Properties

Label 624.6.a.j.1.2
Level 624624
Weight 66
Character 624.1
Self dual yes
Analytic conductor 100.080100.080
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.079503563100.079503563
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3241)\Q(\sqrt{3241})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x810 x^{2} - x - 810 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 78)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 27.9649-27.9649 of defining polynomial
Character χ\chi == 624.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9.00000q3+61.9298q512.0702q7+81.0000q9+183.438q11+169.000q13557.368q15524.596q171389.96q19+108.632q211916.63q23+710.298q25729.000q272653.37q29+1441.68q311650.94q33747.506q353015.61q371521.00q39+3302.13q41456.484q43+5016.31q45+21191.2q4716661.3q49+4721.36q515099.12q53+11360.3q55+12509.7q57694.164q5955101.5q61977.688q63+10466.1q65+29603.6q67+17249.7q6930371.8q7143898.6q736392.68q752214.14q77+63192.4q79+6561.00q8120100.2q8332488.1q85+23880.3q87+118120.q892039.87q9112975.1q9386080.1q9527497.1q97+14858.5q99+O(q100)q-9.00000 q^{3} +61.9298 q^{5} -12.0702 q^{7} +81.0000 q^{9} +183.438 q^{11} +169.000 q^{13} -557.368 q^{15} -524.596 q^{17} -1389.96 q^{19} +108.632 q^{21} -1916.63 q^{23} +710.298 q^{25} -729.000 q^{27} -2653.37 q^{29} +1441.68 q^{31} -1650.94 q^{33} -747.506 q^{35} -3015.61 q^{37} -1521.00 q^{39} +3302.13 q^{41} -456.484 q^{43} +5016.31 q^{45} +21191.2 q^{47} -16661.3 q^{49} +4721.36 q^{51} -5099.12 q^{53} +11360.3 q^{55} +12509.7 q^{57} -694.164 q^{59} -55101.5 q^{61} -977.688 q^{63} +10466.1 q^{65} +29603.6 q^{67} +17249.7 q^{69} -30371.8 q^{71} -43898.6 q^{73} -6392.68 q^{75} -2214.14 q^{77} +63192.4 q^{79} +6561.00 q^{81} -20100.2 q^{83} -32488.1 q^{85} +23880.3 q^{87} +118120. q^{89} -2039.87 q^{91} -12975.1 q^{93} -86080.1 q^{95} -27497.1 q^{97} +14858.5 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q18q3+10q5138q7+162q9544q11+338q1390q15+1228q17+522q19+1242q21+1632q23+282q251458q27+2208q29874q31+4896q33+44064q99+O(q100) 2 q - 18 q^{3} + 10 q^{5} - 138 q^{7} + 162 q^{9} - 544 q^{11} + 338 q^{13} - 90 q^{15} + 1228 q^{17} + 522 q^{19} + 1242 q^{21} + 1632 q^{23} + 282 q^{25} - 1458 q^{27} + 2208 q^{29} - 874 q^{31} + 4896 q^{33}+ \cdots - 44064 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −9.00000 −0.577350
44 0 0
55 61.9298 1.10783 0.553917 0.832572i 0.313133π-0.313133\pi
0.553917 + 0.832572i 0.313133π0.313133\pi
66 0 0
77 −12.0702 −0.0931044 −0.0465522 0.998916i 0.514823π-0.514823\pi
−0.0465522 + 0.998916i 0.514823π0.514823\pi
88 0 0
99 81.0000 0.333333
1010 0 0
1111 183.438 0.457097 0.228548 0.973533i 0.426602π-0.426602\pi
0.228548 + 0.973533i 0.426602π0.426602\pi
1212 0 0
1313 169.000 0.277350
1414 0 0
1515 −557.368 −0.639608
1616 0 0
1717 −524.596 −0.440253 −0.220127 0.975471i 0.570647π-0.570647\pi
−0.220127 + 0.975471i 0.570647π0.570647\pi
1818 0 0
1919 −1389.96 −0.883323 −0.441661 0.897182i 0.645611π-0.645611\pi
−0.441661 + 0.897182i 0.645611π0.645611\pi
2020 0 0
2121 108.632 0.0537538
2222 0 0
2323 −1916.63 −0.755472 −0.377736 0.925913i 0.623297π-0.623297\pi
−0.377736 + 0.925913i 0.623297π0.623297\pi
2424 0 0
2525 710.298 0.227295
2626 0 0
2727 −729.000 −0.192450
2828 0 0
2929 −2653.37 −0.585871 −0.292936 0.956132i 0.594632π-0.594632\pi
−0.292936 + 0.956132i 0.594632π0.594632\pi
3030 0 0
3131 1441.68 0.269442 0.134721 0.990884i 0.456986π-0.456986\pi
0.134721 + 0.990884i 0.456986π0.456986\pi
3232 0 0
3333 −1650.94 −0.263905
3434 0 0
3535 −747.506 −0.103144
3636 0 0
3737 −3015.61 −0.362136 −0.181068 0.983471i 0.557955π-0.557955\pi
−0.181068 + 0.983471i 0.557955π0.557955\pi
3838 0 0
3939 −1521.00 −0.160128
4040 0 0
4141 3302.13 0.306786 0.153393 0.988165i 0.450980π-0.450980\pi
0.153393 + 0.988165i 0.450980π0.450980\pi
4242 0 0
4343 −456.484 −0.0376491 −0.0188245 0.999823i 0.505992π-0.505992\pi
−0.0188245 + 0.999823i 0.505992π0.505992\pi
4444 0 0
4545 5016.31 0.369278
4646 0 0
4747 21191.2 1.39930 0.699650 0.714485i 0.253339π-0.253339\pi
0.699650 + 0.714485i 0.253339π0.253339\pi
4848 0 0
4949 −16661.3 −0.991332
5050 0 0
5151 4721.36 0.254180
5252 0 0
5353 −5099.12 −0.249348 −0.124674 0.992198i 0.539788π-0.539788\pi
−0.124674 + 0.992198i 0.539788π0.539788\pi
5454 0 0
5555 11360.3 0.506387
5656 0 0
5757 12509.7 0.509987
5858 0 0
5959 −694.164 −0.0259617 −0.0129808 0.999916i 0.504132π-0.504132\pi
−0.0129808 + 0.999916i 0.504132π0.504132\pi
6060 0 0
6161 −55101.5 −1.89600 −0.948001 0.318268i 0.896899π-0.896899\pi
−0.948001 + 0.318268i 0.896899π0.896899\pi
6262 0 0
6363 −977.688 −0.0310348
6464 0 0
6565 10466.1 0.307258
6666 0 0
6767 29603.6 0.805670 0.402835 0.915273i 0.368025π-0.368025\pi
0.402835 + 0.915273i 0.368025π0.368025\pi
6868 0 0
6969 17249.7 0.436172
7070 0 0
7171 −30371.8 −0.715031 −0.357516 0.933907i 0.616376π-0.616376\pi
−0.357516 + 0.933907i 0.616376π0.616376\pi
7272 0 0
7373 −43898.6 −0.964148 −0.482074 0.876130i 0.660116π-0.660116\pi
−0.482074 + 0.876130i 0.660116π0.660116\pi
7474 0 0
7575 −6392.68 −0.131229
7676 0 0
7777 −2214.14 −0.0425577
7878 0 0
7979 63192.4 1.13919 0.569596 0.821925i 0.307100π-0.307100\pi
0.569596 + 0.821925i 0.307100π0.307100\pi
8080 0 0
8181 6561.00 0.111111
8282 0 0
8383 −20100.2 −0.320263 −0.160131 0.987096i 0.551192π-0.551192\pi
−0.160131 + 0.987096i 0.551192π0.551192\pi
8484 0 0
8585 −32488.1 −0.487727
8686 0 0
8787 23880.3 0.338253
8888 0 0
8989 118120. 1.58070 0.790350 0.612656i 0.209899π-0.209899\pi
0.790350 + 0.612656i 0.209899π0.209899\pi
9090 0 0
9191 −2039.87 −0.0258225
9292 0 0
9393 −12975.1 −0.155562
9494 0 0
9595 −86080.1 −0.978575
9696 0 0
9797 −27497.1 −0.296727 −0.148363 0.988933i 0.547401π-0.547401\pi
−0.148363 + 0.988933i 0.547401π0.547401\pi
9898 0 0
9999 14858.5 0.152366
100100 0 0
101101 116434. 1.13574 0.567869 0.823119i 0.307768π-0.307768\pi
0.567869 + 0.823119i 0.307768π0.307768\pi
102102 0 0
103103 −79882.4 −0.741921 −0.370961 0.928649i 0.620972π-0.620972\pi
−0.370961 + 0.928649i 0.620972π0.620972\pi
104104 0 0
105105 6727.55 0.0595503
106106 0 0
107107 −144176. −1.21740 −0.608699 0.793401i 0.708308π-0.708308\pi
−0.608699 + 0.793401i 0.708308π0.708308\pi
108108 0 0
109109 141022. 1.13690 0.568449 0.822719i 0.307544π-0.307544\pi
0.568449 + 0.822719i 0.307544π0.307544\pi
110110 0 0
111111 27140.5 0.209079
112112 0 0
113113 182492. 1.34446 0.672231 0.740341i 0.265336π-0.265336\pi
0.672231 + 0.740341i 0.265336π0.265336\pi
114114 0 0
115115 −118696. −0.836938
116116 0 0
117117 13689.0 0.0924500
118118 0 0
119119 6331.98 0.0409895
120120 0 0
121121 −127401. −0.791063
122122 0 0
123123 −29719.2 −0.177123
124124 0 0
125125 −149542. −0.856028
126126 0 0
127127 −245274. −1.34940 −0.674702 0.738091i 0.735728π-0.735728\pi
−0.674702 + 0.738091i 0.735728π0.735728\pi
128128 0 0
129129 4108.36 0.0217367
130130 0 0
131131 70592.4 0.359401 0.179701 0.983721i 0.442487π-0.442487\pi
0.179701 + 0.983721i 0.442487π0.442487\pi
132132 0 0
133133 16777.2 0.0822412
134134 0 0
135135 −45146.8 −0.213203
136136 0 0
137137 −193511. −0.880856 −0.440428 0.897788i 0.645173π-0.645173\pi
−0.440428 + 0.897788i 0.645173π0.645173\pi
138138 0 0
139139 16550.3 0.0726556 0.0363278 0.999340i 0.488434π-0.488434\pi
0.0363278 + 0.999340i 0.488434π0.488434\pi
140140 0 0
141141 −190721. −0.807887
142142 0 0
143143 31001.1 0.126776
144144 0 0
145145 −164322. −0.649048
146146 0 0
147147 149952. 0.572346
148148 0 0
149149 −479101. −1.76792 −0.883958 0.467567i 0.845131π-0.845131\pi
−0.883958 + 0.467567i 0.845131π0.845131\pi
150150 0 0
151151 −315548. −1.12622 −0.563111 0.826382i 0.690396π-0.690396\pi
−0.563111 + 0.826382i 0.690396π0.690396\pi
152152 0 0
153153 −42492.2 −0.146751
154154 0 0
155155 89283.1 0.298497
156156 0 0
157157 −540764. −1.75089 −0.875444 0.483319i 0.839431π-0.839431\pi
−0.875444 + 0.483319i 0.839431π0.839431\pi
158158 0 0
159159 45892.1 0.143961
160160 0 0
161161 23134.1 0.0703378
162162 0 0
163163 81219.0 0.239436 0.119718 0.992808i 0.461801π-0.461801\pi
0.119718 + 0.992808i 0.461801π0.461801\pi
164164 0 0
165165 −102243. −0.292363
166166 0 0
167167 −401419. −1.11380 −0.556899 0.830580i 0.688009π-0.688009\pi
−0.556899 + 0.830580i 0.688009π0.688009\pi
168168 0 0
169169 28561.0 0.0769231
170170 0 0
171171 −112587. −0.294441
172172 0 0
173173 −256472. −0.651515 −0.325757 0.945453i 0.605619π-0.605619\pi
−0.325757 + 0.945453i 0.605619π0.605619\pi
174174 0 0
175175 −8573.45 −0.0211622
176176 0 0
177177 6247.48 0.0149890
178178 0 0
179179 −584078. −1.36251 −0.681253 0.732048i 0.738565π-0.738565\pi
−0.681253 + 0.732048i 0.738565π0.738565\pi
180180 0 0
181181 −170556. −0.386965 −0.193482 0.981104i 0.561978π-0.561978\pi
−0.193482 + 0.981104i 0.561978π0.561978\pi
182182 0 0
183183 495913. 1.09466
184184 0 0
185185 −186756. −0.401186
186186 0 0
187187 −96230.9 −0.201238
188188 0 0
189189 8799.19 0.0179179
190190 0 0
191191 −512527. −1.01656 −0.508280 0.861192i 0.669719π-0.669719\pi
−0.508280 + 0.861192i 0.669719π0.669719\pi
192192 0 0
193193 220134. 0.425397 0.212699 0.977118i 0.431775π-0.431775\pi
0.212699 + 0.977118i 0.431775π0.431775\pi
194194 0 0
195195 −94195.2 −0.177395
196196 0 0
197197 88389.6 0.162269 0.0811345 0.996703i 0.474146π-0.474146\pi
0.0811345 + 0.996703i 0.474146π0.474146\pi
198198 0 0
199199 −914132. −1.63635 −0.818175 0.574970i 0.805014π-0.805014\pi
−0.818175 + 0.574970i 0.805014π0.805014\pi
200200 0 0
201201 −266432. −0.465154
202202 0 0
203203 32026.7 0.0545472
204204 0 0
205205 204500. 0.339867
206206 0 0
207207 −155247. −0.251824
208208 0 0
209209 −254973. −0.403764
210210 0 0
211211 −293030. −0.453112 −0.226556 0.973998i 0.572747π-0.572747\pi
−0.226556 + 0.973998i 0.572747π0.572747\pi
212212 0 0
213213 273347. 0.412824
214214 0 0
215215 −28270.0 −0.0417089
216216 0 0
217217 −17401.4 −0.0250862
218218 0 0
219219 395088. 0.556651
220220 0 0
221221 −88656.7 −0.122104
222222 0 0
223223 414666. 0.558389 0.279194 0.960235i 0.409933π-0.409933\pi
0.279194 + 0.960235i 0.409933π0.409933\pi
224224 0 0
225225 57534.1 0.0757651
226226 0 0
227227 709235. 0.913536 0.456768 0.889586i 0.349007π-0.349007\pi
0.456768 + 0.889586i 0.349007π0.349007\pi
228228 0 0
229229 −454331. −0.572511 −0.286256 0.958153i 0.592411π-0.592411\pi
−0.286256 + 0.958153i 0.592411π0.592411\pi
230230 0 0
231231 19927.3 0.0245707
232232 0 0
233233 −347380. −0.419194 −0.209597 0.977788i 0.567215π-0.567215\pi
−0.209597 + 0.977788i 0.567215π0.567215\pi
234234 0 0
235235 1.31237e6 1.55019
236236 0 0
237237 −568732. −0.657713
238238 0 0
239239 −502585. −0.569134 −0.284567 0.958656i 0.591850π-0.591850\pi
−0.284567 + 0.958656i 0.591850π0.591850\pi
240240 0 0
241241 885838. 0.982453 0.491226 0.871032i 0.336549π-0.336549\pi
0.491226 + 0.871032i 0.336549π0.336549\pi
242242 0 0
243243 −59049.0 −0.0641500
244244 0 0
245245 −1.03183e6 −1.09823
246246 0 0
247247 −234904. −0.244990
248248 0 0
249249 180902. 0.184904
250250 0 0
251251 −1.11705e6 −1.11915 −0.559574 0.828781i 0.689035π-0.689035\pi
−0.559574 + 0.828781i 0.689035π0.689035\pi
252252 0 0
253253 −351583. −0.345324
254254 0 0
255255 292393. 0.281589
256256 0 0
257257 924298. 0.872929 0.436465 0.899721i 0.356230π-0.356230\pi
0.436465 + 0.899721i 0.356230π0.356230\pi
258258 0 0
259259 36399.1 0.0337164
260260 0 0
261261 −214923. −0.195290
262262 0 0
263263 133242. 0.118782 0.0593911 0.998235i 0.481084π-0.481084\pi
0.0593911 + 0.998235i 0.481084π0.481084\pi
264264 0 0
265265 −315788. −0.276236
266266 0 0
267267 −1.06308e6 −0.912617
268268 0 0
269269 1.56607e6 1.31956 0.659781 0.751458i 0.270649π-0.270649\pi
0.659781 + 0.751458i 0.270649π0.270649\pi
270270 0 0
271271 1.22010e6 1.00919 0.504593 0.863357i 0.331643π-0.331643\pi
0.504593 + 0.863357i 0.331643π0.331643\pi
272272 0 0
273273 18358.8 0.0149086
274274 0 0
275275 130296. 0.103896
276276 0 0
277277 1.86383e6 1.45951 0.729753 0.683711i 0.239635π-0.239635\pi
0.729753 + 0.683711i 0.239635π0.239635\pi
278278 0 0
279279 116776. 0.0898140
280280 0 0
281281 −848857. −0.641311 −0.320656 0.947196i 0.603903π-0.603903\pi
−0.320656 + 0.947196i 0.603903π0.603903\pi
282282 0 0
283283 −478280. −0.354990 −0.177495 0.984122i 0.556799π-0.556799\pi
−0.177495 + 0.984122i 0.556799π0.556799\pi
284284 0 0
285285 774721. 0.564980
286286 0 0
287287 −39857.5 −0.0285631
288288 0 0
289289 −1.14466e6 −0.806177
290290 0 0
291291 247474. 0.171315
292292 0 0
293293 1.13443e6 0.771984 0.385992 0.922502i 0.373859π-0.373859\pi
0.385992 + 0.922502i 0.373859π0.373859\pi
294294 0 0
295295 −42989.5 −0.0287612
296296 0 0
297297 −133726. −0.0879683
298298 0 0
299299 −323910. −0.209530
300300 0 0
301301 5509.86 0.00350530
302302 0 0
303303 −1.04791e6 −0.655719
304304 0 0
305305 −3.41242e6 −2.10045
306306 0 0
307307 2.54492e6 1.54109 0.770546 0.637384i 0.219984π-0.219984\pi
0.770546 + 0.637384i 0.219984π0.219984\pi
308308 0 0
309309 718941. 0.428348
310310 0 0
311311 −508599. −0.298177 −0.149089 0.988824i 0.547634π-0.547634\pi
−0.149089 + 0.988824i 0.547634π0.547634\pi
312312 0 0
313313 −1.70498e6 −0.983688 −0.491844 0.870683i 0.663677π-0.663677\pi
−0.491844 + 0.870683i 0.663677π0.663677\pi
314314 0 0
315315 −60548.0 −0.0343814
316316 0 0
317317 −1.13413e6 −0.633892 −0.316946 0.948444i 0.602657π-0.602657\pi
−0.316946 + 0.948444i 0.602657π0.602657\pi
318318 0 0
319319 −486729. −0.267800
320320 0 0
321321 1.29758e6 0.702865
322322 0 0
323323 729169. 0.388886
324324 0 0
325325 120040. 0.0630404
326326 0 0
327327 −1.26920e6 −0.656388
328328 0 0
329329 −255783. −0.130281
330330 0 0
331331 1.47356e6 0.739263 0.369632 0.929178i 0.379484π-0.379484\pi
0.369632 + 0.929178i 0.379484π0.379484\pi
332332 0 0
333333 −244265. −0.120712
334334 0 0
335335 1.83334e6 0.892549
336336 0 0
337337 2.33105e6 1.11809 0.559045 0.829137i 0.311168π-0.311168\pi
0.559045 + 0.829137i 0.311168π0.311168\pi
338338 0 0
339339 −1.64243e6 −0.776226
340340 0 0
341341 264460. 0.123161
342342 0 0
343343 403970. 0.185402
344344 0 0
345345 1.06827e6 0.483206
346346 0 0
347347 −4.30515e6 −1.91940 −0.959698 0.281033i 0.909323π-0.909323\pi
−0.959698 + 0.281033i 0.909323π0.909323\pi
348348 0 0
349349 3.63737e6 1.59854 0.799270 0.600972i 0.205220π-0.205220\pi
0.799270 + 0.600972i 0.205220π0.205220\pi
350350 0 0
351351 −123201. −0.0533761
352352 0 0
353353 −2.06196e6 −0.880733 −0.440366 0.897818i 0.645151π-0.645151\pi
−0.440366 + 0.897818i 0.645151π0.645151\pi
354354 0 0
355355 −1.88092e6 −0.792136
356356 0 0
357357 −56987.9 −0.0236653
358358 0 0
359359 −2.89637e6 −1.18609 −0.593045 0.805170i 0.702074π-0.702074\pi
−0.593045 + 0.805170i 0.702074π0.702074\pi
360360 0 0
361361 −544100. −0.219741
362362 0 0
363363 1.14661e6 0.456720
364364 0 0
365365 −2.71863e6 −1.06812
366366 0 0
367367 −4.37778e6 −1.69664 −0.848318 0.529487i 0.822384π-0.822384\pi
−0.848318 + 0.529487i 0.822384π0.822384\pi
368368 0 0
369369 267473. 0.102262
370370 0 0
371371 61547.5 0.0232154
372372 0 0
373373 −53191.7 −0.0197957 −0.00989787 0.999951i 0.503151π-0.503151\pi
−0.00989787 + 0.999951i 0.503151π0.503151\pi
374374 0 0
375375 1.34588e6 0.494228
376376 0 0
377377 −448419. −0.162491
378378 0 0
379379 4.56757e6 1.63338 0.816690 0.577076i 0.195807π-0.195807\pi
0.816690 + 0.577076i 0.195807π0.195807\pi
380380 0 0
381381 2.20746e6 0.779078
382382 0 0
383383 −64196.5 −0.0223622 −0.0111811 0.999937i 0.503559π-0.503559\pi
−0.0111811 + 0.999937i 0.503559π0.503559\pi
384384 0 0
385385 −137121. −0.0471469
386386 0 0
387387 −36975.2 −0.0125497
388388 0 0
389389 4.56310e6 1.52892 0.764462 0.644668i 0.223005π-0.223005\pi
0.764462 + 0.644668i 0.223005π0.223005\pi
390390 0 0
391391 1.00546e6 0.332599
392392 0 0
393393 −635331. −0.207500
394394 0 0
395395 3.91349e6 1.26204
396396 0 0
397397 3.16929e6 1.00922 0.504610 0.863348i 0.331636π-0.331636\pi
0.504610 + 0.863348i 0.331636π0.331636\pi
398398 0 0
399399 −150994. −0.0474820
400400 0 0
401401 −2.57811e6 −0.800646 −0.400323 0.916374i 0.631102π-0.631102\pi
−0.400323 + 0.916374i 0.631102π0.631102\pi
402402 0 0
403403 243644. 0.0747298
404404 0 0
405405 406321. 0.123093
406406 0 0
407407 −553179. −0.165531
408408 0 0
409409 −1.93651e6 −0.572417 −0.286208 0.958167i 0.592395π-0.592395\pi
−0.286208 + 0.958167i 0.592395π0.592395\pi
410410 0 0
411411 1.74160e6 0.508563
412412 0 0
413413 8378.72 0.00241714
414414 0 0
415415 −1.24480e6 −0.354798
416416 0 0
417417 −148953. −0.0419477
418418 0 0
419419 −5.10997e6 −1.42195 −0.710973 0.703219i 0.751745π-0.751745\pi
−0.710973 + 0.703219i 0.751745π0.751745\pi
420420 0 0
421421 −1.66272e6 −0.457209 −0.228604 0.973519i 0.573416π-0.573416\pi
−0.228604 + 0.973519i 0.573416π0.573416\pi
422422 0 0
423423 1.71649e6 0.466434
424424 0 0
425425 −372619. −0.100067
426426 0 0
427427 665087. 0.176526
428428 0 0
429429 −279010. −0.0731941
430430 0 0
431431 3.28622e6 0.852124 0.426062 0.904694i 0.359900π-0.359900\pi
0.426062 + 0.904694i 0.359900π0.359900\pi
432432 0 0
433433 −2.15750e6 −0.553007 −0.276503 0.961013i 0.589176π-0.589176\pi
−0.276503 + 0.961013i 0.589176π0.589176\pi
434434 0 0
435435 1.47890e6 0.374728
436436 0 0
437437 2.66405e6 0.667326
438438 0 0
439439 −1.64334e6 −0.406974 −0.203487 0.979078i 0.565227π-0.565227\pi
−0.203487 + 0.979078i 0.565227π0.565227\pi
440440 0 0
441441 −1.34957e6 −0.330444
442442 0 0
443443 7.43121e6 1.79908 0.899539 0.436840i 0.143902π-0.143902\pi
0.899539 + 0.436840i 0.143902π0.143902\pi
444444 0 0
445445 7.31516e6 1.75115
446446 0 0
447447 4.31191e6 1.02071
448448 0 0
449449 −2.76955e6 −0.648326 −0.324163 0.946001i 0.605083π-0.605083\pi
−0.324163 + 0.946001i 0.605083π0.605083\pi
450450 0 0
451451 605738. 0.140231
452452 0 0
453453 2.83994e6 0.650224
454454 0 0
455455 −126329. −0.0286070
456456 0 0
457457 1.54160e6 0.345287 0.172644 0.984984i 0.444769π-0.444769\pi
0.172644 + 0.984984i 0.444769π0.444769\pi
458458 0 0
459459 382430. 0.0847267
460460 0 0
461461 −4.78552e6 −1.04876 −0.524381 0.851484i 0.675703π-0.675703\pi
−0.524381 + 0.851484i 0.675703π0.675703\pi
462462 0 0
463463 8.73387e6 1.89345 0.946726 0.322041i 0.104369π-0.104369\pi
0.946726 + 0.322041i 0.104369π0.104369\pi
464464 0 0
465465 −803548. −0.172337
466466 0 0
467467 −448252. −0.0951109 −0.0475554 0.998869i 0.515143π-0.515143\pi
−0.0475554 + 0.998869i 0.515143π0.515143\pi
468468 0 0
469469 −357322. −0.0750114
470470 0 0
471471 4.86688e6 1.01088
472472 0 0
473473 −83736.7 −0.0172093
474474 0 0
475475 −987288. −0.200775
476476 0 0
477477 −413029. −0.0831160
478478 0 0
479479 9.23494e6 1.83906 0.919529 0.393022i 0.128570π-0.128570\pi
0.919529 + 0.393022i 0.128570π0.128570\pi
480480 0 0
481481 −509639. −0.100438
482482 0 0
483483 −208207. −0.0406095
484484 0 0
485485 −1.70289e6 −0.328724
486486 0 0
487487 −4.87963e6 −0.932318 −0.466159 0.884701i 0.654363π-0.654363\pi
−0.466159 + 0.884701i 0.654363π0.654363\pi
488488 0 0
489489 −730971. −0.138238
490490 0 0
491491 −576710. −0.107958 −0.0539789 0.998542i 0.517190π-0.517190\pi
−0.0539789 + 0.998542i 0.517190π0.517190\pi
492492 0 0
493493 1.39194e6 0.257932
494494 0 0
495495 920184. 0.168796
496496 0 0
497497 366595. 0.0665726
498498 0 0
499499 1.34239e6 0.241339 0.120669 0.992693i 0.461496π-0.461496\pi
0.120669 + 0.992693i 0.461496π0.461496\pi
500500 0 0
501501 3.61277e6 0.643052
502502 0 0
503503 −17469.0 −0.00307857 −0.00153928 0.999999i 0.500490π-0.500490\pi
−0.00153928 + 0.999999i 0.500490π0.500490\pi
504504 0 0
505505 7.21076e6 1.25821
506506 0 0
507507 −257049. −0.0444116
508508 0 0
509509 6.23272e6 1.06631 0.533155 0.846018i 0.321006π-0.321006\pi
0.533155 + 0.846018i 0.321006π0.321006\pi
510510 0 0
511511 529866. 0.0897664
512512 0 0
513513 1.01328e6 0.169996
514514 0 0
515515 −4.94710e6 −0.821925
516516 0 0
517517 3.88728e6 0.639616
518518 0 0
519519 2.30824e6 0.376152
520520 0 0
521521 −6.45233e6 −1.04141 −0.520705 0.853736i 0.674331π-0.674331\pi
−0.520705 + 0.853736i 0.674331π0.674331\pi
522522 0 0
523523 −3.39647e6 −0.542967 −0.271483 0.962443i 0.587514π-0.587514\pi
−0.271483 + 0.962443i 0.587514π0.587514\pi
524524 0 0
525525 77161.0 0.0122180
526526 0 0
527527 −756300. −0.118623
528528 0 0
529529 −2.76287e6 −0.429262
530530 0 0
531531 −56227.3 −0.00865388
532532 0 0
533533 558060. 0.0850870
534534 0 0
535535 −8.92877e6 −1.34868
536536 0 0
537537 5.25670e6 0.786643
538538 0 0
539539 −3.05632e6 −0.453134
540540 0 0
541541 −7.37387e6 −1.08318 −0.541592 0.840641i 0.682178π-0.682178\pi
−0.541592 + 0.840641i 0.682178π0.682178\pi
542542 0 0
543543 1.53501e6 0.223414
544544 0 0
545545 8.73347e6 1.25949
546546 0 0
547547 6.57677e6 0.939820 0.469910 0.882714i 0.344286π-0.344286\pi
0.469910 + 0.882714i 0.344286π0.344286\pi
548548 0 0
549549 −4.46322e6 −0.632001
550550 0 0
551551 3.68808e6 0.517513
552552 0 0
553553 −762746. −0.106064
554554 0 0
555555 1.68081e6 0.231625
556556 0 0
557557 7.51699e6 1.02661 0.513305 0.858206i 0.328421π-0.328421\pi
0.513305 + 0.858206i 0.328421π0.328421\pi
558558 0 0
559559 −77145.8 −0.0104420
560560 0 0
561561 866078. 0.116185
562562 0 0
563563 −1.09315e7 −1.45347 −0.726737 0.686916i 0.758964π-0.758964\pi
−0.726737 + 0.686916i 0.758964π0.758964\pi
564564 0 0
565565 1.13017e7 1.48944
566566 0 0
567567 −79192.7 −0.0103449
568568 0 0
569569 −3.95020e6 −0.511491 −0.255746 0.966744i 0.582321π-0.582321\pi
−0.255746 + 0.966744i 0.582321π0.582321\pi
570570 0 0
571571 1.15680e7 1.48480 0.742399 0.669958i 0.233688π-0.233688\pi
0.742399 + 0.669958i 0.233688π0.233688\pi
572572 0 0
573573 4.61274e6 0.586911
574574 0 0
575575 −1.36138e6 −0.171715
576576 0 0
577577 3.91551e6 0.489609 0.244804 0.969572i 0.421276π-0.421276\pi
0.244804 + 0.969572i 0.421276π0.421276\pi
578578 0 0
579579 −1.98121e6 −0.245603
580580 0 0
581581 242614. 0.0298178
582582 0 0
583583 −935374. −0.113976
584584 0 0
585585 847757. 0.102419
586586 0 0
587587 −1.47390e7 −1.76552 −0.882762 0.469820i 0.844319π-0.844319\pi
−0.882762 + 0.469820i 0.844319π0.844319\pi
588588 0 0
589589 −2.00389e6 −0.238004
590590 0 0
591591 −795506. −0.0936861
592592 0 0
593593 3.49709e6 0.408386 0.204193 0.978931i 0.434543π-0.434543\pi
0.204193 + 0.978931i 0.434543π0.434543\pi
594594 0 0
595595 392138. 0.0454095
596596 0 0
597597 8.22719e6 0.944747
598598 0 0
599599 −1.14482e7 −1.30368 −0.651842 0.758355i 0.726003π-0.726003\pi
−0.651842 + 0.758355i 0.726003π0.726003\pi
600600 0 0
601601 755669. 0.0853386 0.0426693 0.999089i 0.486414π-0.486414\pi
0.0426693 + 0.999089i 0.486414π0.486414\pi
602602 0 0
603603 2.39789e6 0.268557
604604 0 0
605605 −7.88994e6 −0.876366
606606 0 0
607607 −165519. −0.0182337 −0.00911687 0.999958i 0.502902π-0.502902\pi
−0.00911687 + 0.999958i 0.502902π0.502902\pi
608608 0 0
609609 −288240. −0.0314928
610610 0 0
611611 3.58131e6 0.388096
612612 0 0
613613 8.97746e6 0.964945 0.482472 0.875911i 0.339739π-0.339739\pi
0.482472 + 0.875911i 0.339739π0.339739\pi
614614 0 0
615615 −1.84050e6 −0.196223
616616 0 0
617617 2.13304e6 0.225573 0.112786 0.993619i 0.464022π-0.464022\pi
0.112786 + 0.993619i 0.464022π0.464022\pi
618618 0 0
619619 1.55236e7 1.62841 0.814206 0.580576i 0.197172π-0.197172\pi
0.814206 + 0.580576i 0.197172π0.197172\pi
620620 0 0
621621 1.39722e6 0.145391
622622 0 0
623623 −1.42574e6 −0.147170
624624 0 0
625625 −1.14808e7 −1.17563
626626 0 0
627627 2.29475e6 0.233113
628628 0 0
629629 1.58198e6 0.159431
630630 0 0
631631 1.53539e7 1.53513 0.767567 0.640969i 0.221467π-0.221467\pi
0.767567 + 0.640969i 0.221467π0.221467\pi
632632 0 0
633633 2.63727e6 0.261604
634634 0 0
635635 −1.51897e7 −1.49491
636636 0 0
637637 −2.81576e6 −0.274946
638638 0 0
639639 −2.46012e6 −0.238344
640640 0 0
641641 −1.61787e7 −1.55524 −0.777621 0.628734i 0.783574π-0.783574\pi
−0.777621 + 0.628734i 0.783574π0.783574\pi
642642 0 0
643643 −1.13012e7 −1.07795 −0.538973 0.842323i 0.681188π-0.681188\pi
−0.538973 + 0.842323i 0.681188π0.681188\pi
644644 0 0
645645 254430. 0.0240807
646646 0 0
647647 4.91218e6 0.461332 0.230666 0.973033i 0.425910π-0.425910\pi
0.230666 + 0.973033i 0.425910π0.425910\pi
648648 0 0
649649 −127336. −0.0118670
650650 0 0
651651 156613. 0.0144835
652652 0 0
653653 −1.27515e7 −1.17025 −0.585123 0.810944i 0.698954π-0.698954\pi
−0.585123 + 0.810944i 0.698954π0.698954\pi
654654 0 0
655655 4.37177e6 0.398157
656656 0 0
657657 −3.55579e6 −0.321383
658658 0 0
659659 −4.57515e6 −0.410385 −0.205193 0.978722i 0.565782π-0.565782\pi
−0.205193 + 0.978722i 0.565782π0.565782\pi
660660 0 0
661661 −1.94596e6 −0.173233 −0.0866164 0.996242i 0.527605π-0.527605\pi
−0.0866164 + 0.996242i 0.527605π0.527605\pi
662662 0 0
663663 797910. 0.0704969
664664 0 0
665665 1.03901e6 0.0911096
666666 0 0
667667 5.08552e6 0.442609
668668 0 0
669669 −3.73200e6 −0.322386
670670 0 0
671671 −1.01077e7 −0.866656
672672 0 0
673673 824071. 0.0701337 0.0350669 0.999385i 0.488836π-0.488836\pi
0.0350669 + 0.999385i 0.488836π0.488836\pi
674674 0 0
675675 −517807. −0.0437430
676676 0 0
677677 1.06076e7 0.889496 0.444748 0.895656i 0.353293π-0.353293\pi
0.444748 + 0.895656i 0.353293π0.353293\pi
678678 0 0
679679 331896. 0.0276266
680680 0 0
681681 −6.38312e6 −0.527430
682682 0 0
683683 1.54948e7 1.27097 0.635483 0.772115i 0.280801π-0.280801\pi
0.635483 + 0.772115i 0.280801π0.280801\pi
684684 0 0
685685 −1.19841e7 −0.975842
686686 0 0
687687 4.08898e6 0.330539
688688 0 0
689689 −861752. −0.0691567
690690 0 0
691691 −2.90507e6 −0.231452 −0.115726 0.993281i 0.536919π-0.536919\pi
−0.115726 + 0.993281i 0.536919π0.536919\pi
692692 0 0
693693 −179345. −0.0141859
694694 0 0
695695 1.02496e6 0.0804903
696696 0 0
697697 −1.73228e6 −0.135063
698698 0 0
699699 3.12642e6 0.242022
700700 0 0
701701 8.10828e6 0.623209 0.311605 0.950212i 0.399134π-0.399134\pi
0.311605 + 0.950212i 0.399134π0.399134\pi
702702 0 0
703703 4.19159e6 0.319883
704704 0 0
705705 −1.18113e7 −0.895004
706706 0 0
707707 −1.40539e6 −0.105742
708708 0 0
709709 −1.64144e7 −1.22634 −0.613168 0.789953i 0.710105π-0.710105\pi
−0.613168 + 0.789953i 0.710105π0.710105\pi
710710 0 0
711711 5.11858e6 0.379731
712712 0 0
713713 −2.76317e6 −0.203556
714714 0 0
715715 1.91989e6 0.140447
716716 0 0
717717 4.52327e6 0.328590
718718 0 0
719719 −6.27334e6 −0.452561 −0.226280 0.974062i 0.572657π-0.572657\pi
−0.226280 + 0.974062i 0.572657π0.572657\pi
720720 0 0
721721 964198. 0.0690761
722722 0 0
723723 −7.97254e6 −0.567219
724724 0 0
725725 −1.88468e6 −0.133166
726726 0 0
727727 −6.27335e6 −0.440214 −0.220107 0.975476i 0.570641π-0.570641\pi
−0.220107 + 0.975476i 0.570641π0.570641\pi
728728 0 0
729729 531441. 0.0370370
730730 0 0
731731 239470. 0.0165751
732732 0 0
733733 2.38673e7 1.64075 0.820376 0.571825i 0.193764π-0.193764\pi
0.820376 + 0.571825i 0.193764π0.193764\pi
734734 0 0
735735 9.28648e6 0.634064
736736 0 0
737737 5.43043e6 0.368269
738738 0 0
739739 1.74901e7 1.17810 0.589050 0.808097i 0.299502π-0.299502\pi
0.589050 + 0.808097i 0.299502π0.299502\pi
740740 0 0
741741 2.11413e6 0.141445
742742 0 0
743743 −1.76450e7 −1.17260 −0.586299 0.810095i 0.699416π-0.699416\pi
−0.586299 + 0.810095i 0.699416π0.699416\pi
744744 0 0
745745 −2.96706e7 −1.95856
746746 0 0
747747 −1.62812e6 −0.106754
748748 0 0
749749 1.74023e6 0.113345
750750 0 0
751751 2.66005e7 1.72104 0.860519 0.509418i 0.170139π-0.170139\pi
0.860519 + 0.509418i 0.170139π0.170139\pi
752752 0 0
753753 1.00534e7 0.646140
754754 0 0
755755 −1.95418e7 −1.24767
756756 0 0
757757 8.15204e6 0.517043 0.258521 0.966006i 0.416765π-0.416765\pi
0.258521 + 0.966006i 0.416765π0.416765\pi
758758 0 0
759759 3.16425e6 0.199373
760760 0 0
761761 −2.70623e7 −1.69396 −0.846978 0.531627i 0.821581π-0.821581\pi
−0.846978 + 0.531627i 0.821581π0.821581\pi
762762 0 0
763763 −1.70217e6 −0.105850
764764 0 0
765765 −2.63154e6 −0.162576
766766 0 0
767767 −117314. −0.00720047
768768 0 0
769769 3.05350e7 1.86201 0.931004 0.365009i 0.118934π-0.118934\pi
0.931004 + 0.365009i 0.118934π0.118934\pi
770770 0 0
771771 −8.31868e6 −0.503986
772772 0 0
773773 −1.86484e7 −1.12252 −0.561259 0.827640i 0.689683π-0.689683\pi
−0.561259 + 0.827640i 0.689683π0.689683\pi
774774 0 0
775775 1.02402e6 0.0612429
776776 0 0
777777 −327592. −0.0194662
778778 0 0
779779 −4.58984e6 −0.270991
780780 0 0
781781 −5.57136e6 −0.326839
782782 0 0
783783 1.93430e6 0.112751
784784 0 0
785785 −3.34894e7 −1.93969
786786 0 0
787787 −1.71709e7 −0.988225 −0.494113 0.869398i 0.664507π-0.664507\pi
−0.494113 + 0.869398i 0.664507π0.664507\pi
788788 0 0
789789 −1.19918e6 −0.0685789
790790 0 0
791791 −2.20272e6 −0.125175
792792 0 0
793793 −9.31215e6 −0.525856
794794 0 0
795795 2.84209e6 0.159485
796796 0 0
797797 1.22037e7 0.680526 0.340263 0.940330i 0.389484π-0.389484\pi
0.340263 + 0.940330i 0.389484π0.389484\pi
798798 0 0
799799 −1.11168e7 −0.616046
800800 0 0
801801 9.56774e6 0.526900
802802 0 0
803803 −8.05269e6 −0.440709
804804 0 0
805805 1.43269e6 0.0779225
806806 0 0
807807 −1.40946e7 −0.761850
808808 0 0
809809 −1.20229e7 −0.645862 −0.322931 0.946423i 0.604668π-0.604668\pi
−0.322931 + 0.946423i 0.604668π0.604668\pi
810810 0 0
811811 −1.73884e7 −0.928339 −0.464169 0.885747i 0.653647π-0.653647\pi
−0.464169 + 0.885747i 0.653647π0.653647\pi
812812 0 0
813813 −1.09809e7 −0.582654
814814 0 0
815815 5.02988e6 0.265255
816816 0 0
817817 634496. 0.0332563
818818 0 0
819819 −165229. −0.00860750
820820 0 0
821821 865202. 0.0447981 0.0223990 0.999749i 0.492870π-0.492870\pi
0.0223990 + 0.999749i 0.492870π0.492870\pi
822822 0 0
823823 −2.06811e7 −1.06432 −0.532162 0.846643i 0.678620π-0.678620\pi
−0.532162 + 0.846643i 0.678620π0.678620\pi
824824 0 0
825825 −1.17266e6 −0.0599844
826826 0 0
827827 −9.77186e6 −0.496836 −0.248418 0.968653i 0.579911π-0.579911\pi
−0.248418 + 0.968653i 0.579911π0.579911\pi
828828 0 0
829829 1.48880e7 0.752404 0.376202 0.926538i 0.377230π-0.377230\pi
0.376202 + 0.926538i 0.377230π0.377230\pi
830830 0 0
831831 −1.67744e7 −0.842647
832832 0 0
833833 8.74045e6 0.436437
834834 0 0
835835 −2.48598e7 −1.23390
836836 0 0
837837 −1.05099e6 −0.0518542
838838 0 0
839839 4.00819e6 0.196582 0.0982908 0.995158i 0.468662π-0.468662\pi
0.0982908 + 0.995158i 0.468662π0.468662\pi
840840 0 0
841841 −1.34708e7 −0.656755
842842 0 0
843843 7.63972e6 0.370261
844844 0 0
845845 1.76878e6 0.0852180
846846 0 0
847847 1.53776e6 0.0736514
848848 0 0
849849 4.30452e6 0.204953
850850 0 0
851851 5.77981e6 0.273583
852852 0 0
853853 2.59920e7 1.22312 0.611558 0.791200i 0.290543π-0.290543\pi
0.611558 + 0.791200i 0.290543π0.290543\pi
854854 0 0
855855 −6.97249e6 −0.326192
856856 0 0
857857 −2.99606e7 −1.39347 −0.696736 0.717327i 0.745365π-0.745365\pi
−0.696736 + 0.717327i 0.745365π0.745365\pi
858858 0 0
859859 −3.34024e6 −0.154452 −0.0772261 0.997014i 0.524606π-0.524606\pi
−0.0772261 + 0.997014i 0.524606π0.524606\pi
860860 0 0
861861 358717. 0.0164909
862862 0 0
863863 2.95313e7 1.34976 0.674879 0.737928i 0.264196π-0.264196\pi
0.674879 + 0.737928i 0.264196π0.264196\pi
864864 0 0
865865 −1.58832e7 −0.721770
866866 0 0
867867 1.03019e7 0.465447
868868 0 0
869869 1.15919e7 0.520721
870870 0 0
871871 5.00301e6 0.223453
872872 0 0
873873 −2.22726e6 −0.0989090
874874 0 0
875875 1.80500e6 0.0797000
876876 0 0
877877 3.82361e7 1.67871 0.839353 0.543587i 0.182934π-0.182934\pi
0.839353 + 0.543587i 0.182934π0.182934\pi
878878 0 0
879879 −1.02099e7 −0.445705
880880 0 0
881881 −2.68726e7 −1.16646 −0.583229 0.812308i 0.698211π-0.698211\pi
−0.583229 + 0.812308i 0.698211π0.698211\pi
882882 0 0
883883 −1.63532e7 −0.705832 −0.352916 0.935655i 0.614810π-0.614810\pi
−0.352916 + 0.935655i 0.614810π0.614810\pi
884884 0 0
885885 386905. 0.0166053
886886 0 0
887887 1.48121e6 0.0632133 0.0316066 0.999500i 0.489938π-0.489938\pi
0.0316066 + 0.999500i 0.489938π0.489938\pi
888888 0 0
889889 2.96051e6 0.125635
890890 0 0
891891 1.20354e6 0.0507885
892892 0 0
893893 −2.94550e7 −1.23603
894894 0 0
895895 −3.61718e7 −1.50943
896896 0 0
897897 2.91519e6 0.120972
898898 0 0
899899 −3.82531e6 −0.157858
900900 0 0
901901 2.67498e6 0.109776
902902 0 0
903903 −49588.8 −0.00202378
904904 0 0
905905 −1.05625e7 −0.428693
906906 0 0
907907 1.14259e7 0.461181 0.230590 0.973051i 0.425934π-0.425934\pi
0.230590 + 0.973051i 0.425934π0.425934\pi
908908 0 0
909909 9.43119e6 0.378579
910910 0 0
911911 −3.27578e7 −1.30773 −0.653866 0.756610i 0.726854π-0.726854\pi
−0.653866 + 0.756610i 0.726854π0.726854\pi
912912 0 0
913913 −3.68715e6 −0.146391
914914 0 0
915915 3.07118e7 1.21270
916916 0 0
917917 −852065. −0.0334618
918918 0 0
919919 9.44857e6 0.369043 0.184522 0.982828i 0.440926π-0.440926\pi
0.184522 + 0.982828i 0.440926π0.440926\pi
920920 0 0
921921 −2.29043e7 −0.889750
922922 0 0
923923 −5.13284e6 −0.198314
924924 0 0
925925 −2.14198e6 −0.0823117
926926 0 0
927927 −6.47047e6 −0.247307
928928 0 0
929929 −1.64252e7 −0.624413 −0.312207 0.950014i 0.601068π-0.601068\pi
−0.312207 + 0.950014i 0.601068π0.601068\pi
930930 0 0
931931 2.31586e7 0.875666
932932 0 0
933933 4.57739e6 0.172153
934934 0 0
935935 −5.95956e6 −0.222939
936936 0 0
937937 −2.32993e7 −0.866948 −0.433474 0.901166i 0.642712π-0.642712\pi
−0.433474 + 0.901166i 0.642712π0.642712\pi
938938 0 0
939939 1.53448e7 0.567933
940940 0 0
941941 −9.27042e6 −0.341291 −0.170646 0.985332i 0.554585π-0.554585\pi
−0.170646 + 0.985332i 0.554585π0.554585\pi
942942 0 0
943943 −6.32897e6 −0.231768
944944 0 0
945945 544932. 0.0198501
946946 0 0
947947 1.92640e7 0.698025 0.349012 0.937118i 0.386517π-0.386517\pi
0.349012 + 0.937118i 0.386517π0.386517\pi
948948 0 0
949949 −7.41887e6 −0.267407
950950 0 0
951951 1.02072e7 0.365977
952952 0 0
953953 2.81599e7 1.00438 0.502191 0.864756i 0.332527π-0.332527\pi
0.502191 + 0.864756i 0.332527π0.332527\pi
954954 0 0
955955 −3.17407e7 −1.12618
956956 0 0
957957 4.38056e6 0.154614
958958 0 0
959959 2.33572e6 0.0820116
960960 0 0
961961 −2.65507e7 −0.927401
962962 0 0
963963 −1.16782e7 −0.405800
964964 0 0
965965 1.36329e7 0.471269
966966 0 0
967967 −3.67528e7 −1.26393 −0.631967 0.774996i 0.717752π-0.717752\pi
−0.631967 + 0.774996i 0.717752π0.717752\pi
968968 0 0
969969 −6.56252e6 −0.224523
970970 0 0
971971 5.55259e7 1.88994 0.944970 0.327158i 0.106091π-0.106091\pi
0.944970 + 0.327158i 0.106091π0.106091\pi
972972 0 0
973973 −199766. −0.00676455
974974 0 0
975975 −1.08036e6 −0.0363964
976976 0 0
977977 1.59739e7 0.535394 0.267697 0.963503i 0.413737π-0.413737\pi
0.267697 + 0.963503i 0.413737π0.413737\pi
978978 0 0
979979 2.16678e7 0.722532
980980 0 0
981981 1.14228e7 0.378966
982982 0 0
983983 4.69856e7 1.55089 0.775446 0.631414i 0.217525π-0.217525\pi
0.775446 + 0.631414i 0.217525π0.217525\pi
984984 0 0
985985 5.47395e6 0.179767
986986 0 0
987987 2.30204e6 0.0752178
988988 0 0
989989 874911. 0.0284429
990990 0 0
991991 −3.05086e7 −0.986821 −0.493411 0.869797i 0.664250π-0.664250\pi
−0.493411 + 0.869797i 0.664250π0.664250\pi
992992 0 0
993993 −1.32621e7 −0.426814
994994 0 0
995995 −5.66120e7 −1.81280
996996 0 0
997997 1.52773e7 0.486754 0.243377 0.969932i 0.421745π-0.421745\pi
0.243377 + 0.969932i 0.421745π0.421745\pi
998998 0 0
999999 2.19838e6 0.0696930
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.j.1.2 2
4.3 odd 2 78.6.a.h.1.2 2
12.11 even 2 234.6.a.i.1.1 2
52.51 odd 2 1014.6.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.h.1.2 2 4.3 odd 2
234.6.a.i.1.1 2 12.11 even 2
624.6.a.j.1.2 2 1.1 even 1 trivial
1014.6.a.i.1.1 2 52.51 odd 2