Properties

Label 624.6.a.b.1.1
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -74.0000 q^{5} +112.000 q^{7} +81.0000 q^{9} -164.000 q^{11} +169.000 q^{13} +666.000 q^{15} -1646.00 q^{17} +2052.00 q^{19} -1008.00 q^{21} -4152.00 q^{23} +2351.00 q^{25} -729.000 q^{27} +2638.00 q^{29} +8936.00 q^{31} +1476.00 q^{33} -8288.00 q^{35} +1846.00 q^{37} -1521.00 q^{39} +8010.00 q^{41} +19236.0 q^{43} -5994.00 q^{45} +12840.0 q^{47} -4263.00 q^{49} +14814.0 q^{51} -1434.00 q^{53} +12136.0 q^{55} -18468.0 q^{57} -1428.00 q^{59} -25202.0 q^{61} +9072.00 q^{63} -12506.0 q^{65} +22868.0 q^{67} +37368.0 q^{69} -17280.0 q^{71} +54410.0 q^{73} -21159.0 q^{75} -18368.0 q^{77} -65312.0 q^{79} +6561.00 q^{81} +70372.0 q^{83} +121804. q^{85} -23742.0 q^{87} -76390.0 q^{89} +18928.0 q^{91} -80424.0 q^{93} -151848. q^{95} -174398. q^{97} -13284.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −74.0000 −1.32375 −0.661876 0.749613i \(-0.730240\pi\)
−0.661876 + 0.749613i \(0.730240\pi\)
\(6\) 0 0
\(7\) 112.000 0.863919 0.431959 0.901893i \(-0.357822\pi\)
0.431959 + 0.901893i \(0.357822\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −164.000 −0.408660 −0.204330 0.978902i \(-0.565502\pi\)
−0.204330 + 0.978902i \(0.565502\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 666.000 0.764269
\(16\) 0 0
\(17\) −1646.00 −1.38136 −0.690681 0.723160i \(-0.742689\pi\)
−0.690681 + 0.723160i \(0.742689\pi\)
\(18\) 0 0
\(19\) 2052.00 1.30405 0.652024 0.758199i \(-0.273920\pi\)
0.652024 + 0.758199i \(0.273920\pi\)
\(20\) 0 0
\(21\) −1008.00 −0.498784
\(22\) 0 0
\(23\) −4152.00 −1.63658 −0.818291 0.574804i \(-0.805078\pi\)
−0.818291 + 0.574804i \(0.805078\pi\)
\(24\) 0 0
\(25\) 2351.00 0.752320
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 2638.00 0.582478 0.291239 0.956650i \(-0.405932\pi\)
0.291239 + 0.956650i \(0.405932\pi\)
\(30\) 0 0
\(31\) 8936.00 1.67009 0.835043 0.550184i \(-0.185443\pi\)
0.835043 + 0.550184i \(0.185443\pi\)
\(32\) 0 0
\(33\) 1476.00 0.235940
\(34\) 0 0
\(35\) −8288.00 −1.14361
\(36\) 0 0
\(37\) 1846.00 0.221680 0.110840 0.993838i \(-0.464646\pi\)
0.110840 + 0.993838i \(0.464646\pi\)
\(38\) 0 0
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) 8010.00 0.744171 0.372086 0.928198i \(-0.378643\pi\)
0.372086 + 0.928198i \(0.378643\pi\)
\(42\) 0 0
\(43\) 19236.0 1.58651 0.793256 0.608888i \(-0.208384\pi\)
0.793256 + 0.608888i \(0.208384\pi\)
\(44\) 0 0
\(45\) −5994.00 −0.441251
\(46\) 0 0
\(47\) 12840.0 0.847853 0.423926 0.905697i \(-0.360652\pi\)
0.423926 + 0.905697i \(0.360652\pi\)
\(48\) 0 0
\(49\) −4263.00 −0.253644
\(50\) 0 0
\(51\) 14814.0 0.797530
\(52\) 0 0
\(53\) −1434.00 −0.0701228 −0.0350614 0.999385i \(-0.511163\pi\)
−0.0350614 + 0.999385i \(0.511163\pi\)
\(54\) 0 0
\(55\) 12136.0 0.540965
\(56\) 0 0
\(57\) −18468.0 −0.752892
\(58\) 0 0
\(59\) −1428.00 −0.0534070 −0.0267035 0.999643i \(-0.508501\pi\)
−0.0267035 + 0.999643i \(0.508501\pi\)
\(60\) 0 0
\(61\) −25202.0 −0.867182 −0.433591 0.901110i \(-0.642754\pi\)
−0.433591 + 0.901110i \(0.642754\pi\)
\(62\) 0 0
\(63\) 9072.00 0.287973
\(64\) 0 0
\(65\) −12506.0 −0.367143
\(66\) 0 0
\(67\) 22868.0 0.622359 0.311180 0.950351i \(-0.399276\pi\)
0.311180 + 0.950351i \(0.399276\pi\)
\(68\) 0 0
\(69\) 37368.0 0.944881
\(70\) 0 0
\(71\) −17280.0 −0.406816 −0.203408 0.979094i \(-0.565202\pi\)
−0.203408 + 0.979094i \(0.565202\pi\)
\(72\) 0 0
\(73\) 54410.0 1.19501 0.597505 0.801865i \(-0.296159\pi\)
0.597505 + 0.801865i \(0.296159\pi\)
\(74\) 0 0
\(75\) −21159.0 −0.434352
\(76\) 0 0
\(77\) −18368.0 −0.353049
\(78\) 0 0
\(79\) −65312.0 −1.17740 −0.588702 0.808350i \(-0.700361\pi\)
−0.588702 + 0.808350i \(0.700361\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 70372.0 1.12126 0.560628 0.828068i \(-0.310560\pi\)
0.560628 + 0.828068i \(0.310560\pi\)
\(84\) 0 0
\(85\) 121804. 1.82858
\(86\) 0 0
\(87\) −23742.0 −0.336294
\(88\) 0 0
\(89\) −76390.0 −1.02226 −0.511130 0.859503i \(-0.670773\pi\)
−0.511130 + 0.859503i \(0.670773\pi\)
\(90\) 0 0
\(91\) 18928.0 0.239608
\(92\) 0 0
\(93\) −80424.0 −0.964225
\(94\) 0 0
\(95\) −151848. −1.72624
\(96\) 0 0
\(97\) −174398. −1.88197 −0.940984 0.338451i \(-0.890097\pi\)
−0.940984 + 0.338451i \(0.890097\pi\)
\(98\) 0 0
\(99\) −13284.0 −0.136220
\(100\) 0 0
\(101\) −2730.00 −0.0266293 −0.0133146 0.999911i \(-0.504238\pi\)
−0.0133146 + 0.999911i \(0.504238\pi\)
\(102\) 0 0
\(103\) −163464. −1.51820 −0.759100 0.650974i \(-0.774361\pi\)
−0.759100 + 0.650974i \(0.774361\pi\)
\(104\) 0 0
\(105\) 74592.0 0.660266
\(106\) 0 0
\(107\) −127884. −1.07983 −0.539917 0.841718i \(-0.681544\pi\)
−0.539917 + 0.841718i \(0.681544\pi\)
\(108\) 0 0
\(109\) 9694.00 0.0781514 0.0390757 0.999236i \(-0.487559\pi\)
0.0390757 + 0.999236i \(0.487559\pi\)
\(110\) 0 0
\(111\) −16614.0 −0.127987
\(112\) 0 0
\(113\) −161166. −1.18735 −0.593673 0.804706i \(-0.702323\pi\)
−0.593673 + 0.804706i \(0.702323\pi\)
\(114\) 0 0
\(115\) 307248. 2.16643
\(116\) 0 0
\(117\) 13689.0 0.0924500
\(118\) 0 0
\(119\) −184352. −1.19338
\(120\) 0 0
\(121\) −134155. −0.832997
\(122\) 0 0
\(123\) −72090.0 −0.429647
\(124\) 0 0
\(125\) 57276.0 0.327867
\(126\) 0 0
\(127\) 52000.0 0.286084 0.143042 0.989717i \(-0.454312\pi\)
0.143042 + 0.989717i \(0.454312\pi\)
\(128\) 0 0
\(129\) −173124. −0.915974
\(130\) 0 0
\(131\) −284324. −1.44756 −0.723778 0.690033i \(-0.757596\pi\)
−0.723778 + 0.690033i \(0.757596\pi\)
\(132\) 0 0
\(133\) 229824. 1.12659
\(134\) 0 0
\(135\) 53946.0 0.254756
\(136\) 0 0
\(137\) 231978. 1.05595 0.527977 0.849258i \(-0.322951\pi\)
0.527977 + 0.849258i \(0.322951\pi\)
\(138\) 0 0
\(139\) −135084. −0.593017 −0.296508 0.955030i \(-0.595822\pi\)
−0.296508 + 0.955030i \(0.595822\pi\)
\(140\) 0 0
\(141\) −115560. −0.489508
\(142\) 0 0
\(143\) −27716.0 −0.113342
\(144\) 0 0
\(145\) −195212. −0.771057
\(146\) 0 0
\(147\) 38367.0 0.146442
\(148\) 0 0
\(149\) 78438.0 0.289442 0.144721 0.989473i \(-0.453772\pi\)
0.144721 + 0.989473i \(0.453772\pi\)
\(150\) 0 0
\(151\) 131264. 0.468493 0.234247 0.972177i \(-0.424738\pi\)
0.234247 + 0.972177i \(0.424738\pi\)
\(152\) 0 0
\(153\) −133326. −0.460454
\(154\) 0 0
\(155\) −661264. −2.21078
\(156\) 0 0
\(157\) 198030. 0.641183 0.320591 0.947218i \(-0.396118\pi\)
0.320591 + 0.947218i \(0.396118\pi\)
\(158\) 0 0
\(159\) 12906.0 0.0404854
\(160\) 0 0
\(161\) −465024. −1.41387
\(162\) 0 0
\(163\) −190172. −0.560632 −0.280316 0.959908i \(-0.590439\pi\)
−0.280316 + 0.959908i \(0.590439\pi\)
\(164\) 0 0
\(165\) −109224. −0.312326
\(166\) 0 0
\(167\) 135952. 0.377220 0.188610 0.982052i \(-0.439602\pi\)
0.188610 + 0.982052i \(0.439602\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 166212. 0.434682
\(172\) 0 0
\(173\) 743934. 1.88981 0.944907 0.327338i \(-0.106152\pi\)
0.944907 + 0.327338i \(0.106152\pi\)
\(174\) 0 0
\(175\) 263312. 0.649943
\(176\) 0 0
\(177\) 12852.0 0.0308345
\(178\) 0 0
\(179\) 619708. 1.44562 0.722811 0.691046i \(-0.242850\pi\)
0.722811 + 0.691046i \(0.242850\pi\)
\(180\) 0 0
\(181\) −559162. −1.26865 −0.634324 0.773067i \(-0.718722\pi\)
−0.634324 + 0.773067i \(0.718722\pi\)
\(182\) 0 0
\(183\) 226818. 0.500668
\(184\) 0 0
\(185\) −136604. −0.293450
\(186\) 0 0
\(187\) 269944. 0.564507
\(188\) 0 0
\(189\) −81648.0 −0.166261
\(190\) 0 0
\(191\) 154448. 0.306337 0.153168 0.988200i \(-0.451052\pi\)
0.153168 + 0.988200i \(0.451052\pi\)
\(192\) 0 0
\(193\) −268638. −0.519128 −0.259564 0.965726i \(-0.583579\pi\)
−0.259564 + 0.965726i \(0.583579\pi\)
\(194\) 0 0
\(195\) 112554. 0.211970
\(196\) 0 0
\(197\) −825450. −1.51539 −0.757696 0.652607i \(-0.773675\pi\)
−0.757696 + 0.652607i \(0.773675\pi\)
\(198\) 0 0
\(199\) −874184. −1.56484 −0.782420 0.622751i \(-0.786015\pi\)
−0.782420 + 0.622751i \(0.786015\pi\)
\(200\) 0 0
\(201\) −205812. −0.359319
\(202\) 0 0
\(203\) 295456. 0.503214
\(204\) 0 0
\(205\) −592740. −0.985098
\(206\) 0 0
\(207\) −336312. −0.545527
\(208\) 0 0
\(209\) −336528. −0.532912
\(210\) 0 0
\(211\) −409876. −0.633791 −0.316896 0.948460i \(-0.602641\pi\)
−0.316896 + 0.948460i \(0.602641\pi\)
\(212\) 0 0
\(213\) 155520. 0.234875
\(214\) 0 0
\(215\) −1.42346e6 −2.10015
\(216\) 0 0
\(217\) 1.00083e6 1.44282
\(218\) 0 0
\(219\) −489690. −0.689939
\(220\) 0 0
\(221\) −278174. −0.383121
\(222\) 0 0
\(223\) −488248. −0.657474 −0.328737 0.944422i \(-0.606623\pi\)
−0.328737 + 0.944422i \(0.606623\pi\)
\(224\) 0 0
\(225\) 190431. 0.250773
\(226\) 0 0
\(227\) 1.03311e6 1.33070 0.665351 0.746530i \(-0.268282\pi\)
0.665351 + 0.746530i \(0.268282\pi\)
\(228\) 0 0
\(229\) −784042. −0.987986 −0.493993 0.869466i \(-0.664463\pi\)
−0.493993 + 0.869466i \(0.664463\pi\)
\(230\) 0 0
\(231\) 165312. 0.203833
\(232\) 0 0
\(233\) −366262. −0.441979 −0.220990 0.975276i \(-0.570929\pi\)
−0.220990 + 0.975276i \(0.570929\pi\)
\(234\) 0 0
\(235\) −950160. −1.12235
\(236\) 0 0
\(237\) 587808. 0.679774
\(238\) 0 0
\(239\) −1.51639e6 −1.71718 −0.858592 0.512660i \(-0.828660\pi\)
−0.858592 + 0.512660i \(0.828660\pi\)
\(240\) 0 0
\(241\) −1.53438e6 −1.70173 −0.850865 0.525384i \(-0.823922\pi\)
−0.850865 + 0.525384i \(0.823922\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 315462. 0.335762
\(246\) 0 0
\(247\) 346788. 0.361678
\(248\) 0 0
\(249\) −633348. −0.647357
\(250\) 0 0
\(251\) 419700. 0.420489 0.210245 0.977649i \(-0.432574\pi\)
0.210245 + 0.977649i \(0.432574\pi\)
\(252\) 0 0
\(253\) 680928. 0.668806
\(254\) 0 0
\(255\) −1.09624e6 −1.05573
\(256\) 0 0
\(257\) 450562. 0.425522 0.212761 0.977104i \(-0.431754\pi\)
0.212761 + 0.977104i \(0.431754\pi\)
\(258\) 0 0
\(259\) 206752. 0.191514
\(260\) 0 0
\(261\) 213678. 0.194159
\(262\) 0 0
\(263\) 368328. 0.328356 0.164178 0.986431i \(-0.447503\pi\)
0.164178 + 0.986431i \(0.447503\pi\)
\(264\) 0 0
\(265\) 106116. 0.0928253
\(266\) 0 0
\(267\) 687510. 0.590202
\(268\) 0 0
\(269\) −1.65459e6 −1.39415 −0.697077 0.716996i \(-0.745516\pi\)
−0.697077 + 0.716996i \(0.745516\pi\)
\(270\) 0 0
\(271\) 2.00225e6 1.65613 0.828065 0.560631i \(-0.189442\pi\)
0.828065 + 0.560631i \(0.189442\pi\)
\(272\) 0 0
\(273\) −170352. −0.138338
\(274\) 0 0
\(275\) −385564. −0.307443
\(276\) 0 0
\(277\) −1.15398e6 −0.903646 −0.451823 0.892108i \(-0.649226\pi\)
−0.451823 + 0.892108i \(0.649226\pi\)
\(278\) 0 0
\(279\) 723816. 0.556695
\(280\) 0 0
\(281\) −1.76087e6 −1.33034 −0.665168 0.746694i \(-0.731640\pi\)
−0.665168 + 0.746694i \(0.731640\pi\)
\(282\) 0 0
\(283\) −1.78523e6 −1.32504 −0.662518 0.749046i \(-0.730512\pi\)
−0.662518 + 0.749046i \(0.730512\pi\)
\(284\) 0 0
\(285\) 1.36663e6 0.996643
\(286\) 0 0
\(287\) 897120. 0.642904
\(288\) 0 0
\(289\) 1.28946e6 0.908161
\(290\) 0 0
\(291\) 1.56958e6 1.08655
\(292\) 0 0
\(293\) 172854. 0.117628 0.0588140 0.998269i \(-0.481268\pi\)
0.0588140 + 0.998269i \(0.481268\pi\)
\(294\) 0 0
\(295\) 105672. 0.0706976
\(296\) 0 0
\(297\) 119556. 0.0786467
\(298\) 0 0
\(299\) −701688. −0.453906
\(300\) 0 0
\(301\) 2.15443e6 1.37062
\(302\) 0 0
\(303\) 24570.0 0.0153744
\(304\) 0 0
\(305\) 1.86495e6 1.14793
\(306\) 0 0
\(307\) −1.06286e6 −0.643621 −0.321810 0.946804i \(-0.604291\pi\)
−0.321810 + 0.946804i \(0.604291\pi\)
\(308\) 0 0
\(309\) 1.47118e6 0.876533
\(310\) 0 0
\(311\) 379656. 0.222582 0.111291 0.993788i \(-0.464501\pi\)
0.111291 + 0.993788i \(0.464501\pi\)
\(312\) 0 0
\(313\) −3.17463e6 −1.83161 −0.915803 0.401627i \(-0.868445\pi\)
−0.915803 + 0.401627i \(0.868445\pi\)
\(314\) 0 0
\(315\) −671328. −0.381205
\(316\) 0 0
\(317\) 920398. 0.514431 0.257216 0.966354i \(-0.417195\pi\)
0.257216 + 0.966354i \(0.417195\pi\)
\(318\) 0 0
\(319\) −432632. −0.238036
\(320\) 0 0
\(321\) 1.15096e6 0.623442
\(322\) 0 0
\(323\) −3.37759e6 −1.80136
\(324\) 0 0
\(325\) 397319. 0.208656
\(326\) 0 0
\(327\) −87246.0 −0.0451207
\(328\) 0 0
\(329\) 1.43808e6 0.732476
\(330\) 0 0
\(331\) 411820. 0.206603 0.103302 0.994650i \(-0.467059\pi\)
0.103302 + 0.994650i \(0.467059\pi\)
\(332\) 0 0
\(333\) 149526. 0.0738935
\(334\) 0 0
\(335\) −1.69223e6 −0.823850
\(336\) 0 0
\(337\) 749394. 0.359447 0.179724 0.983717i \(-0.442480\pi\)
0.179724 + 0.983717i \(0.442480\pi\)
\(338\) 0 0
\(339\) 1.45049e6 0.685515
\(340\) 0 0
\(341\) −1.46550e6 −0.682497
\(342\) 0 0
\(343\) −2.35984e6 −1.08305
\(344\) 0 0
\(345\) −2.76523e6 −1.25079
\(346\) 0 0
\(347\) 2.26448e6 1.00959 0.504796 0.863239i \(-0.331568\pi\)
0.504796 + 0.863239i \(0.331568\pi\)
\(348\) 0 0
\(349\) 751342. 0.330198 0.165099 0.986277i \(-0.447206\pi\)
0.165099 + 0.986277i \(0.447206\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 0 0
\(353\) 2.69175e6 1.14973 0.574867 0.818247i \(-0.305054\pi\)
0.574867 + 0.818247i \(0.305054\pi\)
\(354\) 0 0
\(355\) 1.27872e6 0.538523
\(356\) 0 0
\(357\) 1.65917e6 0.689001
\(358\) 0 0
\(359\) 1.15234e6 0.471892 0.235946 0.971766i \(-0.424181\pi\)
0.235946 + 0.971766i \(0.424181\pi\)
\(360\) 0 0
\(361\) 1.73460e6 0.700539
\(362\) 0 0
\(363\) 1.20740e6 0.480931
\(364\) 0 0
\(365\) −4.02634e6 −1.58190
\(366\) 0 0
\(367\) 4.70854e6 1.82483 0.912413 0.409271i \(-0.134217\pi\)
0.912413 + 0.409271i \(0.134217\pi\)
\(368\) 0 0
\(369\) 648810. 0.248057
\(370\) 0 0
\(371\) −160608. −0.0605804
\(372\) 0 0
\(373\) 4.79181e6 1.78331 0.891657 0.452711i \(-0.149543\pi\)
0.891657 + 0.452711i \(0.149543\pi\)
\(374\) 0 0
\(375\) −515484. −0.189294
\(376\) 0 0
\(377\) 445822. 0.161550
\(378\) 0 0
\(379\) −786756. −0.281347 −0.140673 0.990056i \(-0.544927\pi\)
−0.140673 + 0.990056i \(0.544927\pi\)
\(380\) 0 0
\(381\) −468000. −0.165171
\(382\) 0 0
\(383\) −1.29100e6 −0.449707 −0.224853 0.974393i \(-0.572190\pi\)
−0.224853 + 0.974393i \(0.572190\pi\)
\(384\) 0 0
\(385\) 1.35923e6 0.467349
\(386\) 0 0
\(387\) 1.55812e6 0.528838
\(388\) 0 0
\(389\) −3.38929e6 −1.13562 −0.567812 0.823158i \(-0.692210\pi\)
−0.567812 + 0.823158i \(0.692210\pi\)
\(390\) 0 0
\(391\) 6.83419e6 2.26071
\(392\) 0 0
\(393\) 2.55892e6 0.835747
\(394\) 0 0
\(395\) 4.83309e6 1.55859
\(396\) 0 0
\(397\) −1.00899e6 −0.321301 −0.160651 0.987011i \(-0.551359\pi\)
−0.160651 + 0.987011i \(0.551359\pi\)
\(398\) 0 0
\(399\) −2.06842e6 −0.650438
\(400\) 0 0
\(401\) 1.10213e6 0.342272 0.171136 0.985247i \(-0.445256\pi\)
0.171136 + 0.985247i \(0.445256\pi\)
\(402\) 0 0
\(403\) 1.51018e6 0.463199
\(404\) 0 0
\(405\) −485514. −0.147084
\(406\) 0 0
\(407\) −302744. −0.0905919
\(408\) 0 0
\(409\) −3.18196e6 −0.940559 −0.470280 0.882517i \(-0.655847\pi\)
−0.470280 + 0.882517i \(0.655847\pi\)
\(410\) 0 0
\(411\) −2.08780e6 −0.609656
\(412\) 0 0
\(413\) −159936. −0.0461393
\(414\) 0 0
\(415\) −5.20753e6 −1.48426
\(416\) 0 0
\(417\) 1.21576e6 0.342378
\(418\) 0 0
\(419\) 5.56976e6 1.54989 0.774945 0.632028i \(-0.217777\pi\)
0.774945 + 0.632028i \(0.217777\pi\)
\(420\) 0 0
\(421\) 741014. 0.203761 0.101881 0.994797i \(-0.467514\pi\)
0.101881 + 0.994797i \(0.467514\pi\)
\(422\) 0 0
\(423\) 1.04004e6 0.282618
\(424\) 0 0
\(425\) −3.86975e6 −1.03923
\(426\) 0 0
\(427\) −2.82262e6 −0.749175
\(428\) 0 0
\(429\) 249444. 0.0654380
\(430\) 0 0
\(431\) −3.54670e6 −0.919667 −0.459834 0.888005i \(-0.652091\pi\)
−0.459834 + 0.888005i \(0.652091\pi\)
\(432\) 0 0
\(433\) −2.35797e6 −0.604391 −0.302195 0.953246i \(-0.597719\pi\)
−0.302195 + 0.953246i \(0.597719\pi\)
\(434\) 0 0
\(435\) 1.75691e6 0.445170
\(436\) 0 0
\(437\) −8.51990e6 −2.13418
\(438\) 0 0
\(439\) 849352. 0.210342 0.105171 0.994454i \(-0.466461\pi\)
0.105171 + 0.994454i \(0.466461\pi\)
\(440\) 0 0
\(441\) −345303. −0.0845481
\(442\) 0 0
\(443\) −6.16044e6 −1.49143 −0.745715 0.666265i \(-0.767892\pi\)
−0.745715 + 0.666265i \(0.767892\pi\)
\(444\) 0 0
\(445\) 5.65286e6 1.35322
\(446\) 0 0
\(447\) −705942. −0.167109
\(448\) 0 0
\(449\) −8.02416e6 −1.87838 −0.939190 0.343397i \(-0.888422\pi\)
−0.939190 + 0.343397i \(0.888422\pi\)
\(450\) 0 0
\(451\) −1.31364e6 −0.304113
\(452\) 0 0
\(453\) −1.18138e6 −0.270485
\(454\) 0 0
\(455\) −1.40067e6 −0.317182
\(456\) 0 0
\(457\) 4.85047e6 1.08641 0.543205 0.839600i \(-0.317211\pi\)
0.543205 + 0.839600i \(0.317211\pi\)
\(458\) 0 0
\(459\) 1.19993e6 0.265843
\(460\) 0 0
\(461\) −583810. −0.127944 −0.0639719 0.997952i \(-0.520377\pi\)
−0.0639719 + 0.997952i \(0.520377\pi\)
\(462\) 0 0
\(463\) −787672. −0.170763 −0.0853813 0.996348i \(-0.527211\pi\)
−0.0853813 + 0.996348i \(0.527211\pi\)
\(464\) 0 0
\(465\) 5.95138e6 1.27639
\(466\) 0 0
\(467\) −7.67629e6 −1.62877 −0.814384 0.580326i \(-0.802925\pi\)
−0.814384 + 0.580326i \(0.802925\pi\)
\(468\) 0 0
\(469\) 2.56122e6 0.537668
\(470\) 0 0
\(471\) −1.78227e6 −0.370187
\(472\) 0 0
\(473\) −3.15470e6 −0.648344
\(474\) 0 0
\(475\) 4.82425e6 0.981061
\(476\) 0 0
\(477\) −116154. −0.0233743
\(478\) 0 0
\(479\) 2.16406e6 0.430953 0.215476 0.976509i \(-0.430870\pi\)
0.215476 + 0.976509i \(0.430870\pi\)
\(480\) 0 0
\(481\) 311974. 0.0614831
\(482\) 0 0
\(483\) 4.18522e6 0.816300
\(484\) 0 0
\(485\) 1.29055e7 2.49126
\(486\) 0 0
\(487\) 5.35363e6 1.02288 0.511442 0.859318i \(-0.329112\pi\)
0.511442 + 0.859318i \(0.329112\pi\)
\(488\) 0 0
\(489\) 1.71155e6 0.323681
\(490\) 0 0
\(491\) 387012. 0.0724470 0.0362235 0.999344i \(-0.488467\pi\)
0.0362235 + 0.999344i \(0.488467\pi\)
\(492\) 0 0
\(493\) −4.34215e6 −0.804614
\(494\) 0 0
\(495\) 983016. 0.180322
\(496\) 0 0
\(497\) −1.93536e6 −0.351456
\(498\) 0 0
\(499\) 1.93856e6 0.348521 0.174260 0.984700i \(-0.444247\pi\)
0.174260 + 0.984700i \(0.444247\pi\)
\(500\) 0 0
\(501\) −1.22357e6 −0.217788
\(502\) 0 0
\(503\) 6.21407e6 1.09511 0.547553 0.836771i \(-0.315559\pi\)
0.547553 + 0.836771i \(0.315559\pi\)
\(504\) 0 0
\(505\) 202020. 0.0352506
\(506\) 0 0
\(507\) −257049. −0.0444116
\(508\) 0 0
\(509\) 1.03214e7 1.76580 0.882902 0.469558i \(-0.155587\pi\)
0.882902 + 0.469558i \(0.155587\pi\)
\(510\) 0 0
\(511\) 6.09392e6 1.03239
\(512\) 0 0
\(513\) −1.49591e6 −0.250964
\(514\) 0 0
\(515\) 1.20963e7 2.00972
\(516\) 0 0
\(517\) −2.10576e6 −0.346483
\(518\) 0 0
\(519\) −6.69541e6 −1.09108
\(520\) 0 0
\(521\) −4.25813e6 −0.687266 −0.343633 0.939104i \(-0.611658\pi\)
−0.343633 + 0.939104i \(0.611658\pi\)
\(522\) 0 0
\(523\) 7.11960e6 1.13816 0.569078 0.822284i \(-0.307300\pi\)
0.569078 + 0.822284i \(0.307300\pi\)
\(524\) 0 0
\(525\) −2.36981e6 −0.375245
\(526\) 0 0
\(527\) −1.47087e7 −2.30699
\(528\) 0 0
\(529\) 1.08028e7 1.67840
\(530\) 0 0
\(531\) −115668. −0.0178023
\(532\) 0 0
\(533\) 1.35369e6 0.206396
\(534\) 0 0
\(535\) 9.46342e6 1.42943
\(536\) 0 0
\(537\) −5.57737e6 −0.834630
\(538\) 0 0
\(539\) 699132. 0.103654
\(540\) 0 0
\(541\) 9.82971e6 1.44393 0.721967 0.691927i \(-0.243238\pi\)
0.721967 + 0.691927i \(0.243238\pi\)
\(542\) 0 0
\(543\) 5.03246e6 0.732454
\(544\) 0 0
\(545\) −717356. −0.103453
\(546\) 0 0
\(547\) −5.75751e6 −0.822747 −0.411373 0.911467i \(-0.634951\pi\)
−0.411373 + 0.911467i \(0.634951\pi\)
\(548\) 0 0
\(549\) −2.04136e6 −0.289061
\(550\) 0 0
\(551\) 5.41318e6 0.759579
\(552\) 0 0
\(553\) −7.31494e6 −1.01718
\(554\) 0 0
\(555\) 1.22944e6 0.169423
\(556\) 0 0
\(557\) 3.71523e6 0.507397 0.253698 0.967283i \(-0.418353\pi\)
0.253698 + 0.967283i \(0.418353\pi\)
\(558\) 0 0
\(559\) 3.25088e6 0.440020
\(560\) 0 0
\(561\) −2.42950e6 −0.325919
\(562\) 0 0
\(563\) −1.10492e7 −1.46912 −0.734561 0.678542i \(-0.762612\pi\)
−0.734561 + 0.678542i \(0.762612\pi\)
\(564\) 0 0
\(565\) 1.19263e7 1.57175
\(566\) 0 0
\(567\) 734832. 0.0959910
\(568\) 0 0
\(569\) −5.87287e6 −0.760448 −0.380224 0.924894i \(-0.624153\pi\)
−0.380224 + 0.924894i \(0.624153\pi\)
\(570\) 0 0
\(571\) −5.16868e6 −0.663422 −0.331711 0.943381i \(-0.607626\pi\)
−0.331711 + 0.943381i \(0.607626\pi\)
\(572\) 0 0
\(573\) −1.39003e6 −0.176864
\(574\) 0 0
\(575\) −9.76135e6 −1.23123
\(576\) 0 0
\(577\) −5.37369e6 −0.671944 −0.335972 0.941872i \(-0.609065\pi\)
−0.335972 + 0.941872i \(0.609065\pi\)
\(578\) 0 0
\(579\) 2.41774e6 0.299718
\(580\) 0 0
\(581\) 7.88166e6 0.968674
\(582\) 0 0
\(583\) 235176. 0.0286564
\(584\) 0 0
\(585\) −1.01299e6 −0.122381
\(586\) 0 0
\(587\) −1.50540e7 −1.80325 −0.901625 0.432519i \(-0.857625\pi\)
−0.901625 + 0.432519i \(0.857625\pi\)
\(588\) 0 0
\(589\) 1.83367e7 2.17787
\(590\) 0 0
\(591\) 7.42905e6 0.874912
\(592\) 0 0
\(593\) 7.27003e6 0.848984 0.424492 0.905432i \(-0.360453\pi\)
0.424492 + 0.905432i \(0.360453\pi\)
\(594\) 0 0
\(595\) 1.36420e7 1.57975
\(596\) 0 0
\(597\) 7.86766e6 0.903461
\(598\) 0 0
\(599\) 6.39058e6 0.727735 0.363868 0.931451i \(-0.381456\pi\)
0.363868 + 0.931451i \(0.381456\pi\)
\(600\) 0 0
\(601\) 7.89990e6 0.892145 0.446072 0.894997i \(-0.352822\pi\)
0.446072 + 0.894997i \(0.352822\pi\)
\(602\) 0 0
\(603\) 1.85231e6 0.207453
\(604\) 0 0
\(605\) 9.92747e6 1.10268
\(606\) 0 0
\(607\) −1.31701e6 −0.145083 −0.0725415 0.997365i \(-0.523111\pi\)
−0.0725415 + 0.997365i \(0.523111\pi\)
\(608\) 0 0
\(609\) −2.65910e6 −0.290531
\(610\) 0 0
\(611\) 2.16996e6 0.235152
\(612\) 0 0
\(613\) −5.47284e6 −0.588250 −0.294125 0.955767i \(-0.595028\pi\)
−0.294125 + 0.955767i \(0.595028\pi\)
\(614\) 0 0
\(615\) 5.33466e6 0.568747
\(616\) 0 0
\(617\) 1.28342e7 1.35724 0.678620 0.734490i \(-0.262578\pi\)
0.678620 + 0.734490i \(0.262578\pi\)
\(618\) 0 0
\(619\) −1.62292e6 −0.170243 −0.0851215 0.996371i \(-0.527128\pi\)
−0.0851215 + 0.996371i \(0.527128\pi\)
\(620\) 0 0
\(621\) 3.02681e6 0.314960
\(622\) 0 0
\(623\) −8.55568e6 −0.883150
\(624\) 0 0
\(625\) −1.15853e7 −1.18633
\(626\) 0 0
\(627\) 3.02875e6 0.307677
\(628\) 0 0
\(629\) −3.03852e6 −0.306221
\(630\) 0 0
\(631\) −2.71568e6 −0.271522 −0.135761 0.990742i \(-0.543348\pi\)
−0.135761 + 0.990742i \(0.543348\pi\)
\(632\) 0 0
\(633\) 3.68888e6 0.365920
\(634\) 0 0
\(635\) −3.84800e6 −0.378705
\(636\) 0 0
\(637\) −720447. −0.0703483
\(638\) 0 0
\(639\) −1.39968e6 −0.135605
\(640\) 0 0
\(641\) −1.04180e7 −1.00147 −0.500736 0.865600i \(-0.666937\pi\)
−0.500736 + 0.865600i \(0.666937\pi\)
\(642\) 0 0
\(643\) −4.64510e6 −0.443065 −0.221533 0.975153i \(-0.571106\pi\)
−0.221533 + 0.975153i \(0.571106\pi\)
\(644\) 0 0
\(645\) 1.28112e7 1.21252
\(646\) 0 0
\(647\) 7.10745e6 0.667503 0.333751 0.942661i \(-0.391685\pi\)
0.333751 + 0.942661i \(0.391685\pi\)
\(648\) 0 0
\(649\) 234192. 0.0218253
\(650\) 0 0
\(651\) −9.00749e6 −0.833012
\(652\) 0 0
\(653\) −9.26906e6 −0.850653 −0.425327 0.905040i \(-0.639841\pi\)
−0.425327 + 0.905040i \(0.639841\pi\)
\(654\) 0 0
\(655\) 2.10400e7 1.91621
\(656\) 0 0
\(657\) 4.40721e6 0.398337
\(658\) 0 0
\(659\) 8.23630e6 0.738786 0.369393 0.929273i \(-0.379566\pi\)
0.369393 + 0.929273i \(0.379566\pi\)
\(660\) 0 0
\(661\) −1.19099e7 −1.06024 −0.530122 0.847921i \(-0.677854\pi\)
−0.530122 + 0.847921i \(0.677854\pi\)
\(662\) 0 0
\(663\) 2.50357e6 0.221195
\(664\) 0 0
\(665\) −1.70070e7 −1.49133
\(666\) 0 0
\(667\) −1.09530e7 −0.953274
\(668\) 0 0
\(669\) 4.39423e6 0.379593
\(670\) 0 0
\(671\) 4.13313e6 0.354383
\(672\) 0 0
\(673\) −7.15869e6 −0.609250 −0.304625 0.952472i \(-0.598531\pi\)
−0.304625 + 0.952472i \(0.598531\pi\)
\(674\) 0 0
\(675\) −1.71388e6 −0.144784
\(676\) 0 0
\(677\) 7.95484e6 0.667052 0.333526 0.942741i \(-0.391762\pi\)
0.333526 + 0.942741i \(0.391762\pi\)
\(678\) 0 0
\(679\) −1.95326e7 −1.62587
\(680\) 0 0
\(681\) −9.29797e6 −0.768282
\(682\) 0 0
\(683\) −6.35956e6 −0.521645 −0.260822 0.965387i \(-0.583994\pi\)
−0.260822 + 0.965387i \(0.583994\pi\)
\(684\) 0 0
\(685\) −1.71664e7 −1.39782
\(686\) 0 0
\(687\) 7.05638e6 0.570414
\(688\) 0 0
\(689\) −242346. −0.0194486
\(690\) 0 0
\(691\) −1.57740e7 −1.25674 −0.628372 0.777913i \(-0.716279\pi\)
−0.628372 + 0.777913i \(0.716279\pi\)
\(692\) 0 0
\(693\) −1.48781e6 −0.117683
\(694\) 0 0
\(695\) 9.99622e6 0.785007
\(696\) 0 0
\(697\) −1.31845e7 −1.02797
\(698\) 0 0
\(699\) 3.29636e6 0.255177
\(700\) 0 0
\(701\) −1.23423e7 −0.948638 −0.474319 0.880353i \(-0.657306\pi\)
−0.474319 + 0.880353i \(0.657306\pi\)
\(702\) 0 0
\(703\) 3.78799e6 0.289082
\(704\) 0 0
\(705\) 8.55144e6 0.647987
\(706\) 0 0
\(707\) −305760. −0.0230055
\(708\) 0 0
\(709\) 6.72837e6 0.502683 0.251342 0.967898i \(-0.419128\pi\)
0.251342 + 0.967898i \(0.419128\pi\)
\(710\) 0 0
\(711\) −5.29027e6 −0.392468
\(712\) 0 0
\(713\) −3.71023e7 −2.73323
\(714\) 0 0
\(715\) 2.05098e6 0.150037
\(716\) 0 0
\(717\) 1.36475e7 0.991416
\(718\) 0 0
\(719\) −1.72837e7 −1.24685 −0.623425 0.781883i \(-0.714259\pi\)
−0.623425 + 0.781883i \(0.714259\pi\)
\(720\) 0 0
\(721\) −1.83080e7 −1.31160
\(722\) 0 0
\(723\) 1.38094e7 0.982495
\(724\) 0 0
\(725\) 6.20194e6 0.438210
\(726\) 0 0
\(727\) −3.18889e6 −0.223771 −0.111885 0.993721i \(-0.535689\pi\)
−0.111885 + 0.993721i \(0.535689\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −3.16625e7 −2.19155
\(732\) 0 0
\(733\) 1.09760e7 0.754546 0.377273 0.926102i \(-0.376862\pi\)
0.377273 + 0.926102i \(0.376862\pi\)
\(734\) 0 0
\(735\) −2.83916e6 −0.193852
\(736\) 0 0
\(737\) −3.75035e6 −0.254333
\(738\) 0 0
\(739\) 1.92371e7 1.29577 0.647885 0.761739i \(-0.275654\pi\)
0.647885 + 0.761739i \(0.275654\pi\)
\(740\) 0 0
\(741\) −3.12109e6 −0.208815
\(742\) 0 0
\(743\) −5.44474e6 −0.361830 −0.180915 0.983499i \(-0.557906\pi\)
−0.180915 + 0.983499i \(0.557906\pi\)
\(744\) 0 0
\(745\) −5.80441e6 −0.383149
\(746\) 0 0
\(747\) 5.70013e6 0.373752
\(748\) 0 0
\(749\) −1.43230e7 −0.932888
\(750\) 0 0
\(751\) −1.51686e7 −0.981397 −0.490698 0.871330i \(-0.663258\pi\)
−0.490698 + 0.871330i \(0.663258\pi\)
\(752\) 0 0
\(753\) −3.77730e6 −0.242769
\(754\) 0 0
\(755\) −9.71354e6 −0.620169
\(756\) 0 0
\(757\) 1.03850e6 0.0658670 0.0329335 0.999458i \(-0.489515\pi\)
0.0329335 + 0.999458i \(0.489515\pi\)
\(758\) 0 0
\(759\) −6.12835e6 −0.386135
\(760\) 0 0
\(761\) −1.47627e7 −0.924070 −0.462035 0.886862i \(-0.652881\pi\)
−0.462035 + 0.886862i \(0.652881\pi\)
\(762\) 0 0
\(763\) 1.08573e6 0.0675165
\(764\) 0 0
\(765\) 9.86612e6 0.609527
\(766\) 0 0
\(767\) −241332. −0.0148124
\(768\) 0 0
\(769\) −6.77571e6 −0.413180 −0.206590 0.978428i \(-0.566237\pi\)
−0.206590 + 0.978428i \(0.566237\pi\)
\(770\) 0 0
\(771\) −4.05506e6 −0.245675
\(772\) 0 0
\(773\) −2.56935e6 −0.154659 −0.0773295 0.997006i \(-0.524639\pi\)
−0.0773295 + 0.997006i \(0.524639\pi\)
\(774\) 0 0
\(775\) 2.10085e7 1.25644
\(776\) 0 0
\(777\) −1.86077e6 −0.110571
\(778\) 0 0
\(779\) 1.64365e7 0.970435
\(780\) 0 0
\(781\) 2.83392e6 0.166249
\(782\) 0 0
\(783\) −1.92310e6 −0.112098
\(784\) 0 0
\(785\) −1.46542e7 −0.848767
\(786\) 0 0
\(787\) −2.22659e7 −1.28146 −0.640729 0.767768i \(-0.721368\pi\)
−0.640729 + 0.767768i \(0.721368\pi\)
\(788\) 0 0
\(789\) −3.31495e6 −0.189577
\(790\) 0 0
\(791\) −1.80506e7 −1.02577
\(792\) 0 0
\(793\) −4.25914e6 −0.240513
\(794\) 0 0
\(795\) −955044. −0.0535927
\(796\) 0 0
\(797\) 201038. 0.0112107 0.00560535 0.999984i \(-0.498216\pi\)
0.00560535 + 0.999984i \(0.498216\pi\)
\(798\) 0 0
\(799\) −2.11346e7 −1.17119
\(800\) 0 0
\(801\) −6.18759e6 −0.340753
\(802\) 0 0
\(803\) −8.92324e6 −0.488353
\(804\) 0 0
\(805\) 3.44118e7 1.87162
\(806\) 0 0
\(807\) 1.48913e7 0.804915
\(808\) 0 0
\(809\) −9.77017e6 −0.524844 −0.262422 0.964953i \(-0.584521\pi\)
−0.262422 + 0.964953i \(0.584521\pi\)
\(810\) 0 0
\(811\) −4.71324e6 −0.251633 −0.125816 0.992054i \(-0.540155\pi\)
−0.125816 + 0.992054i \(0.540155\pi\)
\(812\) 0 0
\(813\) −1.80202e7 −0.956168
\(814\) 0 0
\(815\) 1.40727e7 0.742137
\(816\) 0 0
\(817\) 3.94723e7 2.06889
\(818\) 0 0
\(819\) 1.53317e6 0.0798693
\(820\) 0 0
\(821\) 2.87700e7 1.48964 0.744822 0.667264i \(-0.232535\pi\)
0.744822 + 0.667264i \(0.232535\pi\)
\(822\) 0 0
\(823\) 2.57812e7 1.32679 0.663396 0.748268i \(-0.269114\pi\)
0.663396 + 0.748268i \(0.269114\pi\)
\(824\) 0 0
\(825\) 3.47008e6 0.177502
\(826\) 0 0
\(827\) −2.31260e7 −1.17581 −0.587905 0.808930i \(-0.700047\pi\)
−0.587905 + 0.808930i \(0.700047\pi\)
\(828\) 0 0
\(829\) 6.77051e6 0.342165 0.171082 0.985257i \(-0.445274\pi\)
0.171082 + 0.985257i \(0.445274\pi\)
\(830\) 0 0
\(831\) 1.03858e7 0.521720
\(832\) 0 0
\(833\) 7.01690e6 0.350375
\(834\) 0 0
\(835\) −1.00604e7 −0.499345
\(836\) 0 0
\(837\) −6.51434e6 −0.321408
\(838\) 0 0
\(839\) 3.47592e6 0.170477 0.0852383 0.996361i \(-0.472835\pi\)
0.0852383 + 0.996361i \(0.472835\pi\)
\(840\) 0 0
\(841\) −1.35521e7 −0.660719
\(842\) 0 0
\(843\) 1.58478e7 0.768070
\(844\) 0 0
\(845\) −2.11351e6 −0.101827
\(846\) 0 0
\(847\) −1.50254e7 −0.719642
\(848\) 0 0
\(849\) 1.60671e7 0.765010
\(850\) 0 0
\(851\) −7.66459e6 −0.362798
\(852\) 0 0
\(853\) −2.01423e7 −0.947845 −0.473922 0.880567i \(-0.657162\pi\)
−0.473922 + 0.880567i \(0.657162\pi\)
\(854\) 0 0
\(855\) −1.22997e7 −0.575412
\(856\) 0 0
\(857\) −5.37441e6 −0.249965 −0.124982 0.992159i \(-0.539887\pi\)
−0.124982 + 0.992159i \(0.539887\pi\)
\(858\) 0 0
\(859\) 1.01896e7 0.471166 0.235583 0.971854i \(-0.424300\pi\)
0.235583 + 0.971854i \(0.424300\pi\)
\(860\) 0 0
\(861\) −8.07408e6 −0.371181
\(862\) 0 0
\(863\) −1.51496e7 −0.692428 −0.346214 0.938155i \(-0.612533\pi\)
−0.346214 + 0.938155i \(0.612533\pi\)
\(864\) 0 0
\(865\) −5.50511e7 −2.50165
\(866\) 0 0
\(867\) −1.16051e7 −0.524327
\(868\) 0 0
\(869\) 1.07112e7 0.481158
\(870\) 0 0
\(871\) 3.86469e6 0.172611
\(872\) 0 0
\(873\) −1.41262e7 −0.627323
\(874\) 0 0
\(875\) 6.41491e6 0.283250
\(876\) 0 0
\(877\) −7.57856e6 −0.332727 −0.166363 0.986065i \(-0.553202\pi\)
−0.166363 + 0.986065i \(0.553202\pi\)
\(878\) 0 0
\(879\) −1.55569e6 −0.0679125
\(880\) 0 0
\(881\) −3.42977e7 −1.48876 −0.744380 0.667756i \(-0.767255\pi\)
−0.744380 + 0.667756i \(0.767255\pi\)
\(882\) 0 0
\(883\) 1.20211e7 0.518851 0.259426 0.965763i \(-0.416467\pi\)
0.259426 + 0.965763i \(0.416467\pi\)
\(884\) 0 0
\(885\) −951048. −0.0408173
\(886\) 0 0
\(887\) 1.36850e7 0.584031 0.292016 0.956414i \(-0.405674\pi\)
0.292016 + 0.956414i \(0.405674\pi\)
\(888\) 0 0
\(889\) 5.82400e6 0.247154
\(890\) 0 0
\(891\) −1.07600e6 −0.0454067
\(892\) 0 0
\(893\) 2.63477e7 1.10564
\(894\) 0 0
\(895\) −4.58584e7 −1.91364
\(896\) 0 0
\(897\) 6.31519e6 0.262063
\(898\) 0 0
\(899\) 2.35732e7 0.972789
\(900\) 0 0
\(901\) 2.36036e6 0.0968650
\(902\) 0 0
\(903\) −1.93899e7 −0.791327
\(904\) 0 0
\(905\) 4.13780e7 1.67938
\(906\) 0 0
\(907\) 5.48096e6 0.221227 0.110614 0.993863i \(-0.464718\pi\)
0.110614 + 0.993863i \(0.464718\pi\)
\(908\) 0 0
\(909\) −221130. −0.00887642
\(910\) 0 0
\(911\) 6.16554e6 0.246136 0.123068 0.992398i \(-0.460727\pi\)
0.123068 + 0.992398i \(0.460727\pi\)
\(912\) 0 0
\(913\) −1.15410e7 −0.458212
\(914\) 0 0
\(915\) −1.67845e7 −0.662760
\(916\) 0 0
\(917\) −3.18443e7 −1.25057
\(918\) 0 0
\(919\) 2.59526e7 1.01366 0.506829 0.862047i \(-0.330818\pi\)
0.506829 + 0.862047i \(0.330818\pi\)
\(920\) 0 0
\(921\) 9.56574e6 0.371595
\(922\) 0 0
\(923\) −2.92032e6 −0.112830
\(924\) 0 0
\(925\) 4.33995e6 0.166775
\(926\) 0 0
\(927\) −1.32406e7 −0.506067
\(928\) 0 0
\(929\) −4.08585e7 −1.55326 −0.776628 0.629959i \(-0.783072\pi\)
−0.776628 + 0.629959i \(0.783072\pi\)
\(930\) 0 0
\(931\) −8.74768e6 −0.330764
\(932\) 0 0
\(933\) −3.41690e6 −0.128508
\(934\) 0 0
\(935\) −1.99759e7 −0.747268
\(936\) 0 0
\(937\) −9.29695e6 −0.345933 −0.172966 0.984928i \(-0.555335\pi\)
−0.172966 + 0.984928i \(0.555335\pi\)
\(938\) 0 0
\(939\) 2.85717e7 1.05748
\(940\) 0 0
\(941\) 2.57530e7 0.948100 0.474050 0.880498i \(-0.342792\pi\)
0.474050 + 0.880498i \(0.342792\pi\)
\(942\) 0 0
\(943\) −3.32575e7 −1.21790
\(944\) 0 0
\(945\) 6.04195e6 0.220089
\(946\) 0 0
\(947\) 2.11004e7 0.764567 0.382284 0.924045i \(-0.375138\pi\)
0.382284 + 0.924045i \(0.375138\pi\)
\(948\) 0 0
\(949\) 9.19529e6 0.331436
\(950\) 0 0
\(951\) −8.28358e6 −0.297007
\(952\) 0 0
\(953\) −2.22437e7 −0.793368 −0.396684 0.917955i \(-0.629839\pi\)
−0.396684 + 0.917955i \(0.629839\pi\)
\(954\) 0 0
\(955\) −1.14292e7 −0.405514
\(956\) 0 0
\(957\) 3.89369e6 0.137430
\(958\) 0 0
\(959\) 2.59815e7 0.912259
\(960\) 0 0
\(961\) 5.12229e7 1.78919
\(962\) 0 0
\(963\) −1.03586e7 −0.359944
\(964\) 0 0
\(965\) 1.98792e7 0.687196
\(966\) 0 0
\(967\) −28064.0 −0.000965125 0 −0.000482562 1.00000i \(-0.500154\pi\)
−0.000482562 1.00000i \(0.500154\pi\)
\(968\) 0 0
\(969\) 3.03983e7 1.04002
\(970\) 0 0
\(971\) −5.14613e7 −1.75159 −0.875795 0.482683i \(-0.839662\pi\)
−0.875795 + 0.482683i \(0.839662\pi\)
\(972\) 0 0
\(973\) −1.51294e7 −0.512318
\(974\) 0 0
\(975\) −3.57587e6 −0.120468
\(976\) 0 0
\(977\) 5.16124e7 1.72989 0.864943 0.501869i \(-0.167354\pi\)
0.864943 + 0.501869i \(0.167354\pi\)
\(978\) 0 0
\(979\) 1.25280e7 0.417757
\(980\) 0 0
\(981\) 785214. 0.0260505
\(982\) 0 0
\(983\) 2.78764e7 0.920136 0.460068 0.887884i \(-0.347825\pi\)
0.460068 + 0.887884i \(0.347825\pi\)
\(984\) 0 0
\(985\) 6.10833e7 2.00600
\(986\) 0 0
\(987\) −1.29427e7 −0.422895
\(988\) 0 0
\(989\) −7.98679e7 −2.59646
\(990\) 0 0
\(991\) −9.30712e6 −0.301045 −0.150522 0.988607i \(-0.548096\pi\)
−0.150522 + 0.988607i \(0.548096\pi\)
\(992\) 0 0
\(993\) −3.70638e6 −0.119283
\(994\) 0 0
\(995\) 6.46896e7 2.07146
\(996\) 0 0
\(997\) 3.65964e7 1.16600 0.583002 0.812471i \(-0.301878\pi\)
0.583002 + 0.812471i \(0.301878\pi\)
\(998\) 0 0
\(999\) −1.34573e6 −0.0426624
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.b.1.1 1
4.3 odd 2 39.6.a.a.1.1 1
12.11 even 2 117.6.a.a.1.1 1
20.19 odd 2 975.6.a.a.1.1 1
52.51 odd 2 507.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.a.1.1 1 4.3 odd 2
117.6.a.a.1.1 1 12.11 even 2
507.6.a.a.1.1 1 52.51 odd 2
624.6.a.b.1.1 1 1.1 even 1 trivial
975.6.a.a.1.1 1 20.19 odd 2