Properties

Label 624.4.g
Level $624$
Weight $4$
Character orbit 624.g
Rep. character $\chi_{624}(313,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $448$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(448\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(624, [\chi])\).

Total New Old
Modular forms 344 0 344
Cusp forms 328 0 328
Eisenstein series 16 0 16

Decomposition of \(S_{4}^{\mathrm{old}}(624, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(624, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)