i 0.472534 + 0.818453i
\(472\) 0 0
\(473\) 29.7567i 1.36821i
\(474\) 0 0
\(475\) −23.4283 13.5263i −1.07496 0.620630i
\(476\) 0 0
\(477\) 1.22324 2.11872i 0.0560084 0.0970095i
\(478\) 0 0
\(479\) −22.1672 + 12.7982i −1.01285 + 0.584767i −0.912024 0.410138i \(-0.865481\pi\)
−0.100822 + 0.994904i \(0.532147\pi\)
\(480\) 0 0
\(481\) −0.319945 10.0961i −0.0145882 0.460340i
\(482\) 0 0
\(483\) 11.8491 6.84109i 0.539153 0.311280i
\(484\) 0 0
\(485\) 8.97179 15.5396i 0.407388 0.705617i
\(486\) 0 0
\(487\) −20.0151 11.5557i −0.906971 0.523640i −0.0275159 0.999621i \(-0.508760\pi\)
−0.879455 + 0.475981i \(0.842093\pi\)
\(488\) 0 0
\(489\) 18.3246i 0.828665i
\(490\) 0 0
\(491\) 2.42105 + 4.19338i 0.109260 + 0.189245i 0.915471 0.402384i \(-0.131818\pi\)
−0.806210 + 0.591629i \(0.798485\pi\)
\(492\) 0 0
\(493\) 4.06120 0.182907
\(494\) 0 0
\(495\) 7.09541 0.318915
\(496\) 0 0
\(497\) −14.8192 25.6675i −0.664730 1.15135i
\(498\) 0 0
\(499\) 40.8818i 1.83012i −0.403319 0.915059i \(-0.632143\pi\)
0.403319 0.915059i \(-0.367857\pi\)
\(500\) 0 0
\(501\) 7.08083 + 4.08812i 0.316348 + 0.182644i
\(502\) 0 0
\(503\) 0.468618 0.811669i 0.0208946 0.0361906i −0.855389 0.517986i \(-0.826682\pi\)
0.876284 + 0.481796i \(0.160015\pi\)
\(504\) 0 0
\(505\) −5.85888 + 3.38263i −0.260717 + 0.150525i
\(506\) 0 0
\(507\) 5.77412 11.6473i 0.256438 0.517275i
\(508\) 0 0
\(509\) −19.0261 + 10.9847i −0.843316 + 0.486889i −0.858390 0.512997i \(-0.828535\pi\)
0.0150738 + 0.999886i \(0.495202\pi\)
\(510\) 0 0
\(511\) 2.57115 4.45336i 0.113741 0.197005i
\(512\) 0 0
\(513\) 7.00452 + 4.04406i 0.309257 + 0.178550i
\(514\) 0 0
\(515\) 9.51498i 0.419280i
\(516\) 0 0
\(517\) 13.9478 + 24.1584i 0.613425 + 1.06248i
\(518\) 0 0
\(519\) 8.57314 0.376319
\(520\) 0 0
\(521\) 22.1775 0.971615 0.485808 0.874066i \(-0.338526\pi\)
0.485808 + 0.874066i \(0.338526\pi\)
\(522\) 0 0
\(523\) −7.15209 12.3878i −0.312739 0.541680i 0.666215 0.745760i \(-0.267913\pi\)
−0.978954 + 0.204079i \(0.934580\pi\)
\(524\) 0 0
\(525\) 6.55721i 0.286180i
\(526\) 0 0
\(527\) 7.01632 + 4.05088i 0.305636 + 0.176459i
\(528\) 0 0
\(529\) −12.8538 + 22.2634i −0.558859 + 0.967973i
\(530\) 0 0
\(531\) −8.69251 + 5.01862i −0.377223 + 0.217790i
\(532\) 0 0
\(533\) −0.523446 16.5176i −0.0226729 0.715458i
\(534\) 0 0
\(535\) −8.65769 + 4.99852i −0.374305 + 0.216105i
\(536\) 0 0
\(537\) −1.86552 + 3.23118i −0.0805032 + 0.139436i
\(538\) 0 0
\(539\) 15.0763 + 8.70431i 0.649383 + 0.374921i
\(540\) 0 0
\(541\) 15.3779i 0.661149i −0.943780 0.330575i \(-0.892757\pi\)
0.943780 0.330575i \(-0.107243\pi\)
\(542\) 0 0
\(543\) 2.62466 + 4.54605i 0.112635 + 0.195090i
\(544\) 0 0
\(545\) 16.0120 0.685878
\(546\) 0 0
\(547\) 11.1503 0.476751 0.238375 0.971173i \(-0.423385\pi\)
0.238375 + 0.971173i \(0.423385\pi\)
\(548\) 0 0
\(549\) −6.45364 11.1780i −0.275435 0.477067i
\(550\) 0 0
\(551\) 18.0236i 0.767832i
\(552\) 0 0
\(553\) 10.4527 + 6.03488i 0.444495 + 0.256629i
\(554\) 0 0
\(555\) 1.80219 3.12149i 0.0764989 0.132500i
\(556\) 0 0
\(557\) −11.5261 + 6.65462i −0.488378 + 0.281965i −0.723901 0.689904i \(-0.757653\pi\)
0.235523 + 0.971869i \(0.424320\pi\)
\(558\) 0 0
\(559\) 10.2558 + 16.5312i 0.433776 + 0.699197i
\(560\) 0 0
\(561\) −8.70431 + 5.02544i −0.367496 + 0.212174i
\(562\) 0 0
\(563\) 3.88063 6.72146i 0.163549 0.283276i −0.772590 0.634905i \(-0.781039\pi\)
0.936139 + 0.351630i \(0.114372\pi\)
\(564\) 0 0
\(565\) −4.65462 2.68734i −0.195821 0.113057i
\(566\) 0 0
\(567\) 1.96046i 0.0823314i
\(568\) 0 0
\(569\) 7.14932 + 12.3830i 0.299715 + 0.519122i 0.976071 0.217454i \(-0.0697751\pi\)
−0.676356 + 0.736575i \(0.736442\pi\)
\(570\) 0 0
\(571\) 29.6121 1.23923 0.619614 0.784906i \(-0.287289\pi\)
0.619614 + 0.784906i \(0.287289\pi\)
\(572\) 0 0
\(573\) −5.54319 −0.231570
\(574\) 0 0
\(575\) 11.6716 + 20.2158i 0.486739 + 0.843056i
\(576\) 0 0
\(577\) 1.23475i 0.0514032i 0.999670 + 0.0257016i \(0.00818198\pi\)
−0.999670 + 0.0257016i \(0.991818\pi\)
\(578\) 0 0
\(579\) −8.82381 5.09443i −0.366705 0.211717i
\(580\) 0 0
\(581\) 5.48346 9.49763i 0.227492 0.394028i
\(582\) 0 0
\(583\) 11.6847 6.74616i 0.483930 0.279397i
\(584\) 0 0
\(585\) 3.94184 2.44548i 0.162975 0.101108i
\(586\) 0 0
\(587\) 9.44796 5.45478i 0.389959 0.225143i −0.292183 0.956362i \(-0.594382\pi\)
0.682142 + 0.731219i \(0.261048\pi\)
\(588\) 0 0
\(589\) 17.9778 31.1384i 0.740762 1.28304i
\(590\) 0 0
\(591\) −22.3923 12.9282i −0.921096 0.531795i
\(592\) 0 0
\(593\) 17.2775i 0.709503i 0.934961 + 0.354752i \(0.115435\pi\)
−0.934961 + 0.354752i \(0.884565\pi\)
\(594\) 0 0
\(595\) −2.29838 3.98090i −0.0942242 0.163201i
\(596\) 0 0
\(597\) −12.5419 −0.513306
\(598\) 0 0
\(599\) 44.0533 1.79997 0.899984 0.435922i \(-0.143578\pi\)
0.899984 + 0.435922i \(0.143578\pi\)
\(600\) 0 0
\(601\) 2.17237 + 3.76265i 0.0886127 + 0.153482i 0.906925 0.421292i \(-0.138423\pi\)
−0.818312 + 0.574774i \(0.805090\pi\)
\(602\) 0 0
\(603\) 2.39460i 0.0975158i
\(604\) 0 0
\(605\) 21.6322 + 12.4894i 0.879475 + 0.507765i
\(606\) 0 0
\(607\) 15.1044 26.1617i 0.613070 1.06187i −0.377649 0.925949i \(-0.623268\pi\)
0.990720 0.135920i \(-0.0433991\pi\)
\(608\) 0 0
\(609\) 3.78340 2.18435i 0.153311 0.0885142i
\(610\) 0 0
\(611\) 16.0750 + 8.61389i 0.650326 + 0.348481i
\(612\) 0 0
\(613\) 5.74750 3.31832i 0.232139 0.134026i −0.379419 0.925225i \(-0.623876\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(614\) 0 0
\(615\) 2.94848 5.10691i 0.118894 0.205931i
\(616\) 0 0
\(617\) 21.2524 + 12.2701i 0.855589 + 0.493975i 0.862533 0.506001i \(-0.168877\pi\)
−0.00694355 + 0.999976i \(0.502210\pi\)
\(618\) 0 0
\(619\) 33.4563i 1.34472i 0.740224 + 0.672360i \(0.234719\pi\)
−0.740224 + 0.672360i \(0.765281\pi\)
\(620\) 0 0
\(621\) −3.48954 6.04406i −0.140030 0.242540i
\(622\) 0 0
\(623\) −29.4656 −1.18051
\(624\) 0 0
\(625\) 2.91093 0.116437
\(626\) 0 0
\(627\) 22.3029 + 38.6297i 0.890692 + 1.54272i
\(628\) 0 0
\(629\) 5.10573i 0.203579i
\(630\) 0 0
\(631\) 12.4935 + 7.21315i 0.497360 + 0.287151i 0.727623 0.685978i \(-0.240625\pi\)
−0.230263 + 0.973129i \(0.573959\pi\)
\(632\) 0 0
\(633\) 6.20496 10.7473i 0.246625 0.427167i
\(634\) 0 0
\(635\) −4.67793 + 2.70080i −0.185638 + 0.107178i
\(636\) 0 0
\(637\) 11.3756 0.360494i 0.450718 0.0142833i
\(638\) 0 0
\(639\) −13.0926 + 7.55904i −0.517937 + 0.299031i
\(640\) 0 0
\(641\) 20.8112 36.0461i 0.821994 1.42374i −0.0822011 0.996616i \(-0.526195\pi\)
0.904195 0.427120i \(-0.140472\pi\)
\(642\) 0 0
\(643\) −10.1199 5.84271i −0.399089 0.230414i 0.287002 0.957930i \(-0.407341\pi\)
−0.686091 + 0.727516i \(0.740675\pi\)
\(644\) 0 0
\(645\) 6.94184i 0.273334i
\(646\) 0 0
\(647\) 5.49736 + 9.52171i 0.216124 + 0.374337i 0.953620 0.301015i \(-0.0973253\pi\)
−0.737496 + 0.675352i \(0.763992\pi\)
\(648\) 0 0
\(649\) −55.3552 −2.17288
\(650\) 0 0
\(651\) 8.71517 0.341574
\(652\) 0 0
\(653\) −16.5595 28.6819i −0.648024 1.12241i −0.983594 0.180395i \(-0.942262\pi\)
0.335571 0.942015i \(-0.391071\pi\)
\(654\) 0 0
\(655\) 14.7973i 0.578178i
\(656\) 0 0
\(657\) −2.27159 1.31151i −0.0886233 0.0511667i
\(658\) 0 0
\(659\) −11.0954 + 19.2178i −0.432216 + 0.748620i −0.997064 0.0765753i \(-0.975601\pi\)
0.564848 + 0.825195i \(0.308935\pi\)
\(660\) 0 0
\(661\) 17.1791 9.91838i 0.668191 0.385780i −0.127200 0.991877i \(-0.540599\pi\)
0.795391 + 0.606097i \(0.207266\pi\)
\(662\) 0 0
\(663\) −3.10361 + 5.79187i −0.120534 + 0.224938i
\(664\) 0 0
\(665\) −17.6673 + 10.2002i −0.685107 + 0.395547i
\(666\) 0 0
\(667\) −7.77611 + 13.4686i −0.301092 + 0.521507i
\(668\) 0 0
\(669\) −16.6134 9.59176i −0.642312 0.370839i
\(670\) 0 0
\(671\) 71.1834i 2.74800i
\(672\) 0 0
\(673\) 19.4282 + 33.6506i 0.748902 + 1.29714i 0.948349 + 0.317228i \(0.102752\pi\)
−0.199447 + 0.979909i \(0.563915\pi\)
\(674\) 0 0
\(675\) −3.34474 −0.128739
\(676\) 0 0
\(677\) −40.8864 −1.57139 −0.785695 0.618614i \(-0.787695\pi\)
−0.785695 + 0.618614i \(0.787695\pi\)
\(678\) 0 0
\(679\) 13.6711 + 23.6790i 0.524648 + 0.908716i
\(680\) 0 0
\(681\) 10.5822i 0.405510i
\(682\) 0 0
\(683\) 38.3907 + 22.1649i 1.46898 + 0.848117i 0.999395 0.0347705i \(-0.0110700\pi\)
0.469586 + 0.882887i \(0.344403\pi\)
\(684\) 0 0
\(685\) −5.63499 + 9.76009i −0.215302 + 0.372914i
\(686\) 0 0
\(687\) 16.8524 9.72975i 0.642960 0.371213i
\(688\) 0 0
\(689\) 4.16629 7.77501i 0.158723 0.296204i
\(690\) 0 0
\(691\) −11.0110 + 6.35722i −0.418879 + 0.241840i −0.694598 0.719398i \(-0.744418\pi\)
0.275719 + 0.961238i \(0.411084\pi\)
\(692\) 0 0
\(693\) −5.40594 + 9.36336i −0.205355 + 0.355685i
\(694\) 0 0
\(695\) 16.6779 + 9.62901i 0.632630 + 0.365249i
\(696\) 0 0
\(697\) 8.35323i 0.316401i
\(698\) 0 0
\(699\) −13.7121 23.7501i −0.518641 0.898312i
\(700\) 0 0
\(701\) −13.9582 −0.527192 −0.263596 0.964633i \(-0.584909\pi\)
−0.263596 + 0.964633i \(0.584909\pi\)
\(702\) 0 0
\(703\) 22.6592 0.854610
\(704\) 0 0
\(705\) 3.25384 + 5.63582i 0.122547 + 0.212257i
\(706\) 0 0
\(707\) 10.3088i 0.387702i
\(708\) 0 0
\(709\) −8.12455 4.69071i −0.305124 0.176163i 0.339619 0.940563i \(-0.389702\pi\)
−0.644742 + 0.764400i \(0.723035\pi\)
\(710\) 0 0
\(711\) 3.07830 5.33178i 0.115445 0.199957i
\(712\) 0 0
\(713\) −26.8687 + 15.5127i −1.00624 + 0.580954i
\(714\) 0 0
\(715\) 25.5700 0.810317i 0.956265 0.0303041i
\(716\) 0 0
\(717\) −2.39109 + 1.38050i −0.0892971 + 0.0515557i
\(718\) 0 0
\(719\) 18.7806 32.5290i 0.700399 1.21313i −0.267927 0.963439i \(-0.586339\pi\)
0.968326 0.249688i \(-0.0803280\pi\)
\(720\) 0 0
\(721\) −12.5563 7.24939i −0.467621 0.269981i
\(722\) 0 0
\(723\) 6.17753i 0.229745i
\(724\) 0 0
\(725\) 3.72671 + 6.45486i 0.138407 + 0.239727i
\(726\) 0 0
\(727\) −25.5864 −0.948948 −0.474474 0.880270i \(-0.657362\pi\)
−0.474474 + 0.880270i \(0.657362\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.91667 8.51592i −0.181850 0.314973i
\(732\) 0 0
\(733\) 27.1633i 1.00330i −0.865070 0.501650i \(-0.832726\pi\)
0.865070 0.501650i \(-0.167274\pi\)
\(734\) 0 0
\(735\) 3.51710 + 2.03060i 0.129730 + 0.0748998i
\(736\) 0 0
\(737\) 6.60310 11.4369i 0.243228 0.421283i
\(738\) 0 0
\(739\) 14.6673 8.46814i 0.539544 0.311506i −0.205350 0.978689i \(-0.565833\pi\)
0.744894 + 0.667183i \(0.232500\pi\)
\(740\) 0 0
\(741\) 25.7043 + 13.7738i 0.944272 + 0.505994i
\(742\) 0 0
\(743\) −16.2880 + 9.40391i −0.597550 + 0.344996i −0.768077 0.640357i \(-0.778786\pi\)
0.170527 + 0.985353i \(0.445453\pi\)
\(744\) 0 0
\(745\) −5.00516 + 8.66920i −0.183375 + 0.317615i
\(746\) 0 0
\(747\) −4.84460 2.79703i −0.177255 0.102338i
\(748\) 0 0
\(749\) 15.2333i 0.556614i
\(750\) 0 0
\(751\) −1.73556 3.00608i −0.0633315 0.109693i 0.832621 0.553843i \(-0.186839\pi\)
−0.895953 + 0.444150i \(0.853506\pi\)
\(752\) 0 0
\(753\) 14.1163 0.514428
\(754\) 0 0
\(755\) −7.09541 −0.258228
\(756\) 0 0
\(757\) 4.88367 + 8.45877i 0.177500 + 0.307439i 0.941024 0.338341i \(-0.109866\pi\)
−0.763524 + 0.645780i \(0.776532\pi\)
\(758\) 0 0
\(759\) 38.4895i 1.39708i
\(760\) 0 0
\(761\) −10.5449 6.08812i −0.382253 0.220694i 0.296545 0.955019i \(-0.404166\pi\)
−0.678798 + 0.734325i \(0.737499\pi\)
\(762\) 0 0
\(763\) −12.1994 + 21.1300i −0.441648 + 0.764957i
\(764\) 0 0
\(765\) −2.03060 + 1.17237i −0.0734165 + 0.0423870i
\(766\) 0 0
\(767\) −30.7524 + 19.0785i −1.11041 + 0.688886i
\(768\) 0 0
\(769\) 36.0938 20.8388i 1.30158 0.751466i 0.320903 0.947112i \(-0.396014\pi\)
0.980675 + 0.195646i \(0.0626804\pi\)
\(770\) 0 0
\(771\) 5.81123 10.0653i 0.209286 0.362494i
\(772\) 0 0
\(773\) 40.7430 + 23.5230i 1.46543 + 0.846064i 0.999254 0.0386307i \(-0.0122996\pi\)
0.466172 + 0.884694i \(0.345633\pi\)
\(774\) 0 0
\(775\) 14.8690i 0.534109i
\(776\) 0 0
\(777\) 2.74616 + 4.75648i 0.0985178 + 0.170638i
\(778\) 0 0
\(779\) 37.0716 1.32823
\(780\) 0 0
\(781\) −83.3758 −2.98342
\(782\) 0 0
\(783\) −1.11420 1.92986i −0.0398184 0.0689674i
\(784\) 0 0
\(785\) 26.3881i 0.941830i
\(786\) 0 0
\(787\) −3.69329 2.13232i −0.131652 0.0760091i 0.432728 0.901525i \(-0.357551\pi\)
−0.564379 + 0.825516i \(0.690884\pi\)
\(788\) 0 0
\(789\) 4.31201 7.46862i 0.153512 0.265890i
\(790\) 0 0
\(791\) 7.09263 4.09493i 0.252185 0.145599i
\(792\) 0 0
\(793\) −24.5338 39.5457i −0.871222 1.40431i
\(794\) 0 0
\(795\) 2.72588 1.57379i 0.0966771 0.0558165i
\(796\) 0 0
\(797\) −15.7524 + 27.2840i −0.557979 + 0.966448i 0.439686 + 0.898152i \(0.355090\pi\)
−0.997665 + 0.0682966i \(0.978244\pi\)
\(798\) 0 0
\(799\) −7.98332 4.60917i −0.282430 0.163061i
\(800\) 0 0
\(801\) 15.0300i 0.531057i
\(802\) 0 0
\(803\) −7.23292 12.5278i −0.255244 0.442096i
\(804\) 0 0
\(805\) 17.6031 0.620428
\(806\) 0 0
\(807\) −25.2480 −0.888773
\(808\) 0 0
\(809\) 17.9502 + 31.0907i 0.631096 + 1.09309i 0.987328 + 0.158693i \(0.0507280\pi\)
−0.356232 + 0.934398i \(0.615939\pi\)
\(810\) 0 0
\(811\) 19.1515i 0.672502i −0.941772 0.336251i \(-0.890841\pi\)
0.941772 0.336251i \(-0.109159\pi\)
\(812\) 0 0
\(813\) −2.59632 1.49898i −0.0910568 0.0525717i
\(814\) 0 0
\(815\) −11.7879 + 20.4173i −0.412913 + 0.715186i
\(816\) 0 0
\(817\) −37.7936 + 21.8202i −1.32223 + 0.763391i
\(818\) 0 0
\(819\) 0.223890 + 7.06498i 0.00782335 + 0.246870i
\(820\) 0 0
\(821\) 29.9765 17.3069i 1.04619 0.604016i 0.124607 0.992206i \(-0.460233\pi\)
0.921579 + 0.388190i \(0.126900\pi\)
\(822\) 0 0
\(823\) −4.71012 + 8.15817i −0.164185 + 0.284376i −0.936365 0.351027i \(-0.885833\pi\)
0.772181 + 0.635403i \(0.219166\pi\)
\(824\) 0 0
\(825\) −15.9748 9.22307i −0.556172 0.321106i
\(826\) 0 0
\(827\) 9.40621i 0.327086i 0.986536 + 0.163543i \(0.0522922\pi\)
−0.986536 + 0.163543i \(0.947708\pi\)
\(828\) 0 0
\(829\) −19.6808 34.0881i −0.683541 1.18393i −0.973893 0.227008i \(-0.927106\pi\)
0.290352 0.956920i \(-0.406228\pi\)
\(830\) 0 0
\(831\) −24.9123 −0.864199
\(832\) 0 0
\(833\) −5.75282 −0.199324
\(834\) 0 0
\(835\) 5.25965 + 9.10999i 0.182018 + 0.315264i
\(836\) 0 0
\(837\) 4.44548i 0.153658i
\(838\) 0 0
\(839\) −26.4265 15.2574i −0.912345 0.526742i −0.0311597 0.999514i \(-0.509920\pi\)
−0.881185 + 0.472772i \(0.843253\pi\)
\(840\) 0 0
\(841\) 12.0171 20.8142i 0.414383 0.717732i
\(842\) 0 0
\(843\) −7.25901 + 4.19099i −0.250013 + 0.144345i
\(844\) 0 0
\(845\) 13.9261 9.26305i 0.479072 0.318659i
\(846\) 0 0
\(847\) −32.9628 + 19.0311i −1.13262 + 0.653916i
\(848\) 0 0
\(849\) −12.9053 + 22.3526i −0.442908 + 0.767140i
\(850\) 0 0
\(851\) −16.9327 9.77611i −0.580446 0.335121i
\(852\) 0 0
\(853\) 1.33219i 0.0456132i −0.999740 0.0228066i \(-0.992740\pi\)
0.999740 0.0228066i \(-0.00726020\pi\)
\(854\) 0 0
\(855\) 5.20297 + 9.01181i 0.177938 + 0.308197i
\(856\) 0 0
\(857\) −0.771864 −0.0263664 −0.0131832 0.999913i \(-0.504196\pi\)
−0.0131832 + 0.999913i \(0.504196\pi\)
\(858\) 0 0
\(859\) 5.09036 0.173681 0.0868404 0.996222i \(-0.472323\pi\)
0.0868404 + 0.996222i \(0.472323\pi\)
\(860\) 0 0
\(861\) 4.49285 + 7.78184i 0.153116 + 0.265204i
\(862\) 0 0
\(863\) 23.7264i 0.807658i 0.914835 + 0.403829i \(0.132321\pi\)
−0.914835 + 0.403829i \(0.867679\pi\)
\(864\) 0 0
\(865\) 9.55222 + 5.51498i 0.324785 + 0.187515i
\(866\) 0 0
\(867\) −6.83930 + 11.8460i −0.232275 + 0.402312i
\(868\) 0 0
\(869\) 29.4046 16.9768i 0.997484 0.575898i
\(870\) 0 0
\(871\) −0.273471 8.62954i −0.00926621 0.292401i
\(872\) 0 0
\(873\) 12.0783 6.97341i 0.408789 0.236014i
\(874\) 0 0
\(875\) 10.5238 18.2278i 0.355770 0.616212i
\(876\) 0 0
\(877\) 6.95326 + 4.01446i 0.234795 + 0.135559i 0.612782 0.790252i \(-0.290050\pi\)
−0.377987 + 0.925811i \(0.623384\pi\)
\(878\) 0 0
\(879\) 12.7527i 0.430137i
\(880\) 0 0
\(881\) 10.8727 + 18.8321i 0.366310 + 0.634468i 0.988986 0.148012i \(-0.0472875\pi\)
−0.622675 + 0.782481i \(0.713954\pi\)
\(882\) 0 0
\(883\) −0.00504815 −0.000169884 −8.49419e−5 1.00000i \(-0.500027\pi\)
−8.49419e−5 1.00000i \(0.500027\pi\)
\(884\) 0 0
\(885\) −12.9136 −0.434087
\(886\) 0 0
\(887\) 16.9252 + 29.3152i 0.568291 + 0.984310i 0.996735 + 0.0807412i \(0.0257287\pi\)
−0.428444 + 0.903569i \(0.640938\pi\)
\(888\) 0 0
\(889\) 8.23088i 0.276055i
\(890\) 0 0
\(891\) 4.77611 + 2.75749i 0.160006 + 0.0923793i
\(892\) 0 0
\(893\) −20.4555 + 35.4300i −0.684518 + 1.18562i
\(894\) 0 0
\(895\) −4.15714 + 2.40013i −0.138958 + 0.0802274i
\(896\) 0 0
\(897\) −13.2656 21.3827i −0.442927 0.713948i
\(898\) 0 0
\(899\) −8.57914 + 4.95317i −0.286130 + 0.165197i
\(900\) 0 0
\(901\) −2.22932 + 3.86130i −0.0742695 + 0.128639i
\(902\) 0 0
\(903\) −9.16070 5.28893i −0.304849 0.176005i
\(904\) 0 0
\(905\) 6.75363i 0.224498i
\(906\) 0 0
\(907\) −12.6386 21.8907i −0.419658 0.726868i 0.576247 0.817275i \(-0.304517\pi\)
−0.995905 + 0.0904070i \(0.971183\pi\)
\(908\) 0 0
\(909\) −5.25836 −0.174409
\(910\) 0 0
\(911\) 15.5366 0.514750 0.257375 0.966312i \(-0.417142\pi\)
0.257375 + 0.966312i \(0.417142\pi\)
\(912\) 0 0
\(913\) −15.4256 26.7179i −0.510512 0.884232i
\(914\) 0 0
\(915\) 16.6061i 0.548982i
\(916\) 0 0
\(917\) 19.5270 + 11.2739i 0.644840 + 0.372298i
\(918\) 0 0
\(919\) −25.2571 + 43.7465i −0.833154 + 1.44306i 0.0623711 + 0.998053i \(0.480134\pi\)
−0.895525 + 0.445012i \(0.853200\pi\)
\(920\) 0 0
\(921\) 14.4027 8.31537i 0.474583 0.274001i
\(922\) 0 0
\(923\) −46.3192 + 28.7360i −1.52462 + 0.945858i
\(924\) 0 0
\(925\) −8.11504 + 4.68522i −0.266821 + 0.154049i
\(926\) 0 0
\(927\) −3.69781 + 6.40479i −0.121452 + 0.210361i
\(928\) 0 0
\(929\) 10.7214 + 6.18998i 0.351757 + 0.203087i 0.665459 0.746435i \(-0.268236\pi\)
−0.313702 + 0.949521i \(0.601569\pi\)
\(930\) 0 0
\(931\) 25.5310i 0.836746i
\(932\) 0 0
\(933\) 9.69702 + 16.7957i 0.317466 + 0.549868i
\(934\) 0 0
\(935\) −12.9312 −0.422894
\(936\) 0 0
\(937\) 17.5721 0.574056 0.287028 0.957922i \(-0.407333\pi\)
0.287028 + 0.957922i \(0.407333\pi\)
\(938\) 0 0
\(939\) −13.2545 22.9575i −0.432546 0.749191i
\(940\) 0 0
\(941\) 51.8438i 1.69006i 0.534718 + 0.845030i \(0.320418\pi\)
−0.534718 + 0.845030i \(0.679582\pi\)
\(942\) 0 0
\(943\) −27.7027 15.9942i −0.902126 0.520842i
\(944\) 0 0
\(945\) −1.26113 + 2.18435i −0.0410247 + 0.0710568i
\(946\) 0 0
\(947\) 19.0652 11.0073i 0.619535 0.357689i −0.157153 0.987574i \(-0.550232\pi\)
0.776688 + 0.629885i \(0.216898\pi\)
\(948\) 0 0
\(949\) −8.33602 4.46690i −0.270599 0.145002i
\(950\) 0 0
\(951\) 7.04571 4.06784i 0.228473 0.131909i
\(952\) 0 0
\(953\) 12.7716 22.1210i 0.413713 0.716571i −0.581580 0.813489i \(-0.697565\pi\)
0.995292 + 0.0969182i \(0.0308985\pi\)
\(954\) 0 0
\(955\) −6.17624 3.56585i −0.199858 0.115388i
\(956\) 0 0
\(957\) 12.2896i 0.397267i
\(958\) 0 0
\(959\) −8.58651 14.8723i −0.277273 0.480251i
\(960\) 0 0
\(961\) 11.2377 0.362507
\(962\) 0 0
\(963\) −7.77030 −0.250394
\(964\) 0 0
\(965\) −6.55435 11.3525i −0.210992 0.365449i
\(966\) 0 0
\(967\) 14.8939i 0.478956i −0.970902 0.239478i \(-0.923024\pi\)
0.970902 0.239478i \(-0.0769763\pi\)
\(968\) 0 0
\(969\) −12.7655 7.37017i −0.410087 0.236764i
\(970\) 0 0
\(971\) −4.94184 + 8.55951i −0.158591 + 0.274688i −0.934361 0.356328i \(-0.884028\pi\)
0.775770 + 0.631016i \(0.217362\pi\)
\(972\) 0 0
\(973\) −25.4136 + 14.6725i −0.814722 + 0.470380i
\(974\) 0 0
\(975\) −12.0536 + 0.381979i −0.386023 + 0.0122331i
\(976\) 0 0
\(977\) 43.0005 24.8263i 1.37571 0.794265i 0.384068 0.923305i \(-0.374523\pi\)
0.991639 + 0.129040i \(0.0411896\pi\)
\(978\) 0 0
\(979\) −41.4449 + 71.7847i −1.32459 + 2.29425i
\(980\) 0 0
\(981\) 10.7781 + 6.22274i 0.344118 + 0.198677i
\(982\) 0 0
\(983\) 4.41350i 0.140769i 0.997520 + 0.0703843i \(0.0224226\pi\)
−0.997520 + 0.0703843i \(0.977577\pi\)
\(984\) 0 0
\(985\) −16.6330 28.8093i −0.529973 0.917940i
\(986\) 0 0
\(987\) −9.91631 −0.315640
\(988\) 0 0
\(989\) 37.6564 1.19740
\(990\) 0 0
\(991\) −0.401421 0.695281i −0.0127516 0.0220863i 0.859579 0.511003i \(-0.170726\pi\)
−0.872331 + 0.488916i \(0.837392\pi\)
\(992\) 0 0
\(993\) 31.9861i 1.01505i
\(994\) 0 0
\(995\) −13.9742 8.06802i −0.443012 0.255773i
\(996\) 0 0
\(997\) −3.97165 + 6.87911i −0.125784 + 0.217863i −0.922039 0.387097i \(-0.873478\pi\)
0.796255 + 0.604961i \(0.206811\pi\)
\(998\) 0 0
\(999\) 2.42621 1.40077i 0.0767619 0.0443185i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.bv.g.49.3 8
3.2 odd 2 1872.2.by.m.1297.2 8
4.3 odd 2 312.2.bf.b.49.3 8
12.11 even 2 936.2.bi.c.361.2 8
13.2 odd 12 8112.2.a.cq.1.4 4
13.4 even 6 inner 624.2.bv.g.433.2 8
13.11 odd 12 8112.2.a.cs.1.1 4
39.17 odd 6 1872.2.by.m.433.3 8
52.3 odd 6 4056.2.c.p.337.6 8
52.11 even 12 4056.2.a.be.1.1 4
52.15 even 12 4056.2.a.bd.1.4 4
52.23 odd 6 4056.2.c.p.337.3 8
52.43 odd 6 312.2.bf.b.121.2 yes 8
156.95 even 6 936.2.bi.c.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.b.49.3 8 4.3 odd 2
312.2.bf.b.121.2 yes 8 52.43 odd 6
624.2.bv.g.49.3 8 1.1 even 1 trivial
624.2.bv.g.433.2 8 13.4 even 6 inner
936.2.bi.c.361.2 8 12.11 even 2
936.2.bi.c.433.3 8 156.95 even 6
1872.2.by.m.433.3 8 39.17 odd 6
1872.2.by.m.1297.2 8 3.2 odd 2
4056.2.a.bd.1.4 4 52.15 even 12
4056.2.a.be.1.1 4 52.11 even 12
4056.2.c.p.337.3 8 52.23 odd 6
4056.2.c.p.337.6 8 52.3 odd 6
8112.2.a.cq.1.4 4 13.2 odd 12
8112.2.a.cs.1.1 4 13.11 odd 12