Properties

Label 624.2.q.i.289.1
Level $624$
Weight $2$
Character 624.289
Analytic conductor $4.983$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(-0.651388 + 1.12824i\) of defining polynomial
Character \(\chi\) \(=\) 624.289
Dual form 624.2.q.i.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} -1.00000 q^{5} +(-1.30278 + 2.25647i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.30278 + 2.25647i) q^{11} +(-1.80278 - 3.12250i) q^{13} +(-0.500000 - 0.866025i) q^{15} +(-0.802776 + 1.39045i) q^{17} +(-3.30278 + 5.72058i) q^{19} -2.60555 q^{21} +(1.30278 + 2.25647i) q^{23} -4.00000 q^{25} -1.00000 q^{27} +(-1.50000 - 2.59808i) q^{29} -5.21110 q^{31} +(-1.30278 + 2.25647i) q^{33} +(1.30278 - 2.25647i) q^{35} +(1.19722 + 2.07365i) q^{37} +(1.80278 - 3.12250i) q^{39} +(5.80278 + 10.0507i) q^{41} +(-1.30278 + 2.25647i) q^{43} +(0.500000 - 0.866025i) q^{45} +1.39445 q^{47} +(0.105551 + 0.182820i) q^{49} -1.60555 q^{51} +3.00000 q^{53} +(-1.30278 - 2.25647i) q^{55} -6.60555 q^{57} +(4.60555 - 7.97705i) q^{59} +(3.80278 - 6.58660i) q^{61} +(-1.30278 - 2.25647i) q^{63} +(1.80278 + 3.12250i) q^{65} +(-5.30278 - 9.18468i) q^{67} +(-1.30278 + 2.25647i) q^{69} +(-4.69722 + 8.13583i) q^{71} +7.00000 q^{73} +(-2.00000 - 3.46410i) q^{75} -6.78890 q^{77} -12.0000 q^{79} +(-0.500000 - 0.866025i) q^{81} +11.8167 q^{83} +(0.802776 - 1.39045i) q^{85} +(1.50000 - 2.59808i) q^{87} +(8.21110 + 14.2220i) q^{89} +9.39445 q^{91} +(-2.60555 - 4.51295i) q^{93} +(3.30278 - 5.72058i) q^{95} +(-5.60555 + 9.70910i) q^{97} -2.60555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} + 2 q^{7} - 2 q^{9} - 2 q^{11} - 2 q^{15} + 4 q^{17} - 6 q^{19} + 4 q^{21} - 2 q^{23} - 16 q^{25} - 4 q^{27} - 6 q^{29} + 8 q^{31} + 2 q^{33} - 2 q^{35} + 12 q^{37} + 16 q^{41} + 2 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −1.30278 + 2.25647i −0.492403 + 0.852867i −0.999962 0.00875026i \(-0.997215\pi\)
0.507559 + 0.861617i \(0.330548\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.30278 + 2.25647i 0.392802 + 0.680352i 0.992818 0.119635i \(-0.0381726\pi\)
−0.600016 + 0.799988i \(0.704839\pi\)
\(12\) 0 0
\(13\) −1.80278 3.12250i −0.500000 0.866025i
\(14\) 0 0
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) 0 0
\(17\) −0.802776 + 1.39045i −0.194702 + 0.337233i −0.946803 0.321815i \(-0.895707\pi\)
0.752101 + 0.659048i \(0.229041\pi\)
\(18\) 0 0
\(19\) −3.30278 + 5.72058i −0.757709 + 1.31239i 0.186308 + 0.982491i \(0.440348\pi\)
−0.944016 + 0.329899i \(0.892985\pi\)
\(20\) 0 0
\(21\) −2.60555 −0.568578
\(22\) 0 0
\(23\) 1.30278 + 2.25647i 0.271647 + 0.470507i 0.969284 0.245945i \(-0.0790982\pi\)
−0.697636 + 0.716452i \(0.745765\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) −5.21110 −0.935942 −0.467971 0.883744i \(-0.655015\pi\)
−0.467971 + 0.883744i \(0.655015\pi\)
\(32\) 0 0
\(33\) −1.30278 + 2.25647i −0.226784 + 0.392802i
\(34\) 0 0
\(35\) 1.30278 2.25647i 0.220209 0.381414i
\(36\) 0 0
\(37\) 1.19722 + 2.07365i 0.196822 + 0.340907i 0.947496 0.319766i \(-0.103604\pi\)
−0.750674 + 0.660673i \(0.770271\pi\)
\(38\) 0 0
\(39\) 1.80278 3.12250i 0.288675 0.500000i
\(40\) 0 0
\(41\) 5.80278 + 10.0507i 0.906241 + 1.56966i 0.819242 + 0.573448i \(0.194394\pi\)
0.0869990 + 0.996208i \(0.472272\pi\)
\(42\) 0 0
\(43\) −1.30278 + 2.25647i −0.198671 + 0.344109i −0.948098 0.317979i \(-0.896996\pi\)
0.749426 + 0.662088i \(0.230329\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) 1.39445 0.203401 0.101701 0.994815i \(-0.467572\pi\)
0.101701 + 0.994815i \(0.467572\pi\)
\(48\) 0 0
\(49\) 0.105551 + 0.182820i 0.0150788 + 0.0261172i
\(50\) 0 0
\(51\) −1.60555 −0.224822
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) −1.30278 2.25647i −0.175666 0.304263i
\(56\) 0 0
\(57\) −6.60555 −0.874927
\(58\) 0 0
\(59\) 4.60555 7.97705i 0.599592 1.03852i −0.393290 0.919415i \(-0.628663\pi\)
0.992881 0.119109i \(-0.0380037\pi\)
\(60\) 0 0
\(61\) 3.80278 6.58660i 0.486896 0.843328i −0.512991 0.858394i \(-0.671463\pi\)
0.999886 + 0.0150662i \(0.00479591\pi\)
\(62\) 0 0
\(63\) −1.30278 2.25647i −0.164134 0.284289i
\(64\) 0 0
\(65\) 1.80278 + 3.12250i 0.223607 + 0.387298i
\(66\) 0 0
\(67\) −5.30278 9.18468i −0.647837 1.12209i −0.983638 0.180154i \(-0.942340\pi\)
0.335801 0.941933i \(-0.390993\pi\)
\(68\) 0 0
\(69\) −1.30278 + 2.25647i −0.156836 + 0.271647i
\(70\) 0 0
\(71\) −4.69722 + 8.13583i −0.557458 + 0.965546i 0.440250 + 0.897875i \(0.354890\pi\)
−0.997708 + 0.0676702i \(0.978443\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) −2.00000 3.46410i −0.230940 0.400000i
\(76\) 0 0
\(77\) −6.78890 −0.773667
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 11.8167 1.29705 0.648523 0.761195i \(-0.275387\pi\)
0.648523 + 0.761195i \(0.275387\pi\)
\(84\) 0 0
\(85\) 0.802776 1.39045i 0.0870732 0.150815i
\(86\) 0 0
\(87\) 1.50000 2.59808i 0.160817 0.278543i
\(88\) 0 0
\(89\) 8.21110 + 14.2220i 0.870375 + 1.50753i 0.861609 + 0.507572i \(0.169457\pi\)
0.00876600 + 0.999962i \(0.497210\pi\)
\(90\) 0 0
\(91\) 9.39445 0.984806
\(92\) 0 0
\(93\) −2.60555 4.51295i −0.270183 0.467971i
\(94\) 0 0
\(95\) 3.30278 5.72058i 0.338858 0.586919i
\(96\) 0 0
\(97\) −5.60555 + 9.70910i −0.569157 + 0.985810i 0.427492 + 0.904019i \(0.359397\pi\)
−0.996650 + 0.0817906i \(0.973936\pi\)
\(98\) 0 0
\(99\) −2.60555 −0.261868
\(100\) 0 0
\(101\) −2.10555 3.64692i −0.209510 0.362882i 0.742050 0.670344i \(-0.233854\pi\)
−0.951560 + 0.307462i \(0.900520\pi\)
\(102\) 0 0
\(103\) 15.8167 1.55846 0.779231 0.626737i \(-0.215610\pi\)
0.779231 + 0.626737i \(0.215610\pi\)
\(104\) 0 0
\(105\) 2.60555 0.254276
\(106\) 0 0
\(107\) 3.30278 + 5.72058i 0.319291 + 0.553029i 0.980340 0.197314i \(-0.0632218\pi\)
−0.661049 + 0.750343i \(0.729888\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −1.19722 + 2.07365i −0.113636 + 0.196822i
\(112\) 0 0
\(113\) 5.80278 10.0507i 0.545879 0.945491i −0.452672 0.891677i \(-0.649529\pi\)
0.998551 0.0538133i \(-0.0171376\pi\)
\(114\) 0 0
\(115\) −1.30278 2.25647i −0.121484 0.210417i
\(116\) 0 0
\(117\) 3.60555 0.333333
\(118\) 0 0
\(119\) −2.09167 3.62288i −0.191743 0.332109i
\(120\) 0 0
\(121\) 2.10555 3.64692i 0.191414 0.331538i
\(122\) 0 0
\(123\) −5.80278 + 10.0507i −0.523219 + 0.906241i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 2.00000 + 3.46410i 0.177471 + 0.307389i 0.941014 0.338368i \(-0.109875\pi\)
−0.763542 + 0.645758i \(0.776542\pi\)
\(128\) 0 0
\(129\) −2.60555 −0.229406
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −8.60555 14.9053i −0.746196 1.29245i
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 8.40833 14.5636i 0.718372 1.24426i −0.243273 0.969958i \(-0.578221\pi\)
0.961645 0.274299i \(-0.0884457\pi\)
\(138\) 0 0
\(139\) −1.39445 + 2.41526i −0.118276 + 0.204859i −0.919084 0.394061i \(-0.871070\pi\)
0.800809 + 0.598920i \(0.204403\pi\)
\(140\) 0 0
\(141\) 0.697224 + 1.20763i 0.0587169 + 0.101701i
\(142\) 0 0
\(143\) 4.69722 8.13583i 0.392802 0.680352i
\(144\) 0 0
\(145\) 1.50000 + 2.59808i 0.124568 + 0.215758i
\(146\) 0 0
\(147\) −0.105551 + 0.182820i −0.00870572 + 0.0150788i
\(148\) 0 0
\(149\) 5.10555 8.84307i 0.418263 0.724453i −0.577502 0.816389i \(-0.695972\pi\)
0.995765 + 0.0919365i \(0.0293057\pi\)
\(150\) 0 0
\(151\) 6.60555 0.537552 0.268776 0.963203i \(-0.413381\pi\)
0.268776 + 0.963203i \(0.413381\pi\)
\(152\) 0 0
\(153\) −0.802776 1.39045i −0.0649006 0.112411i
\(154\) 0 0
\(155\) 5.21110 0.418566
\(156\) 0 0
\(157\) 8.39445 0.669950 0.334975 0.942227i \(-0.391272\pi\)
0.334975 + 0.942227i \(0.391272\pi\)
\(158\) 0 0
\(159\) 1.50000 + 2.59808i 0.118958 + 0.206041i
\(160\) 0 0
\(161\) −6.78890 −0.535040
\(162\) 0 0
\(163\) −2.60555 + 4.51295i −0.204083 + 0.353481i −0.949840 0.312736i \(-0.898754\pi\)
0.745757 + 0.666217i \(0.232088\pi\)
\(164\) 0 0
\(165\) 1.30278 2.25647i 0.101421 0.175666i
\(166\) 0 0
\(167\) 8.60555 + 14.9053i 0.665918 + 1.15340i 0.979036 + 0.203689i \(0.0652931\pi\)
−0.313118 + 0.949714i \(0.601374\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) −3.30278 5.72058i −0.252570 0.437463i
\(172\) 0 0
\(173\) 10.8167 18.7350i 0.822375 1.42440i −0.0815341 0.996671i \(-0.525982\pi\)
0.903909 0.427725i \(-0.140685\pi\)
\(174\) 0 0
\(175\) 5.21110 9.02589i 0.393922 0.682293i
\(176\) 0 0
\(177\) 9.21110 0.692349
\(178\) 0 0
\(179\) −8.51388 14.7465i −0.636357 1.10220i −0.986226 0.165404i \(-0.947107\pi\)
0.349869 0.936799i \(-0.386226\pi\)
\(180\) 0 0
\(181\) −24.8167 −1.84461 −0.922304 0.386466i \(-0.873696\pi\)
−0.922304 + 0.386466i \(0.873696\pi\)
\(182\) 0 0
\(183\) 7.60555 0.562219
\(184\) 0 0
\(185\) −1.19722 2.07365i −0.0880217 0.152458i
\(186\) 0 0
\(187\) −4.18335 −0.305917
\(188\) 0 0
\(189\) 1.30278 2.25647i 0.0947630 0.164134i
\(190\) 0 0
\(191\) −11.8167 + 20.4670i −0.855023 + 1.48094i 0.0216006 + 0.999767i \(0.493124\pi\)
−0.876624 + 0.481177i \(0.840210\pi\)
\(192\) 0 0
\(193\) 3.89445 + 6.74538i 0.280329 + 0.485543i 0.971466 0.237180i \(-0.0762233\pi\)
−0.691137 + 0.722724i \(0.742890\pi\)
\(194\) 0 0
\(195\) −1.80278 + 3.12250i −0.129099 + 0.223607i
\(196\) 0 0
\(197\) 5.00000 + 8.66025i 0.356235 + 0.617018i 0.987329 0.158689i \(-0.0507268\pi\)
−0.631093 + 0.775707i \(0.717394\pi\)
\(198\) 0 0
\(199\) 9.90833 17.1617i 0.702383 1.21656i −0.265245 0.964181i \(-0.585453\pi\)
0.967628 0.252381i \(-0.0812138\pi\)
\(200\) 0 0
\(201\) 5.30278 9.18468i 0.374029 0.647837i
\(202\) 0 0
\(203\) 7.81665 0.548622
\(204\) 0 0
\(205\) −5.80278 10.0507i −0.405283 0.701971i
\(206\) 0 0
\(207\) −2.60555 −0.181098
\(208\) 0 0
\(209\) −17.2111 −1.19052
\(210\) 0 0
\(211\) −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i \(-0.255467\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(212\) 0 0
\(213\) −9.39445 −0.643697
\(214\) 0 0
\(215\) 1.30278 2.25647i 0.0888486 0.153890i
\(216\) 0 0
\(217\) 6.78890 11.7587i 0.460860 0.798234i
\(218\) 0 0
\(219\) 3.50000 + 6.06218i 0.236508 + 0.409644i
\(220\) 0 0
\(221\) 5.78890 0.389403
\(222\) 0 0
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) 0 0
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 0 0
\(227\) −13.3028 + 23.0411i −0.882936 + 1.52929i −0.0348753 + 0.999392i \(0.511103\pi\)
−0.848061 + 0.529899i \(0.822230\pi\)
\(228\) 0 0
\(229\) 15.2111 1.00518 0.502589 0.864525i \(-0.332381\pi\)
0.502589 + 0.864525i \(0.332381\pi\)
\(230\) 0 0
\(231\) −3.39445 5.87936i −0.223338 0.386833i
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) −1.39445 −0.0909638
\(236\) 0 0
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0 0
\(239\) −17.0278 −1.10143 −0.550717 0.834692i \(-0.685646\pi\)
−0.550717 + 0.834692i \(0.685646\pi\)
\(240\) 0 0
\(241\) −7.31665 + 12.6728i −0.471307 + 0.816328i −0.999461 0.0328207i \(-0.989551\pi\)
0.528154 + 0.849149i \(0.322884\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −0.105551 0.182820i −0.00674342 0.0116800i
\(246\) 0 0
\(247\) 23.8167 1.51542
\(248\) 0 0
\(249\) 5.90833 + 10.2335i 0.374425 + 0.648523i
\(250\) 0 0
\(251\) 14.6056 25.2976i 0.921894 1.59677i 0.125413 0.992105i \(-0.459974\pi\)
0.796481 0.604663i \(-0.206692\pi\)
\(252\) 0 0
\(253\) −3.39445 + 5.87936i −0.213407 + 0.369632i
\(254\) 0 0
\(255\) 1.60555 0.100544
\(256\) 0 0
\(257\) 11.8028 + 20.4430i 0.736237 + 1.27520i 0.954179 + 0.299238i \(0.0967324\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(258\) 0 0
\(259\) −6.23886 −0.387664
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) 9.30278 + 16.1129i 0.573634 + 0.993563i 0.996189 + 0.0872254i \(0.0278000\pi\)
−0.422555 + 0.906337i \(0.638867\pi\)
\(264\) 0 0
\(265\) −3.00000 −0.184289
\(266\) 0 0
\(267\) −8.21110 + 14.2220i −0.502511 + 0.870375i
\(268\) 0 0
\(269\) −12.8167 + 22.1991i −0.781445 + 1.35350i 0.149655 + 0.988738i \(0.452184\pi\)
−0.931100 + 0.364764i \(0.881150\pi\)
\(270\) 0 0
\(271\) −0.605551 1.04885i −0.0367846 0.0637128i 0.847047 0.531518i \(-0.178378\pi\)
−0.883832 + 0.467805i \(0.845045\pi\)
\(272\) 0 0
\(273\) 4.69722 + 8.13583i 0.284289 + 0.492403i
\(274\) 0 0
\(275\) −5.21110 9.02589i −0.314241 0.544282i
\(276\) 0 0
\(277\) −14.6194 + 25.3216i −0.878396 + 1.52143i −0.0252962 + 0.999680i \(0.508053\pi\)
−0.853100 + 0.521747i \(0.825280\pi\)
\(278\) 0 0
\(279\) 2.60555 4.51295i 0.155990 0.270183i
\(280\) 0 0
\(281\) 0.394449 0.0235308 0.0117654 0.999931i \(-0.496255\pi\)
0.0117654 + 0.999931i \(0.496255\pi\)
\(282\) 0 0
\(283\) 7.30278 + 12.6488i 0.434105 + 0.751892i 0.997222 0.0744852i \(-0.0237314\pi\)
−0.563117 + 0.826377i \(0.690398\pi\)
\(284\) 0 0
\(285\) 6.60555 0.391279
\(286\) 0 0
\(287\) −30.2389 −1.78494
\(288\) 0 0
\(289\) 7.21110 + 12.4900i 0.424183 + 0.734706i
\(290\) 0 0
\(291\) −11.2111 −0.657206
\(292\) 0 0
\(293\) −0.105551 + 0.182820i −0.00616637 + 0.0106805i −0.869092 0.494650i \(-0.835296\pi\)
0.862926 + 0.505331i \(0.168629\pi\)
\(294\) 0 0
\(295\) −4.60555 + 7.97705i −0.268146 + 0.464442i
\(296\) 0 0
\(297\) −1.30278 2.25647i −0.0755947 0.130934i
\(298\) 0 0
\(299\) 4.69722 8.13583i 0.271647 0.470507i
\(300\) 0 0
\(301\) −3.39445 5.87936i −0.195653 0.338881i
\(302\) 0 0
\(303\) 2.10555 3.64692i 0.120961 0.209510i
\(304\) 0 0
\(305\) −3.80278 + 6.58660i −0.217746 + 0.377148i
\(306\) 0 0
\(307\) −5.39445 −0.307877 −0.153939 0.988080i \(-0.549196\pi\)
−0.153939 + 0.988080i \(0.549196\pi\)
\(308\) 0 0
\(309\) 7.90833 + 13.6976i 0.449889 + 0.779231i
\(310\) 0 0
\(311\) −27.8167 −1.57734 −0.788669 0.614818i \(-0.789229\pi\)
−0.788669 + 0.614818i \(0.789229\pi\)
\(312\) 0 0
\(313\) 3.21110 0.181502 0.0907511 0.995874i \(-0.471073\pi\)
0.0907511 + 0.995874i \(0.471073\pi\)
\(314\) 0 0
\(315\) 1.30278 + 2.25647i 0.0734031 + 0.127138i
\(316\) 0 0
\(317\) −2.21110 −0.124188 −0.0620939 0.998070i \(-0.519778\pi\)
−0.0620939 + 0.998070i \(0.519778\pi\)
\(318\) 0 0
\(319\) 3.90833 6.76942i 0.218824 0.379015i
\(320\) 0 0
\(321\) −3.30278 + 5.72058i −0.184343 + 0.319291i
\(322\) 0 0
\(323\) −5.30278 9.18468i −0.295054 0.511049i
\(324\) 0 0
\(325\) 7.21110 + 12.4900i 0.400000 + 0.692820i
\(326\) 0 0
\(327\) −1.00000 1.73205i −0.0553001 0.0957826i
\(328\) 0 0
\(329\) −1.81665 + 3.14654i −0.100155 + 0.173474i
\(330\) 0 0
\(331\) −7.81665 + 13.5388i −0.429642 + 0.744162i −0.996841 0.0794186i \(-0.974694\pi\)
0.567199 + 0.823581i \(0.308027\pi\)
\(332\) 0 0
\(333\) −2.39445 −0.131215
\(334\) 0 0
\(335\) 5.30278 + 9.18468i 0.289722 + 0.501813i
\(336\) 0 0
\(337\) −2.57779 −0.140421 −0.0702107 0.997532i \(-0.522367\pi\)
−0.0702107 + 0.997532i \(0.522367\pi\)
\(338\) 0 0
\(339\) 11.6056 0.630327
\(340\) 0 0
\(341\) −6.78890 11.7587i −0.367639 0.636770i
\(342\) 0 0
\(343\) −18.7889 −1.01451
\(344\) 0 0
\(345\) 1.30278 2.25647i 0.0701391 0.121484i
\(346\) 0 0
\(347\) 8.51388 14.7465i 0.457049 0.791632i −0.541755 0.840537i \(-0.682240\pi\)
0.998803 + 0.0489048i \(0.0155731\pi\)
\(348\) 0 0
\(349\) 18.2111 + 31.5426i 0.974818 + 1.68843i 0.680534 + 0.732716i \(0.261748\pi\)
0.294284 + 0.955718i \(0.404919\pi\)
\(350\) 0 0
\(351\) 1.80278 + 3.12250i 0.0962250 + 0.166667i
\(352\) 0 0
\(353\) −8.01388 13.8804i −0.426536 0.738781i 0.570027 0.821626i \(-0.306933\pi\)
−0.996562 + 0.0828446i \(0.973599\pi\)
\(354\) 0 0
\(355\) 4.69722 8.13583i 0.249303 0.431805i
\(356\) 0 0
\(357\) 2.09167 3.62288i 0.110703 0.191743i
\(358\) 0 0
\(359\) −7.81665 −0.412547 −0.206274 0.978494i \(-0.566134\pi\)
−0.206274 + 0.978494i \(0.566134\pi\)
\(360\) 0 0
\(361\) −12.3167 21.3331i −0.648245 1.12279i
\(362\) 0 0
\(363\) 4.21110 0.221026
\(364\) 0 0
\(365\) −7.00000 −0.366397
\(366\) 0 0
\(367\) −0.697224 1.20763i −0.0363948 0.0630377i 0.847254 0.531188i \(-0.178254\pi\)
−0.883649 + 0.468150i \(0.844921\pi\)
\(368\) 0 0
\(369\) −11.6056 −0.604161
\(370\) 0 0
\(371\) −3.90833 + 6.76942i −0.202910 + 0.351451i
\(372\) 0 0
\(373\) 15.0139 26.0048i 0.777389 1.34648i −0.156053 0.987749i \(-0.549877\pi\)
0.933442 0.358729i \(-0.116790\pi\)
\(374\) 0 0
\(375\) 4.50000 + 7.79423i 0.232379 + 0.402492i
\(376\) 0 0
\(377\) −5.40833 + 9.36750i −0.278543 + 0.482451i
\(378\) 0 0
\(379\) 3.21110 + 5.56179i 0.164943 + 0.285690i 0.936635 0.350306i \(-0.113923\pi\)
−0.771692 + 0.635997i \(0.780589\pi\)
\(380\) 0 0
\(381\) −2.00000 + 3.46410i −0.102463 + 0.177471i
\(382\) 0 0
\(383\) −9.21110 + 15.9541i −0.470665 + 0.815216i −0.999437 0.0335478i \(-0.989319\pi\)
0.528772 + 0.848764i \(0.322653\pi\)
\(384\) 0 0
\(385\) 6.78890 0.345994
\(386\) 0 0
\(387\) −1.30278 2.25647i −0.0662238 0.114703i
\(388\) 0 0
\(389\) −36.6333 −1.85738 −0.928691 0.370854i \(-0.879065\pi\)
−0.928691 + 0.370854i \(0.879065\pi\)
\(390\) 0 0
\(391\) −4.18335 −0.211561
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −11.0000 + 19.0526i −0.552074 + 0.956221i 0.446051 + 0.895008i \(0.352830\pi\)
−0.998125 + 0.0612128i \(0.980503\pi\)
\(398\) 0 0
\(399\) 8.60555 14.9053i 0.430816 0.746196i
\(400\) 0 0
\(401\) −13.2250 22.9063i −0.660424 1.14389i −0.980504 0.196498i \(-0.937043\pi\)
0.320080 0.947390i \(-0.396290\pi\)
\(402\) 0 0
\(403\) 9.39445 + 16.2717i 0.467971 + 0.810549i
\(404\) 0 0
\(405\) 0.500000 + 0.866025i 0.0248452 + 0.0430331i
\(406\) 0 0
\(407\) −3.11943 + 5.40301i −0.154624 + 0.267817i
\(408\) 0 0
\(409\) −2.28890 + 3.96449i −0.113179 + 0.196031i −0.917050 0.398772i \(-0.869437\pi\)
0.803872 + 0.594803i \(0.202770\pi\)
\(410\) 0 0
\(411\) 16.8167 0.829504
\(412\) 0 0
\(413\) 12.0000 + 20.7846i 0.590481 + 1.02274i
\(414\) 0 0
\(415\) −11.8167 −0.580057
\(416\) 0 0
\(417\) −2.78890 −0.136573
\(418\) 0 0
\(419\) −9.21110 15.9541i −0.449992 0.779409i 0.548393 0.836221i \(-0.315240\pi\)
−0.998385 + 0.0568120i \(0.981906\pi\)
\(420\) 0 0
\(421\) 24.3944 1.18891 0.594456 0.804128i \(-0.297367\pi\)
0.594456 + 0.804128i \(0.297367\pi\)
\(422\) 0 0
\(423\) −0.697224 + 1.20763i −0.0339002 + 0.0587169i
\(424\) 0 0
\(425\) 3.21110 5.56179i 0.155761 0.269787i
\(426\) 0 0
\(427\) 9.90833 + 17.1617i 0.479498 + 0.830514i
\(428\) 0 0
\(429\) 9.39445 0.453568
\(430\) 0 0
\(431\) −7.90833 13.6976i −0.380931 0.659791i 0.610265 0.792197i \(-0.291063\pi\)
−0.991196 + 0.132406i \(0.957730\pi\)
\(432\) 0 0
\(433\) 17.7111 30.6765i 0.851141 1.47422i −0.0290379 0.999578i \(-0.509244\pi\)
0.880179 0.474642i \(-0.157422\pi\)
\(434\) 0 0
\(435\) −1.50000 + 2.59808i −0.0719195 + 0.124568i
\(436\) 0 0
\(437\) −17.2111 −0.823319
\(438\) 0 0
\(439\) 17.9083 + 31.0181i 0.854718 + 1.48041i 0.876907 + 0.480661i \(0.159603\pi\)
−0.0221888 + 0.999754i \(0.507063\pi\)
\(440\) 0 0
\(441\) −0.211103 −0.0100525
\(442\) 0 0
\(443\) 15.6333 0.742761 0.371380 0.928481i \(-0.378885\pi\)
0.371380 + 0.928481i \(0.378885\pi\)
\(444\) 0 0
\(445\) −8.21110 14.2220i −0.389244 0.674190i
\(446\) 0 0
\(447\) 10.2111 0.482969
\(448\) 0 0
\(449\) 15.0000 25.9808i 0.707894 1.22611i −0.257743 0.966213i \(-0.582979\pi\)
0.965637 0.259895i \(-0.0836878\pi\)
\(450\) 0 0
\(451\) −15.1194 + 26.1876i −0.711946 + 1.23313i
\(452\) 0 0
\(453\) 3.30278 + 5.72058i 0.155178 + 0.268776i
\(454\) 0 0
\(455\) −9.39445 −0.440419
\(456\) 0 0
\(457\) −17.3167 29.9933i −0.810039 1.40303i −0.912836 0.408326i \(-0.866113\pi\)
0.102797 0.994702i \(-0.467221\pi\)
\(458\) 0 0
\(459\) 0.802776 1.39045i 0.0374704 0.0649006i
\(460\) 0 0
\(461\) −9.31665 + 16.1369i −0.433920 + 0.751571i −0.997207 0.0746901i \(-0.976203\pi\)
0.563287 + 0.826261i \(0.309537\pi\)
\(462\) 0 0
\(463\) 4.18335 0.194417 0.0972083 0.995264i \(-0.469009\pi\)
0.0972083 + 0.995264i \(0.469009\pi\)
\(464\) 0 0
\(465\) 2.60555 + 4.51295i 0.120830 + 0.209283i
\(466\) 0 0
\(467\) −8.18335 −0.378680 −0.189340 0.981912i \(-0.560635\pi\)
−0.189340 + 0.981912i \(0.560635\pi\)
\(468\) 0 0
\(469\) 27.6333 1.27599
\(470\) 0 0
\(471\) 4.19722 + 7.26981i 0.193398 + 0.334975i
\(472\) 0 0
\(473\) −6.78890 −0.312154
\(474\) 0 0
\(475\) 13.2111 22.8823i 0.606167 1.04991i
\(476\) 0 0
\(477\) −1.50000 + 2.59808i −0.0686803 + 0.118958i
\(478\) 0 0
\(479\) −1.81665 3.14654i −0.0830050 0.143769i 0.821534 0.570159i \(-0.193118\pi\)
−0.904539 + 0.426390i \(0.859785\pi\)
\(480\) 0 0
\(481\) 4.31665 7.47666i 0.196822 0.340907i
\(482\) 0 0
\(483\) −3.39445 5.87936i −0.154453 0.267520i
\(484\) 0 0
\(485\) 5.60555 9.70910i 0.254535 0.440868i
\(486\) 0 0
\(487\) 15.3028 26.5052i 0.693435 1.20106i −0.277270 0.960792i \(-0.589430\pi\)
0.970705 0.240273i \(-0.0772369\pi\)
\(488\) 0 0
\(489\) −5.21110 −0.235654
\(490\) 0 0
\(491\) 9.90833 + 17.1617i 0.447157 + 0.774498i 0.998200 0.0599789i \(-0.0191034\pi\)
−0.551043 + 0.834477i \(0.685770\pi\)
\(492\) 0 0
\(493\) 4.81665 0.216931
\(494\) 0 0
\(495\) 2.60555 0.117111
\(496\) 0 0
\(497\) −12.2389 21.1983i −0.548988 0.950875i
\(498\) 0 0
\(499\) −33.2111 −1.48673 −0.743367 0.668884i \(-0.766772\pi\)
−0.743367 + 0.668884i \(0.766772\pi\)
\(500\) 0 0
\(501\) −8.60555 + 14.9053i −0.384468 + 0.665918i
\(502\) 0 0
\(503\) 7.90833 13.6976i 0.352615 0.610747i −0.634092 0.773258i \(-0.718626\pi\)
0.986707 + 0.162511i \(0.0519592\pi\)
\(504\) 0 0
\(505\) 2.10555 + 3.64692i 0.0936958 + 0.162286i
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) 2.31665 + 4.01256i 0.102684 + 0.177854i 0.912790 0.408430i \(-0.133924\pi\)
−0.810106 + 0.586284i \(0.800590\pi\)
\(510\) 0 0
\(511\) −9.11943 + 15.7953i −0.403420 + 0.698744i
\(512\) 0 0
\(513\) 3.30278 5.72058i 0.145821 0.252570i
\(514\) 0 0
\(515\) −15.8167 −0.696965
\(516\) 0 0
\(517\) 1.81665 + 3.14654i 0.0798963 + 0.138385i
\(518\) 0 0
\(519\) 21.6333 0.949597
\(520\) 0 0
\(521\) −23.2389 −1.01811 −0.509056 0.860733i \(-0.670006\pi\)
−0.509056 + 0.860733i \(0.670006\pi\)
\(522\) 0 0
\(523\) 0.513878 + 0.890063i 0.0224703 + 0.0389197i 0.877042 0.480414i \(-0.159514\pi\)
−0.854572 + 0.519334i \(0.826180\pi\)
\(524\) 0 0
\(525\) 10.4222 0.454862
\(526\) 0 0
\(527\) 4.18335 7.24577i 0.182229 0.315631i
\(528\) 0 0
\(529\) 8.10555 14.0392i 0.352415 0.610401i
\(530\) 0 0
\(531\) 4.60555 + 7.97705i 0.199864 + 0.346174i
\(532\) 0 0
\(533\) 20.9222 36.2383i 0.906241 1.56966i
\(534\) 0 0
\(535\) −3.30278 5.72058i −0.142791 0.247322i
\(536\) 0 0
\(537\) 8.51388 14.7465i 0.367401 0.636357i
\(538\) 0 0
\(539\) −0.275019 + 0.476347i −0.0118459 + 0.0205177i
\(540\) 0 0
\(541\) −10.3944 −0.446892 −0.223446 0.974716i \(-0.571731\pi\)
−0.223446 + 0.974716i \(0.571731\pi\)
\(542\) 0 0
\(543\) −12.4083 21.4919i −0.532492 0.922304i
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) −17.0278 −0.728054 −0.364027 0.931388i \(-0.618598\pi\)
−0.364027 + 0.931388i \(0.618598\pi\)
\(548\) 0 0
\(549\) 3.80278 + 6.58660i 0.162299 + 0.281109i
\(550\) 0 0
\(551\) 19.8167 0.844218
\(552\) 0 0
\(553\) 15.6333 27.0777i 0.664796 1.15146i
\(554\) 0 0
\(555\) 1.19722 2.07365i 0.0508193 0.0880217i
\(556\) 0 0
\(557\) 14.9222 + 25.8460i 0.632274 + 1.09513i 0.987086 + 0.160193i \(0.0512117\pi\)
−0.354812 + 0.934938i \(0.615455\pi\)
\(558\) 0 0
\(559\) 9.39445 0.397343
\(560\) 0 0
\(561\) −2.09167 3.62288i −0.0883105 0.152958i
\(562\) 0 0
\(563\) 13.8167 23.9311i 0.582303 1.00858i −0.412903 0.910775i \(-0.635485\pi\)
0.995206 0.0978027i \(-0.0311814\pi\)
\(564\) 0 0
\(565\) −5.80278 + 10.0507i −0.244125 + 0.422836i
\(566\) 0 0
\(567\) 2.60555 0.109423
\(568\) 0 0
\(569\) 11.6056 + 20.1014i 0.486530 + 0.842695i 0.999880 0.0154846i \(-0.00492909\pi\)
−0.513350 + 0.858179i \(0.671596\pi\)
\(570\) 0 0
\(571\) 19.4500 0.813956 0.406978 0.913438i \(-0.366583\pi\)
0.406978 + 0.913438i \(0.366583\pi\)
\(572\) 0 0
\(573\) −23.6333 −0.987296
\(574\) 0 0
\(575\) −5.21110 9.02589i −0.217318 0.376406i
\(576\) 0 0
\(577\) −26.2111 −1.09118 −0.545591 0.838051i \(-0.683695\pi\)
−0.545591 + 0.838051i \(0.683695\pi\)
\(578\) 0 0
\(579\) −3.89445 + 6.74538i −0.161848 + 0.280329i
\(580\) 0 0
\(581\) −15.3944 + 26.6640i −0.638669 + 1.10621i
\(582\) 0 0
\(583\) 3.90833 + 6.76942i 0.161866 + 0.280361i
\(584\) 0 0
\(585\) −3.60555 −0.149071
\(586\) 0 0
\(587\) 21.2111 + 36.7387i 0.875476 + 1.51637i 0.856255 + 0.516553i \(0.172785\pi\)
0.0192210 + 0.999815i \(0.493881\pi\)
\(588\) 0 0
\(589\) 17.2111 29.8105i 0.709171 1.22832i
\(590\) 0 0
\(591\) −5.00000 + 8.66025i −0.205673 + 0.356235i
\(592\) 0 0
\(593\) 16.0278 0.658181 0.329091 0.944298i \(-0.393258\pi\)
0.329091 + 0.944298i \(0.393258\pi\)
\(594\) 0 0
\(595\) 2.09167 + 3.62288i 0.0857502 + 0.148524i
\(596\) 0 0
\(597\) 19.8167 0.811042
\(598\) 0 0
\(599\) 26.4222 1.07958 0.539791 0.841799i \(-0.318503\pi\)
0.539791 + 0.841799i \(0.318503\pi\)
\(600\) 0 0
\(601\) 19.7111 + 34.1406i 0.804033 + 1.39263i 0.916942 + 0.399020i \(0.130650\pi\)
−0.112910 + 0.993605i \(0.536017\pi\)
\(602\) 0 0
\(603\) 10.6056 0.431891
\(604\) 0 0
\(605\) −2.10555 + 3.64692i −0.0856028 + 0.148268i
\(606\) 0 0
\(607\) 15.0278 26.0288i 0.609958 1.05648i −0.381289 0.924456i \(-0.624520\pi\)
0.991247 0.132022i \(-0.0421470\pi\)
\(608\) 0 0
\(609\) 3.90833 + 6.76942i 0.158373 + 0.274311i
\(610\) 0 0
\(611\) −2.51388 4.35416i −0.101701 0.176151i
\(612\) 0 0
\(613\) −6.80278 11.7828i −0.274762 0.475901i 0.695313 0.718707i \(-0.255266\pi\)
−0.970075 + 0.242806i \(0.921932\pi\)
\(614\) 0 0
\(615\) 5.80278 10.0507i 0.233990 0.405283i
\(616\) 0 0
\(617\) −6.19722 + 10.7339i −0.249491 + 0.432131i −0.963385 0.268123i \(-0.913597\pi\)
0.713894 + 0.700254i \(0.246930\pi\)
\(618\) 0 0
\(619\) −19.6333 −0.789129 −0.394565 0.918868i \(-0.629105\pi\)
−0.394565 + 0.918868i \(0.629105\pi\)
\(620\) 0 0
\(621\) −1.30278 2.25647i −0.0522786 0.0905492i
\(622\) 0 0
\(623\) −42.7889 −1.71430
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −8.60555 14.9053i −0.343673 0.595258i
\(628\) 0 0
\(629\) −3.84441 −0.153287
\(630\) 0 0
\(631\) −13.3944 + 23.1999i −0.533225 + 0.923572i 0.466022 + 0.884773i \(0.345687\pi\)
−0.999247 + 0.0387992i \(0.987647\pi\)
\(632\) 0 0
\(633\) 4.00000 6.92820i 0.158986 0.275371i
\(634\) 0 0
\(635\) −2.00000 3.46410i −0.0793676 0.137469i
\(636\) 0 0
\(637\) 0.380571 0.659168i 0.0150788 0.0261172i
\(638\) 0 0
\(639\) −4.69722 8.13583i −0.185819 0.321849i
\(640\) 0 0
\(641\) 13.1972 22.8583i 0.521259 0.902847i −0.478435 0.878123i \(-0.658796\pi\)
0.999694 0.0247243i \(-0.00787079\pi\)
\(642\) 0 0
\(643\) 21.8167 37.7876i 0.860365 1.49020i −0.0112123 0.999937i \(-0.503569\pi\)
0.871577 0.490258i \(-0.163098\pi\)
\(644\) 0 0
\(645\) 2.60555 0.102593
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 13.5778 0.532156
\(652\) 0 0
\(653\) 10.8167 + 18.7350i 0.423288 + 0.733157i 0.996259 0.0864190i \(-0.0275424\pi\)
−0.572971 + 0.819576i \(0.694209\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.50000 + 6.06218i −0.136548 + 0.236508i
\(658\) 0 0
\(659\) 20.0000 34.6410i 0.779089 1.34942i −0.153378 0.988168i \(-0.549015\pi\)
0.932467 0.361255i \(-0.117652\pi\)
\(660\) 0 0
\(661\) 10.4083 + 18.0278i 0.404837 + 0.701198i 0.994302 0.106595i \(-0.0339949\pi\)
−0.589465 + 0.807794i \(0.700662\pi\)
\(662\) 0 0
\(663\) 2.89445 + 5.01333i 0.112411 + 0.194702i
\(664\) 0 0
\(665\) 8.60555 + 14.9053i 0.333709 + 0.578001i
\(666\) 0 0
\(667\) 3.90833 6.76942i 0.151331 0.262113i
\(668\) 0 0
\(669\) 4.00000 6.92820i 0.154649 0.267860i
\(670\) 0 0
\(671\) 19.8167 0.765013
\(672\) 0 0
\(673\) −7.50000 12.9904i −0.289104 0.500742i 0.684492 0.729020i \(-0.260024\pi\)
−0.973596 + 0.228278i \(0.926691\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 28.0555 1.07826 0.539130 0.842222i \(-0.318753\pi\)
0.539130 + 0.842222i \(0.318753\pi\)
\(678\) 0 0
\(679\) −14.6056 25.2976i −0.560510 0.970831i
\(680\) 0 0
\(681\) −26.6056 −1.01953
\(682\) 0 0
\(683\) 9.21110 15.9541i 0.352453 0.610467i −0.634226 0.773148i \(-0.718681\pi\)
0.986679 + 0.162681i \(0.0520143\pi\)
\(684\) 0 0
\(685\) −8.40833 + 14.5636i −0.321266 + 0.556448i
\(686\) 0 0
\(687\) 7.60555 + 13.1732i 0.290170 + 0.502589i
\(688\) 0 0
\(689\) −5.40833 9.36750i −0.206041 0.356873i
\(690\) 0 0
\(691\) −3.30278 5.72058i −0.125644 0.217621i 0.796341 0.604848i \(-0.206766\pi\)
−0.921984 + 0.387227i \(0.873433\pi\)
\(692\) 0 0
\(693\) 3.39445 5.87936i 0.128944 0.223338i
\(694\) 0 0
\(695\) 1.39445 2.41526i 0.0528945 0.0916159i
\(696\) 0 0
\(697\) −18.6333 −0.705787
\(698\) 0 0
\(699\) −7.00000 12.1244i −0.264764 0.458585i
\(700\) 0 0
\(701\) −6.36669 −0.240467 −0.120233 0.992746i \(-0.538364\pi\)
−0.120233 + 0.992746i \(0.538364\pi\)
\(702\) 0 0
\(703\) −15.8167 −0.596536
\(704\) 0 0
\(705\) −0.697224 1.20763i −0.0262590 0.0454819i
\(706\) 0 0
\(707\) 10.9722 0.412654
\(708\) 0 0
\(709\) −16.1972 + 28.0544i −0.608300 + 1.05361i 0.383221 + 0.923657i \(0.374815\pi\)
−0.991521 + 0.129949i \(0.958519\pi\)
\(710\) 0 0
\(711\) 6.00000 10.3923i 0.225018 0.389742i
\(712\) 0 0
\(713\) −6.78890 11.7587i −0.254246 0.440367i
\(714\) 0 0
\(715\) −4.69722 + 8.13583i −0.175666 + 0.304263i
\(716\) 0 0
\(717\) −8.51388 14.7465i −0.317957 0.550717i
\(718\) 0 0
\(719\) −7.39445 + 12.8076i −0.275766 + 0.477641i −0.970328 0.241792i \(-0.922265\pi\)
0.694562 + 0.719433i \(0.255598\pi\)
\(720\) 0 0
\(721\) −20.6056 + 35.6899i −0.767391 + 1.32916i
\(722\) 0 0
\(723\) −14.6333 −0.544219
\(724\) 0 0
\(725\) 6.00000 + 10.3923i 0.222834 + 0.385961i
\(726\) 0 0
\(727\) 15.8167 0.586607 0.293304 0.956019i \(-0.405245\pi\)
0.293304 + 0.956019i \(0.405245\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.09167 3.62288i −0.0773633 0.133997i
\(732\) 0 0
\(733\) 33.2389 1.22771 0.613853 0.789421i \(-0.289619\pi\)
0.613853 + 0.789421i \(0.289619\pi\)
\(734\) 0 0
\(735\) 0.105551 0.182820i 0.00389332 0.00674342i
\(736\) 0 0
\(737\) 13.8167 23.9311i 0.508943 0.881515i
\(738\) 0 0
\(739\) 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i \(-0.0715853\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) 11.9083 + 20.6258i 0.437463 + 0.757709i
\(742\) 0 0
\(743\) 5.39445 + 9.34346i 0.197903 + 0.342778i 0.947848 0.318722i \(-0.103254\pi\)
−0.749945 + 0.661500i \(0.769920\pi\)
\(744\) 0 0
\(745\) −5.10555 + 8.84307i −0.187053 + 0.323985i
\(746\) 0 0
\(747\) −5.90833 + 10.2335i −0.216174 + 0.374425i
\(748\) 0 0
\(749\) −17.2111 −0.628880
\(750\) 0 0
\(751\) −4.51388 7.81827i −0.164714 0.285293i 0.771840 0.635817i \(-0.219337\pi\)
−0.936554 + 0.350524i \(0.886003\pi\)
\(752\) 0 0
\(753\) 29.2111 1.06451
\(754\) 0 0
\(755\) −6.60555 −0.240401
\(756\) 0 0
\(757\) 14.2111 + 24.6144i 0.516511 + 0.894624i 0.999816 + 0.0191717i \(0.00610292\pi\)
−0.483305 + 0.875452i \(0.660564\pi\)
\(758\) 0 0
\(759\) −6.78890 −0.246421
\(760\) 0 0
\(761\) 5.78890 10.0267i 0.209847 0.363466i −0.741819 0.670600i \(-0.766037\pi\)
0.951666 + 0.307134i \(0.0993700\pi\)
\(762\) 0 0
\(763\) 2.60555 4.51295i 0.0943273 0.163380i
\(764\) 0 0
\(765\) 0.802776 + 1.39045i 0.0290244 + 0.0502718i
\(766\) 0 0
\(767\) −33.2111 −1.19918
\(768\) 0 0
\(769\) −3.18335 5.51372i −0.114794 0.198830i 0.802903 0.596110i \(-0.203288\pi\)
−0.917698 + 0.397280i \(0.869954\pi\)
\(770\) 0 0
\(771\) −11.8028 + 20.4430i −0.425067 + 0.736237i
\(772\) 0 0
\(773\) 10.8167 18.7350i 0.389048 0.673851i −0.603274 0.797534i \(-0.706137\pi\)
0.992322 + 0.123683i \(0.0394707\pi\)
\(774\) 0 0
\(775\) 20.8444 0.748753
\(776\) 0 0
\(777\) −3.11943 5.40301i −0.111909 0.193832i
\(778\) 0 0
\(779\) −76.6611 −2.74667
\(780\) 0 0
\(781\) −24.4777 −0.875882
\(782\) 0 0
\(783\) 1.50000 + 2.59808i 0.0536056 + 0.0928477i
\(784\) 0 0
\(785\) −8.39445 −0.299611
\(786\) 0 0
\(787\) 10.6056 18.3694i 0.378047 0.654797i −0.612731 0.790292i \(-0.709929\pi\)
0.990778 + 0.135495i \(0.0432624\pi\)
\(788\) 0 0
\(789\) −9.30278 + 16.1129i −0.331188 + 0.573634i
\(790\) 0 0
\(791\) 15.1194 + 26.1876i 0.537585 + 0.931125i
\(792\) 0 0
\(793\) −27.4222 −0.973791
\(794\) 0 0
\(795\) −1.50000 2.59808i −0.0531995 0.0921443i
\(796\) 0 0
\(797\) −1.42221 + 2.46333i −0.0503771 + 0.0872557i −0.890114 0.455737i \(-0.849376\pi\)
0.839737 + 0.542993i \(0.182709\pi\)
\(798\) 0 0
\(799\) −1.11943 + 1.93891i −0.0396026 + 0.0685937i
\(800\) 0 0
\(801\) −16.4222 −0.580250
\(802\) 0 0
\(803\) 9.11943 + 15.7953i 0.321818 + 0.557405i
\(804\) 0 0
\(805\) 6.78890 0.239277
\(806\) 0 0
\(807\) −25.6333 −0.902335
\(808\) 0 0
\(809\) 15.8028 + 27.3712i 0.555596 + 0.962321i 0.997857 + 0.0654341i \(0.0208432\pi\)
−0.442261 + 0.896886i \(0.645823\pi\)
\(810\) 0 0
\(811\) −23.6333 −0.829878 −0.414939 0.909849i \(-0.636197\pi\)
−0.414939 + 0.909849i \(0.636197\pi\)
\(812\) 0 0
\(813\) 0.605551 1.04885i 0.0212376 0.0367846i
\(814\) 0 0
\(815\) 2.60555 4.51295i 0.0912685 0.158082i
\(816\) 0 0
\(817\) −8.60555 14.9053i −0.301070 0.521469i
\(818\) 0 0
\(819\) −4.69722 + 8.13583i −0.164134 + 0.284289i
\(820\) 0 0
\(821\) −3.60555 6.24500i −0.125835 0.217952i 0.796224 0.605002i \(-0.206828\pi\)
−0.922059 + 0.387050i \(0.873494\pi\)
\(822\) 0 0
\(823\) 9.81665 17.0029i 0.342187 0.592685i −0.642652 0.766159i \(-0.722166\pi\)
0.984839 + 0.173473i \(0.0554990\pi\)
\(824\) 0 0
\(825\) 5.21110 9.02589i 0.181427 0.314241i
\(826\) 0 0
\(827\) 1.21110 0.0421142 0.0210571 0.999778i \(-0.493297\pi\)
0.0210571 + 0.999778i \(0.493297\pi\)
\(828\) 0 0
\(829\) −23.4083 40.5444i −0.813005 1.40817i −0.910752 0.412954i \(-0.864497\pi\)
0.0977469 0.995211i \(-0.468836\pi\)
\(830\) 0 0
\(831\) −29.2389 −1.01428
\(832\) 0 0
\(833\) −0.338936 −0.0117434
\(834\) 0 0
\(835\) −8.60555 14.9053i −0.297807 0.515818i
\(836\) 0 0
\(837\) 5.21110 0.180122
\(838\) 0 0
\(839\) 6.00000 10.3923i 0.207143 0.358782i −0.743670 0.668546i \(-0.766917\pi\)
0.950813 + 0.309764i \(0.100250\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 0.197224 + 0.341603i 0.00679277 + 0.0117654i
\(844\) 0 0
\(845\) 6.50000 11.2583i 0.223607 0.387298i
\(846\) 0 0
\(847\) 5.48612 + 9.50224i 0.188505 + 0.326501i
\(848\) 0 0
\(849\) −7.30278 + 12.6488i −0.250631 + 0.434105i
\(850\) 0 0
\(851\) −3.11943 + 5.40301i −0.106933 + 0.185213i
\(852\) 0 0
\(853\) −36.8167 −1.26058 −0.630289 0.776361i \(-0.717064\pi\)
−0.630289 + 0.776361i \(0.717064\pi\)
\(854\) 0 0
\(855\) 3.30278 + 5.72058i 0.112953 + 0.195640i
\(856\) 0 0
\(857\) 4.39445 0.150112 0.0750558 0.997179i \(-0.476087\pi\)
0.0750558 + 0.997179i \(0.476087\pi\)
\(858\) 0 0
\(859\) 47.8167 1.63148 0.815742 0.578417i \(-0.196329\pi\)
0.815742 + 0.578417i \(0.196329\pi\)
\(860\) 0 0
\(861\) −15.1194 26.1876i −0.515269 0.892472i
\(862\) 0 0
\(863\) 33.0278 1.12428 0.562139 0.827043i \(-0.309979\pi\)
0.562139 + 0.827043i \(0.309979\pi\)
\(864\) 0 0
\(865\) −10.8167 + 18.7350i −0.367777 + 0.637009i
\(866\) 0 0
\(867\) −7.21110 + 12.4900i −0.244902 + 0.424183i
\(868\) 0 0
\(869\) −15.6333 27.0777i −0.530324 0.918547i
\(870\) 0 0
\(871\) −19.1194 + 33.1158i −0.647837 + 1.12209i
\(872\) 0 0
\(873\) −5.60555 9.70910i −0.189719 0.328603i
\(874\) 0 0
\(875\) −11.7250 + 20.3083i −0.396377 + 0.686545i
\(876\) 0 0
\(877\) −9.40833 + 16.2957i −0.317697 + 0.550267i −0.980007 0.198963i \(-0.936243\pi\)
0.662310 + 0.749230i \(0.269576\pi\)
\(878\) 0 0
\(879\) −0.211103 −0.00712031
\(880\) 0 0
\(881\) 14.4083 + 24.9560i 0.485429 + 0.840787i 0.999860 0.0167444i \(-0.00533014\pi\)
−0.514431 + 0.857532i \(0.671997\pi\)
\(882\) 0 0
\(883\) −9.21110 −0.309978 −0.154989 0.987916i \(-0.549534\pi\)
−0.154989 + 0.987916i \(0.549534\pi\)
\(884\) 0 0
\(885\) −9.21110 −0.309628
\(886\) 0 0
\(887\) 1.81665 + 3.14654i 0.0609973 + 0.105650i 0.894911 0.446244i \(-0.147239\pi\)
−0.833914 + 0.551894i \(0.813905\pi\)
\(888\) 0 0
\(889\) −10.4222 −0.349550
\(890\) 0 0
\(891\) 1.30278 2.25647i 0.0436446 0.0755947i
\(892\) 0 0
\(893\) −4.60555 + 7.97705i −0.154119 + 0.266942i
\(894\) 0 0
\(895\) 8.51388 + 14.7465i 0.284588 + 0.492920i
\(896\) 0 0
\(897\) 9.39445 0.313672
\(898\) 0 0
\(899\) 7.81665 + 13.5388i 0.260700 + 0.451546i
\(900\) 0 0
\(901\) −2.40833 + 4.17134i −0.0802330 + 0.138968i
\(902\) 0 0
\(903\) 3.39445 5.87936i 0.112960 0.195653i
\(904\) 0 0
\(905\) 24.8167 0.824933
\(906\) 0 0
\(907\) −5.39445 9.34346i −0.179120 0.310244i 0.762460 0.647036i \(-0.223992\pi\)
−0.941579 + 0.336791i \(0.890658\pi\)
\(908\) 0 0
\(909\) 4.21110 0.139673
\(910\) 0 0
\(911\) 19.6333 0.650481 0.325240 0.945631i \(-0.394555\pi\)
0.325240 + 0.945631i \(0.394555\pi\)
\(912\) 0 0
\(913\) 15.3944 + 26.6640i 0.509482 + 0.882449i
\(914\) 0 0
\(915\) −7.60555 −0.251432
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.81665 + 3.14654i −0.0599259 + 0.103795i −0.894432 0.447204i \(-0.852420\pi\)
0.834506 + 0.550999i \(0.185753\pi\)
\(920\) 0 0
\(921\) −2.69722 4.67173i −0.0888766 0.153939i
\(922\) 0 0
\(923\) 33.8722 1.11492
\(924\) 0 0
\(925\) −4.78890 8.29461i −0.157458 0.272725i
\(926\) 0 0
\(927\) −7.90833 + 13.6976i −0.259744 + 0.449889i
\(928\) 0 0
\(929\) −10.1972 + 17.6621i −0.334560 + 0.579475i −0.983400 0.181450i \(-0.941921\pi\)
0.648840 + 0.760925i \(0.275254\pi\)
\(930\) 0 0
\(931\) −1.39445 −0.0457012
\(932\) 0 0
\(933\) −13.9083 24.0899i −0.455338 0.788669i
\(934\) 0 0
\(935\) 4.18335 0.136810
\(936\) 0 0
\(937\) −27.0555 −0.883865 −0.441933 0.897048i \(-0.645707\pi\)
−0.441933 + 0.897048i \(0.645707\pi\)
\(938\) 0 0
\(939\) 1.60555 + 2.78090i 0.0523952 + 0.0907511i
\(940\) 0 0
\(941\) 47.2111 1.53904 0.769519 0.638624i \(-0.220496\pi\)
0.769519 + 0.638624i \(0.220496\pi\)
\(942\) 0 0
\(943\) −15.1194 + 26.1876i −0.492356 + 0.852786i
\(944\) 0 0
\(945\) −1.30278 + 2.25647i −0.0423793 + 0.0734031i
\(946\) 0 0
\(947\) −1.81665 3.14654i −0.0590333 0.102249i 0.834998 0.550252i \(-0.185468\pi\)
−0.894032 + 0.448004i \(0.852135\pi\)
\(948\) 0 0
\(949\) −12.6194 21.8575i −0.409644 0.709524i
\(950\) 0 0
\(951\) −1.10555 1.91487i −0.0358500 0.0620939i
\(952\) 0 0
\(953\) −4.39445 + 7.61141i −0.142350 + 0.246558i −0.928381 0.371629i \(-0.878799\pi\)
0.786031 + 0.618187i \(0.212133\pi\)
\(954\) 0 0
\(955\) 11.8167 20.4670i 0.382378 0.662298i
\(956\) 0 0
\(957\) 7.81665 0.252677
\(958\) 0 0
\(959\) 21.9083 + 37.9463i 0.707457 + 1.22535i
\(960\) 0 0
\(961\) −3.84441 −0.124013
\(962\) 0 0
\(963\) −6.60555 −0.212861
\(964\) 0 0
\(965\) −3.89445 6.74538i −0.125367 0.217142i
\(966\) 0 0
\(967\) −2.97224 −0.0955809 −0.0477905 0.998857i \(-0.515218\pi\)
−0.0477905 + 0.998857i \(0.515218\pi\)
\(968\) 0 0
\(969\) 5.30278 9.18468i 0.170350 0.295054i
\(970\) 0 0
\(971\) −21.6333 + 37.4700i −0.694246 + 1.20247i 0.276188 + 0.961104i \(0.410929\pi\)
−0.970434 + 0.241366i \(0.922405\pi\)
\(972\) 0 0
\(973\) −3.63331 6.29307i −0.116478 0.201747i
\(974\) 0 0
\(975\) −7.21110 + 12.4900i −0.230940 + 0.400000i
\(976\) 0 0
\(977\) −25.2250 43.6909i −0.807019 1.39780i −0.914920 0.403636i \(-0.867746\pi\)
0.107901 0.994162i \(-0.465587\pi\)
\(978\) 0 0
\(979\) −21.3944 + 37.0563i −0.683770 + 1.18432i
\(980\) 0 0
\(981\) 1.00000 1.73205i 0.0319275 0.0553001i
\(982\) 0 0
\(983\) 37.2111 1.18685 0.593425 0.804889i \(-0.297775\pi\)
0.593425 + 0.804889i \(0.297775\pi\)
\(984\) 0 0
\(985\) −5.00000 8.66025i −0.159313 0.275939i
\(986\) 0 0
\(987\) −3.63331 −0.115649
\(988\) 0 0
\(989\) −6.78890 −0.215874
\(990\) 0 0
\(991\) −10.6972 18.5281i −0.339809 0.588566i 0.644588 0.764530i \(-0.277029\pi\)
−0.984397 + 0.175964i \(0.943696\pi\)
\(992\) 0 0
\(993\) −15.6333 −0.496108
\(994\) 0 0
\(995\) −9.90833 + 17.1617i −0.314115 + 0.544063i
\(996\) 0 0
\(997\) −29.2250 + 50.6192i −0.925564 + 1.60312i −0.134914 + 0.990857i \(0.543076\pi\)
−0.790651 + 0.612267i \(0.790258\pi\)
\(998\) 0 0
\(999\) −1.19722 2.07365i −0.0378785 0.0656075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.q.i.289.1 4
3.2 odd 2 1872.2.t.q.289.1 4
4.3 odd 2 312.2.q.d.289.2 yes 4
12.11 even 2 936.2.t.e.289.2 4
13.3 even 3 8112.2.a.bl.1.2 2
13.9 even 3 inner 624.2.q.i.529.1 4
13.10 even 6 8112.2.a.bn.1.1 2
39.35 odd 6 1872.2.t.q.1153.1 4
52.3 odd 6 4056.2.a.v.1.1 2
52.11 even 12 4056.2.c.l.337.2 4
52.15 even 12 4056.2.c.l.337.3 4
52.23 odd 6 4056.2.a.w.1.2 2
52.35 odd 6 312.2.q.d.217.2 4
156.35 even 6 936.2.t.e.217.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.q.d.217.2 4 52.35 odd 6
312.2.q.d.289.2 yes 4 4.3 odd 2
624.2.q.i.289.1 4 1.1 even 1 trivial
624.2.q.i.529.1 4 13.9 even 3 inner
936.2.t.e.217.2 4 156.35 even 6
936.2.t.e.289.2 4 12.11 even 2
1872.2.t.q.289.1 4 3.2 odd 2
1872.2.t.q.1153.1 4 39.35 odd 6
4056.2.a.v.1.1 2 52.3 odd 6
4056.2.a.w.1.2 2 52.23 odd 6
4056.2.c.l.337.2 4 52.11 even 12
4056.2.c.l.337.3 4 52.15 even 12
8112.2.a.bl.1.2 2 13.3 even 3
8112.2.a.bn.1.1 2 13.10 even 6