Properties

Label 624.6.a.j.1.2
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 810 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-27.9649\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +61.9298 q^{5} -12.0702 q^{7} +81.0000 q^{9} +183.438 q^{11} +169.000 q^{13} -557.368 q^{15} -524.596 q^{17} -1389.96 q^{19} +108.632 q^{21} -1916.63 q^{23} +710.298 q^{25} -729.000 q^{27} -2653.37 q^{29} +1441.68 q^{31} -1650.94 q^{33} -747.506 q^{35} -3015.61 q^{37} -1521.00 q^{39} +3302.13 q^{41} -456.484 q^{43} +5016.31 q^{45} +21191.2 q^{47} -16661.3 q^{49} +4721.36 q^{51} -5099.12 q^{53} +11360.3 q^{55} +12509.7 q^{57} -694.164 q^{59} -55101.5 q^{61} -977.688 q^{63} +10466.1 q^{65} +29603.6 q^{67} +17249.7 q^{69} -30371.8 q^{71} -43898.6 q^{73} -6392.68 q^{75} -2214.14 q^{77} +63192.4 q^{79} +6561.00 q^{81} -20100.2 q^{83} -32488.1 q^{85} +23880.3 q^{87} +118120. q^{89} -2039.87 q^{91} -12975.1 q^{93} -86080.1 q^{95} -27497.1 q^{97} +14858.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{3} + 10 q^{5} - 138 q^{7} + 162 q^{9} - 544 q^{11} + 338 q^{13} - 90 q^{15} + 1228 q^{17} + 522 q^{19} + 1242 q^{21} + 1632 q^{23} + 282 q^{25} - 1458 q^{27} + 2208 q^{29} - 874 q^{31} + 4896 q^{33}+ \cdots - 44064 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 61.9298 1.10783 0.553917 0.832572i \(-0.313133\pi\)
0.553917 + 0.832572i \(0.313133\pi\)
\(6\) 0 0
\(7\) −12.0702 −0.0931044 −0.0465522 0.998916i \(-0.514823\pi\)
−0.0465522 + 0.998916i \(0.514823\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 183.438 0.457097 0.228548 0.973533i \(-0.426602\pi\)
0.228548 + 0.973533i \(0.426602\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −557.368 −0.639608
\(16\) 0 0
\(17\) −524.596 −0.440253 −0.220127 0.975471i \(-0.570647\pi\)
−0.220127 + 0.975471i \(0.570647\pi\)
\(18\) 0 0
\(19\) −1389.96 −0.883323 −0.441661 0.897182i \(-0.645611\pi\)
−0.441661 + 0.897182i \(0.645611\pi\)
\(20\) 0 0
\(21\) 108.632 0.0537538
\(22\) 0 0
\(23\) −1916.63 −0.755472 −0.377736 0.925913i \(-0.623297\pi\)
−0.377736 + 0.925913i \(0.623297\pi\)
\(24\) 0 0
\(25\) 710.298 0.227295
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −2653.37 −0.585871 −0.292936 0.956132i \(-0.594632\pi\)
−0.292936 + 0.956132i \(0.594632\pi\)
\(30\) 0 0
\(31\) 1441.68 0.269442 0.134721 0.990884i \(-0.456986\pi\)
0.134721 + 0.990884i \(0.456986\pi\)
\(32\) 0 0
\(33\) −1650.94 −0.263905
\(34\) 0 0
\(35\) −747.506 −0.103144
\(36\) 0 0
\(37\) −3015.61 −0.362136 −0.181068 0.983471i \(-0.557955\pi\)
−0.181068 + 0.983471i \(0.557955\pi\)
\(38\) 0 0
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) 3302.13 0.306786 0.153393 0.988165i \(-0.450980\pi\)
0.153393 + 0.988165i \(0.450980\pi\)
\(42\) 0 0
\(43\) −456.484 −0.0376491 −0.0188245 0.999823i \(-0.505992\pi\)
−0.0188245 + 0.999823i \(0.505992\pi\)
\(44\) 0 0
\(45\) 5016.31 0.369278
\(46\) 0 0
\(47\) 21191.2 1.39930 0.699650 0.714485i \(-0.253339\pi\)
0.699650 + 0.714485i \(0.253339\pi\)
\(48\) 0 0
\(49\) −16661.3 −0.991332
\(50\) 0 0
\(51\) 4721.36 0.254180
\(52\) 0 0
\(53\) −5099.12 −0.249348 −0.124674 0.992198i \(-0.539788\pi\)
−0.124674 + 0.992198i \(0.539788\pi\)
\(54\) 0 0
\(55\) 11360.3 0.506387
\(56\) 0 0
\(57\) 12509.7 0.509987
\(58\) 0 0
\(59\) −694.164 −0.0259617 −0.0129808 0.999916i \(-0.504132\pi\)
−0.0129808 + 0.999916i \(0.504132\pi\)
\(60\) 0 0
\(61\) −55101.5 −1.89600 −0.948001 0.318268i \(-0.896899\pi\)
−0.948001 + 0.318268i \(0.896899\pi\)
\(62\) 0 0
\(63\) −977.688 −0.0310348
\(64\) 0 0
\(65\) 10466.1 0.307258
\(66\) 0 0
\(67\) 29603.6 0.805670 0.402835 0.915273i \(-0.368025\pi\)
0.402835 + 0.915273i \(0.368025\pi\)
\(68\) 0 0
\(69\) 17249.7 0.436172
\(70\) 0 0
\(71\) −30371.8 −0.715031 −0.357516 0.933907i \(-0.616376\pi\)
−0.357516 + 0.933907i \(0.616376\pi\)
\(72\) 0 0
\(73\) −43898.6 −0.964148 −0.482074 0.876130i \(-0.660116\pi\)
−0.482074 + 0.876130i \(0.660116\pi\)
\(74\) 0 0
\(75\) −6392.68 −0.131229
\(76\) 0 0
\(77\) −2214.14 −0.0425577
\(78\) 0 0
\(79\) 63192.4 1.13919 0.569596 0.821925i \(-0.307100\pi\)
0.569596 + 0.821925i \(0.307100\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −20100.2 −0.320263 −0.160131 0.987096i \(-0.551192\pi\)
−0.160131 + 0.987096i \(0.551192\pi\)
\(84\) 0 0
\(85\) −32488.1 −0.487727
\(86\) 0 0
\(87\) 23880.3 0.338253
\(88\) 0 0
\(89\) 118120. 1.58070 0.790350 0.612656i \(-0.209899\pi\)
0.790350 + 0.612656i \(0.209899\pi\)
\(90\) 0 0
\(91\) −2039.87 −0.0258225
\(92\) 0 0
\(93\) −12975.1 −0.155562
\(94\) 0 0
\(95\) −86080.1 −0.978575
\(96\) 0 0
\(97\) −27497.1 −0.296727 −0.148363 0.988933i \(-0.547401\pi\)
−0.148363 + 0.988933i \(0.547401\pi\)
\(98\) 0 0
\(99\) 14858.5 0.152366
\(100\) 0 0
\(101\) 116434. 1.13574 0.567869 0.823119i \(-0.307768\pi\)
0.567869 + 0.823119i \(0.307768\pi\)
\(102\) 0 0
\(103\) −79882.4 −0.741921 −0.370961 0.928649i \(-0.620972\pi\)
−0.370961 + 0.928649i \(0.620972\pi\)
\(104\) 0 0
\(105\) 6727.55 0.0595503
\(106\) 0 0
\(107\) −144176. −1.21740 −0.608699 0.793401i \(-0.708308\pi\)
−0.608699 + 0.793401i \(0.708308\pi\)
\(108\) 0 0
\(109\) 141022. 1.13690 0.568449 0.822719i \(-0.307544\pi\)
0.568449 + 0.822719i \(0.307544\pi\)
\(110\) 0 0
\(111\) 27140.5 0.209079
\(112\) 0 0
\(113\) 182492. 1.34446 0.672231 0.740341i \(-0.265336\pi\)
0.672231 + 0.740341i \(0.265336\pi\)
\(114\) 0 0
\(115\) −118696. −0.836938
\(116\) 0 0
\(117\) 13689.0 0.0924500
\(118\) 0 0
\(119\) 6331.98 0.0409895
\(120\) 0 0
\(121\) −127401. −0.791063
\(122\) 0 0
\(123\) −29719.2 −0.177123
\(124\) 0 0
\(125\) −149542. −0.856028
\(126\) 0 0
\(127\) −245274. −1.34940 −0.674702 0.738091i \(-0.735728\pi\)
−0.674702 + 0.738091i \(0.735728\pi\)
\(128\) 0 0
\(129\) 4108.36 0.0217367
\(130\) 0 0
\(131\) 70592.4 0.359401 0.179701 0.983721i \(-0.442487\pi\)
0.179701 + 0.983721i \(0.442487\pi\)
\(132\) 0 0
\(133\) 16777.2 0.0822412
\(134\) 0 0
\(135\) −45146.8 −0.213203
\(136\) 0 0
\(137\) −193511. −0.880856 −0.440428 0.897788i \(-0.645173\pi\)
−0.440428 + 0.897788i \(0.645173\pi\)
\(138\) 0 0
\(139\) 16550.3 0.0726556 0.0363278 0.999340i \(-0.488434\pi\)
0.0363278 + 0.999340i \(0.488434\pi\)
\(140\) 0 0
\(141\) −190721. −0.807887
\(142\) 0 0
\(143\) 31001.1 0.126776
\(144\) 0 0
\(145\) −164322. −0.649048
\(146\) 0 0
\(147\) 149952. 0.572346
\(148\) 0 0
\(149\) −479101. −1.76792 −0.883958 0.467567i \(-0.845131\pi\)
−0.883958 + 0.467567i \(0.845131\pi\)
\(150\) 0 0
\(151\) −315548. −1.12622 −0.563111 0.826382i \(-0.690396\pi\)
−0.563111 + 0.826382i \(0.690396\pi\)
\(152\) 0 0
\(153\) −42492.2 −0.146751
\(154\) 0 0
\(155\) 89283.1 0.298497
\(156\) 0 0
\(157\) −540764. −1.75089 −0.875444 0.483319i \(-0.839431\pi\)
−0.875444 + 0.483319i \(0.839431\pi\)
\(158\) 0 0
\(159\) 45892.1 0.143961
\(160\) 0 0
\(161\) 23134.1 0.0703378
\(162\) 0 0
\(163\) 81219.0 0.239436 0.119718 0.992808i \(-0.461801\pi\)
0.119718 + 0.992808i \(0.461801\pi\)
\(164\) 0 0
\(165\) −102243. −0.292363
\(166\) 0 0
\(167\) −401419. −1.11380 −0.556899 0.830580i \(-0.688009\pi\)
−0.556899 + 0.830580i \(0.688009\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −112587. −0.294441
\(172\) 0 0
\(173\) −256472. −0.651515 −0.325757 0.945453i \(-0.605619\pi\)
−0.325757 + 0.945453i \(0.605619\pi\)
\(174\) 0 0
\(175\) −8573.45 −0.0211622
\(176\) 0 0
\(177\) 6247.48 0.0149890
\(178\) 0 0
\(179\) −584078. −1.36251 −0.681253 0.732048i \(-0.738565\pi\)
−0.681253 + 0.732048i \(0.738565\pi\)
\(180\) 0 0
\(181\) −170556. −0.386965 −0.193482 0.981104i \(-0.561978\pi\)
−0.193482 + 0.981104i \(0.561978\pi\)
\(182\) 0 0
\(183\) 495913. 1.09466
\(184\) 0 0
\(185\) −186756. −0.401186
\(186\) 0 0
\(187\) −96230.9 −0.201238
\(188\) 0 0
\(189\) 8799.19 0.0179179
\(190\) 0 0
\(191\) −512527. −1.01656 −0.508280 0.861192i \(-0.669719\pi\)
−0.508280 + 0.861192i \(0.669719\pi\)
\(192\) 0 0
\(193\) 220134. 0.425397 0.212699 0.977118i \(-0.431775\pi\)
0.212699 + 0.977118i \(0.431775\pi\)
\(194\) 0 0
\(195\) −94195.2 −0.177395
\(196\) 0 0
\(197\) 88389.6 0.162269 0.0811345 0.996703i \(-0.474146\pi\)
0.0811345 + 0.996703i \(0.474146\pi\)
\(198\) 0 0
\(199\) −914132. −1.63635 −0.818175 0.574970i \(-0.805014\pi\)
−0.818175 + 0.574970i \(0.805014\pi\)
\(200\) 0 0
\(201\) −266432. −0.465154
\(202\) 0 0
\(203\) 32026.7 0.0545472
\(204\) 0 0
\(205\) 204500. 0.339867
\(206\) 0 0
\(207\) −155247. −0.251824
\(208\) 0 0
\(209\) −254973. −0.403764
\(210\) 0 0
\(211\) −293030. −0.453112 −0.226556 0.973998i \(-0.572747\pi\)
−0.226556 + 0.973998i \(0.572747\pi\)
\(212\) 0 0
\(213\) 273347. 0.412824
\(214\) 0 0
\(215\) −28270.0 −0.0417089
\(216\) 0 0
\(217\) −17401.4 −0.0250862
\(218\) 0 0
\(219\) 395088. 0.556651
\(220\) 0 0
\(221\) −88656.7 −0.122104
\(222\) 0 0
\(223\) 414666. 0.558389 0.279194 0.960235i \(-0.409933\pi\)
0.279194 + 0.960235i \(0.409933\pi\)
\(224\) 0 0
\(225\) 57534.1 0.0757651
\(226\) 0 0
\(227\) 709235. 0.913536 0.456768 0.889586i \(-0.349007\pi\)
0.456768 + 0.889586i \(0.349007\pi\)
\(228\) 0 0
\(229\) −454331. −0.572511 −0.286256 0.958153i \(-0.592411\pi\)
−0.286256 + 0.958153i \(0.592411\pi\)
\(230\) 0 0
\(231\) 19927.3 0.0245707
\(232\) 0 0
\(233\) −347380. −0.419194 −0.209597 0.977788i \(-0.567215\pi\)
−0.209597 + 0.977788i \(0.567215\pi\)
\(234\) 0 0
\(235\) 1.31237e6 1.55019
\(236\) 0 0
\(237\) −568732. −0.657713
\(238\) 0 0
\(239\) −502585. −0.569134 −0.284567 0.958656i \(-0.591850\pi\)
−0.284567 + 0.958656i \(0.591850\pi\)
\(240\) 0 0
\(241\) 885838. 0.982453 0.491226 0.871032i \(-0.336549\pi\)
0.491226 + 0.871032i \(0.336549\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −1.03183e6 −1.09823
\(246\) 0 0
\(247\) −234904. −0.244990
\(248\) 0 0
\(249\) 180902. 0.184904
\(250\) 0 0
\(251\) −1.11705e6 −1.11915 −0.559574 0.828781i \(-0.689035\pi\)
−0.559574 + 0.828781i \(0.689035\pi\)
\(252\) 0 0
\(253\) −351583. −0.345324
\(254\) 0 0
\(255\) 292393. 0.281589
\(256\) 0 0
\(257\) 924298. 0.872929 0.436465 0.899721i \(-0.356230\pi\)
0.436465 + 0.899721i \(0.356230\pi\)
\(258\) 0 0
\(259\) 36399.1 0.0337164
\(260\) 0 0
\(261\) −214923. −0.195290
\(262\) 0 0
\(263\) 133242. 0.118782 0.0593911 0.998235i \(-0.481084\pi\)
0.0593911 + 0.998235i \(0.481084\pi\)
\(264\) 0 0
\(265\) −315788. −0.276236
\(266\) 0 0
\(267\) −1.06308e6 −0.912617
\(268\) 0 0
\(269\) 1.56607e6 1.31956 0.659781 0.751458i \(-0.270649\pi\)
0.659781 + 0.751458i \(0.270649\pi\)
\(270\) 0 0
\(271\) 1.22010e6 1.00919 0.504593 0.863357i \(-0.331643\pi\)
0.504593 + 0.863357i \(0.331643\pi\)
\(272\) 0 0
\(273\) 18358.8 0.0149086
\(274\) 0 0
\(275\) 130296. 0.103896
\(276\) 0 0
\(277\) 1.86383e6 1.45951 0.729753 0.683711i \(-0.239635\pi\)
0.729753 + 0.683711i \(0.239635\pi\)
\(278\) 0 0
\(279\) 116776. 0.0898140
\(280\) 0 0
\(281\) −848857. −0.641311 −0.320656 0.947196i \(-0.603903\pi\)
−0.320656 + 0.947196i \(0.603903\pi\)
\(282\) 0 0
\(283\) −478280. −0.354990 −0.177495 0.984122i \(-0.556799\pi\)
−0.177495 + 0.984122i \(0.556799\pi\)
\(284\) 0 0
\(285\) 774721. 0.564980
\(286\) 0 0
\(287\) −39857.5 −0.0285631
\(288\) 0 0
\(289\) −1.14466e6 −0.806177
\(290\) 0 0
\(291\) 247474. 0.171315
\(292\) 0 0
\(293\) 1.13443e6 0.771984 0.385992 0.922502i \(-0.373859\pi\)
0.385992 + 0.922502i \(0.373859\pi\)
\(294\) 0 0
\(295\) −42989.5 −0.0287612
\(296\) 0 0
\(297\) −133726. −0.0879683
\(298\) 0 0
\(299\) −323910. −0.209530
\(300\) 0 0
\(301\) 5509.86 0.00350530
\(302\) 0 0
\(303\) −1.04791e6 −0.655719
\(304\) 0 0
\(305\) −3.41242e6 −2.10045
\(306\) 0 0
\(307\) 2.54492e6 1.54109 0.770546 0.637384i \(-0.219984\pi\)
0.770546 + 0.637384i \(0.219984\pi\)
\(308\) 0 0
\(309\) 718941. 0.428348
\(310\) 0 0
\(311\) −508599. −0.298177 −0.149089 0.988824i \(-0.547634\pi\)
−0.149089 + 0.988824i \(0.547634\pi\)
\(312\) 0 0
\(313\) −1.70498e6 −0.983688 −0.491844 0.870683i \(-0.663677\pi\)
−0.491844 + 0.870683i \(0.663677\pi\)
\(314\) 0 0
\(315\) −60548.0 −0.0343814
\(316\) 0 0
\(317\) −1.13413e6 −0.633892 −0.316946 0.948444i \(-0.602657\pi\)
−0.316946 + 0.948444i \(0.602657\pi\)
\(318\) 0 0
\(319\) −486729. −0.267800
\(320\) 0 0
\(321\) 1.29758e6 0.702865
\(322\) 0 0
\(323\) 729169. 0.388886
\(324\) 0 0
\(325\) 120040. 0.0630404
\(326\) 0 0
\(327\) −1.26920e6 −0.656388
\(328\) 0 0
\(329\) −255783. −0.130281
\(330\) 0 0
\(331\) 1.47356e6 0.739263 0.369632 0.929178i \(-0.379484\pi\)
0.369632 + 0.929178i \(0.379484\pi\)
\(332\) 0 0
\(333\) −244265. −0.120712
\(334\) 0 0
\(335\) 1.83334e6 0.892549
\(336\) 0 0
\(337\) 2.33105e6 1.11809 0.559045 0.829137i \(-0.311168\pi\)
0.559045 + 0.829137i \(0.311168\pi\)
\(338\) 0 0
\(339\) −1.64243e6 −0.776226
\(340\) 0 0
\(341\) 264460. 0.123161
\(342\) 0 0
\(343\) 403970. 0.185402
\(344\) 0 0
\(345\) 1.06827e6 0.483206
\(346\) 0 0
\(347\) −4.30515e6 −1.91940 −0.959698 0.281033i \(-0.909323\pi\)
−0.959698 + 0.281033i \(0.909323\pi\)
\(348\) 0 0
\(349\) 3.63737e6 1.59854 0.799270 0.600972i \(-0.205220\pi\)
0.799270 + 0.600972i \(0.205220\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 0 0
\(353\) −2.06196e6 −0.880733 −0.440366 0.897818i \(-0.645151\pi\)
−0.440366 + 0.897818i \(0.645151\pi\)
\(354\) 0 0
\(355\) −1.88092e6 −0.792136
\(356\) 0 0
\(357\) −56987.9 −0.0236653
\(358\) 0 0
\(359\) −2.89637e6 −1.18609 −0.593045 0.805170i \(-0.702074\pi\)
−0.593045 + 0.805170i \(0.702074\pi\)
\(360\) 0 0
\(361\) −544100. −0.219741
\(362\) 0 0
\(363\) 1.14661e6 0.456720
\(364\) 0 0
\(365\) −2.71863e6 −1.06812
\(366\) 0 0
\(367\) −4.37778e6 −1.69664 −0.848318 0.529487i \(-0.822384\pi\)
−0.848318 + 0.529487i \(0.822384\pi\)
\(368\) 0 0
\(369\) 267473. 0.102262
\(370\) 0 0
\(371\) 61547.5 0.0232154
\(372\) 0 0
\(373\) −53191.7 −0.0197957 −0.00989787 0.999951i \(-0.503151\pi\)
−0.00989787 + 0.999951i \(0.503151\pi\)
\(374\) 0 0
\(375\) 1.34588e6 0.494228
\(376\) 0 0
\(377\) −448419. −0.162491
\(378\) 0 0
\(379\) 4.56757e6 1.63338 0.816690 0.577076i \(-0.195807\pi\)
0.816690 + 0.577076i \(0.195807\pi\)
\(380\) 0 0
\(381\) 2.20746e6 0.779078
\(382\) 0 0
\(383\) −64196.5 −0.0223622 −0.0111811 0.999937i \(-0.503559\pi\)
−0.0111811 + 0.999937i \(0.503559\pi\)
\(384\) 0 0
\(385\) −137121. −0.0471469
\(386\) 0 0
\(387\) −36975.2 −0.0125497
\(388\) 0 0
\(389\) 4.56310e6 1.52892 0.764462 0.644668i \(-0.223005\pi\)
0.764462 + 0.644668i \(0.223005\pi\)
\(390\) 0 0
\(391\) 1.00546e6 0.332599
\(392\) 0 0
\(393\) −635331. −0.207500
\(394\) 0 0
\(395\) 3.91349e6 1.26204
\(396\) 0 0
\(397\) 3.16929e6 1.00922 0.504610 0.863348i \(-0.331636\pi\)
0.504610 + 0.863348i \(0.331636\pi\)
\(398\) 0 0
\(399\) −150994. −0.0474820
\(400\) 0 0
\(401\) −2.57811e6 −0.800646 −0.400323 0.916374i \(-0.631102\pi\)
−0.400323 + 0.916374i \(0.631102\pi\)
\(402\) 0 0
\(403\) 243644. 0.0747298
\(404\) 0 0
\(405\) 406321. 0.123093
\(406\) 0 0
\(407\) −553179. −0.165531
\(408\) 0 0
\(409\) −1.93651e6 −0.572417 −0.286208 0.958167i \(-0.592395\pi\)
−0.286208 + 0.958167i \(0.592395\pi\)
\(410\) 0 0
\(411\) 1.74160e6 0.508563
\(412\) 0 0
\(413\) 8378.72 0.00241714
\(414\) 0 0
\(415\) −1.24480e6 −0.354798
\(416\) 0 0
\(417\) −148953. −0.0419477
\(418\) 0 0
\(419\) −5.10997e6 −1.42195 −0.710973 0.703219i \(-0.751745\pi\)
−0.710973 + 0.703219i \(0.751745\pi\)
\(420\) 0 0
\(421\) −1.66272e6 −0.457209 −0.228604 0.973519i \(-0.573416\pi\)
−0.228604 + 0.973519i \(0.573416\pi\)
\(422\) 0 0
\(423\) 1.71649e6 0.466434
\(424\) 0 0
\(425\) −372619. −0.100067
\(426\) 0 0
\(427\) 665087. 0.176526
\(428\) 0 0
\(429\) −279010. −0.0731941
\(430\) 0 0
\(431\) 3.28622e6 0.852124 0.426062 0.904694i \(-0.359900\pi\)
0.426062 + 0.904694i \(0.359900\pi\)
\(432\) 0 0
\(433\) −2.15750e6 −0.553007 −0.276503 0.961013i \(-0.589176\pi\)
−0.276503 + 0.961013i \(0.589176\pi\)
\(434\) 0 0
\(435\) 1.47890e6 0.374728
\(436\) 0 0
\(437\) 2.66405e6 0.667326
\(438\) 0 0
\(439\) −1.64334e6 −0.406974 −0.203487 0.979078i \(-0.565227\pi\)
−0.203487 + 0.979078i \(0.565227\pi\)
\(440\) 0 0
\(441\) −1.34957e6 −0.330444
\(442\) 0 0
\(443\) 7.43121e6 1.79908 0.899539 0.436840i \(-0.143902\pi\)
0.899539 + 0.436840i \(0.143902\pi\)
\(444\) 0 0
\(445\) 7.31516e6 1.75115
\(446\) 0 0
\(447\) 4.31191e6 1.02071
\(448\) 0 0
\(449\) −2.76955e6 −0.648326 −0.324163 0.946001i \(-0.605083\pi\)
−0.324163 + 0.946001i \(0.605083\pi\)
\(450\) 0 0
\(451\) 605738. 0.140231
\(452\) 0 0
\(453\) 2.83994e6 0.650224
\(454\) 0 0
\(455\) −126329. −0.0286070
\(456\) 0 0
\(457\) 1.54160e6 0.345287 0.172644 0.984984i \(-0.444769\pi\)
0.172644 + 0.984984i \(0.444769\pi\)
\(458\) 0 0
\(459\) 382430. 0.0847267
\(460\) 0 0
\(461\) −4.78552e6 −1.04876 −0.524381 0.851484i \(-0.675703\pi\)
−0.524381 + 0.851484i \(0.675703\pi\)
\(462\) 0 0
\(463\) 8.73387e6 1.89345 0.946726 0.322041i \(-0.104369\pi\)
0.946726 + 0.322041i \(0.104369\pi\)
\(464\) 0 0
\(465\) −803548. −0.172337
\(466\) 0 0
\(467\) −448252. −0.0951109 −0.0475554 0.998869i \(-0.515143\pi\)
−0.0475554 + 0.998869i \(0.515143\pi\)
\(468\) 0 0
\(469\) −357322. −0.0750114
\(470\) 0 0
\(471\) 4.86688e6 1.01088
\(472\) 0 0
\(473\) −83736.7 −0.0172093
\(474\) 0 0
\(475\) −987288. −0.200775
\(476\) 0 0
\(477\) −413029. −0.0831160
\(478\) 0 0
\(479\) 9.23494e6 1.83906 0.919529 0.393022i \(-0.128570\pi\)
0.919529 + 0.393022i \(0.128570\pi\)
\(480\) 0 0
\(481\) −509639. −0.100438
\(482\) 0 0
\(483\) −208207. −0.0406095
\(484\) 0 0
\(485\) −1.70289e6 −0.328724
\(486\) 0 0
\(487\) −4.87963e6 −0.932318 −0.466159 0.884701i \(-0.654363\pi\)
−0.466159 + 0.884701i \(0.654363\pi\)
\(488\) 0 0
\(489\) −730971. −0.138238
\(490\) 0 0
\(491\) −576710. −0.107958 −0.0539789 0.998542i \(-0.517190\pi\)
−0.0539789 + 0.998542i \(0.517190\pi\)
\(492\) 0 0
\(493\) 1.39194e6 0.257932
\(494\) 0 0
\(495\) 920184. 0.168796
\(496\) 0 0
\(497\) 366595. 0.0665726
\(498\) 0 0
\(499\) 1.34239e6 0.241339 0.120669 0.992693i \(-0.461496\pi\)
0.120669 + 0.992693i \(0.461496\pi\)
\(500\) 0 0
\(501\) 3.61277e6 0.643052
\(502\) 0 0
\(503\) −17469.0 −0.00307857 −0.00153928 0.999999i \(-0.500490\pi\)
−0.00153928 + 0.999999i \(0.500490\pi\)
\(504\) 0 0
\(505\) 7.21076e6 1.25821
\(506\) 0 0
\(507\) −257049. −0.0444116
\(508\) 0 0
\(509\) 6.23272e6 1.06631 0.533155 0.846018i \(-0.321006\pi\)
0.533155 + 0.846018i \(0.321006\pi\)
\(510\) 0 0
\(511\) 529866. 0.0897664
\(512\) 0 0
\(513\) 1.01328e6 0.169996
\(514\) 0 0
\(515\) −4.94710e6 −0.821925
\(516\) 0 0
\(517\) 3.88728e6 0.639616
\(518\) 0 0
\(519\) 2.30824e6 0.376152
\(520\) 0 0
\(521\) −6.45233e6 −1.04141 −0.520705 0.853736i \(-0.674331\pi\)
−0.520705 + 0.853736i \(0.674331\pi\)
\(522\) 0 0
\(523\) −3.39647e6 −0.542967 −0.271483 0.962443i \(-0.587514\pi\)
−0.271483 + 0.962443i \(0.587514\pi\)
\(524\) 0 0
\(525\) 77161.0 0.0122180
\(526\) 0 0
\(527\) −756300. −0.118623
\(528\) 0 0
\(529\) −2.76287e6 −0.429262
\(530\) 0 0
\(531\) −56227.3 −0.00865388
\(532\) 0 0
\(533\) 558060. 0.0850870
\(534\) 0 0
\(535\) −8.92877e6 −1.34868
\(536\) 0 0
\(537\) 5.25670e6 0.786643
\(538\) 0 0
\(539\) −3.05632e6 −0.453134
\(540\) 0 0
\(541\) −7.37387e6 −1.08318 −0.541592 0.840641i \(-0.682178\pi\)
−0.541592 + 0.840641i \(0.682178\pi\)
\(542\) 0 0
\(543\) 1.53501e6 0.223414
\(544\) 0 0
\(545\) 8.73347e6 1.25949
\(546\) 0 0
\(547\) 6.57677e6 0.939820 0.469910 0.882714i \(-0.344286\pi\)
0.469910 + 0.882714i \(0.344286\pi\)
\(548\) 0 0
\(549\) −4.46322e6 −0.632001
\(550\) 0 0
\(551\) 3.68808e6 0.517513
\(552\) 0 0
\(553\) −762746. −0.106064
\(554\) 0 0
\(555\) 1.68081e6 0.231625
\(556\) 0 0
\(557\) 7.51699e6 1.02661 0.513305 0.858206i \(-0.328421\pi\)
0.513305 + 0.858206i \(0.328421\pi\)
\(558\) 0 0
\(559\) −77145.8 −0.0104420
\(560\) 0 0
\(561\) 866078. 0.116185
\(562\) 0 0
\(563\) −1.09315e7 −1.45347 −0.726737 0.686916i \(-0.758964\pi\)
−0.726737 + 0.686916i \(0.758964\pi\)
\(564\) 0 0
\(565\) 1.13017e7 1.48944
\(566\) 0 0
\(567\) −79192.7 −0.0103449
\(568\) 0 0
\(569\) −3.95020e6 −0.511491 −0.255746 0.966744i \(-0.582321\pi\)
−0.255746 + 0.966744i \(0.582321\pi\)
\(570\) 0 0
\(571\) 1.15680e7 1.48480 0.742399 0.669958i \(-0.233688\pi\)
0.742399 + 0.669958i \(0.233688\pi\)
\(572\) 0 0
\(573\) 4.61274e6 0.586911
\(574\) 0 0
\(575\) −1.36138e6 −0.171715
\(576\) 0 0
\(577\) 3.91551e6 0.489609 0.244804 0.969572i \(-0.421276\pi\)
0.244804 + 0.969572i \(0.421276\pi\)
\(578\) 0 0
\(579\) −1.98121e6 −0.245603
\(580\) 0 0
\(581\) 242614. 0.0298178
\(582\) 0 0
\(583\) −935374. −0.113976
\(584\) 0 0
\(585\) 847757. 0.102419
\(586\) 0 0
\(587\) −1.47390e7 −1.76552 −0.882762 0.469820i \(-0.844319\pi\)
−0.882762 + 0.469820i \(0.844319\pi\)
\(588\) 0 0
\(589\) −2.00389e6 −0.238004
\(590\) 0 0
\(591\) −795506. −0.0936861
\(592\) 0 0
\(593\) 3.49709e6 0.408386 0.204193 0.978931i \(-0.434543\pi\)
0.204193 + 0.978931i \(0.434543\pi\)
\(594\) 0 0
\(595\) 392138. 0.0454095
\(596\) 0 0
\(597\) 8.22719e6 0.944747
\(598\) 0 0
\(599\) −1.14482e7 −1.30368 −0.651842 0.758355i \(-0.726003\pi\)
−0.651842 + 0.758355i \(0.726003\pi\)
\(600\) 0 0
\(601\) 755669. 0.0853386 0.0426693 0.999089i \(-0.486414\pi\)
0.0426693 + 0.999089i \(0.486414\pi\)
\(602\) 0 0
\(603\) 2.39789e6 0.268557
\(604\) 0 0
\(605\) −7.88994e6 −0.876366
\(606\) 0 0
\(607\) −165519. −0.0182337 −0.00911687 0.999958i \(-0.502902\pi\)
−0.00911687 + 0.999958i \(0.502902\pi\)
\(608\) 0 0
\(609\) −288240. −0.0314928
\(610\) 0 0
\(611\) 3.58131e6 0.388096
\(612\) 0 0
\(613\) 8.97746e6 0.964945 0.482472 0.875911i \(-0.339739\pi\)
0.482472 + 0.875911i \(0.339739\pi\)
\(614\) 0 0
\(615\) −1.84050e6 −0.196223
\(616\) 0 0
\(617\) 2.13304e6 0.225573 0.112786 0.993619i \(-0.464022\pi\)
0.112786 + 0.993619i \(0.464022\pi\)
\(618\) 0 0
\(619\) 1.55236e7 1.62841 0.814206 0.580576i \(-0.197172\pi\)
0.814206 + 0.580576i \(0.197172\pi\)
\(620\) 0 0
\(621\) 1.39722e6 0.145391
\(622\) 0 0
\(623\) −1.42574e6 −0.147170
\(624\) 0 0
\(625\) −1.14808e7 −1.17563
\(626\) 0 0
\(627\) 2.29475e6 0.233113
\(628\) 0 0
\(629\) 1.58198e6 0.159431
\(630\) 0 0
\(631\) 1.53539e7 1.53513 0.767567 0.640969i \(-0.221467\pi\)
0.767567 + 0.640969i \(0.221467\pi\)
\(632\) 0 0
\(633\) 2.63727e6 0.261604
\(634\) 0 0
\(635\) −1.51897e7 −1.49491
\(636\) 0 0
\(637\) −2.81576e6 −0.274946
\(638\) 0 0
\(639\) −2.46012e6 −0.238344
\(640\) 0 0
\(641\) −1.61787e7 −1.55524 −0.777621 0.628734i \(-0.783574\pi\)
−0.777621 + 0.628734i \(0.783574\pi\)
\(642\) 0 0
\(643\) −1.13012e7 −1.07795 −0.538973 0.842323i \(-0.681188\pi\)
−0.538973 + 0.842323i \(0.681188\pi\)
\(644\) 0 0
\(645\) 254430. 0.0240807
\(646\) 0 0
\(647\) 4.91218e6 0.461332 0.230666 0.973033i \(-0.425910\pi\)
0.230666 + 0.973033i \(0.425910\pi\)
\(648\) 0 0
\(649\) −127336. −0.0118670
\(650\) 0 0
\(651\) 156613. 0.0144835
\(652\) 0 0
\(653\) −1.27515e7 −1.17025 −0.585123 0.810944i \(-0.698954\pi\)
−0.585123 + 0.810944i \(0.698954\pi\)
\(654\) 0 0
\(655\) 4.37177e6 0.398157
\(656\) 0 0
\(657\) −3.55579e6 −0.321383
\(658\) 0 0
\(659\) −4.57515e6 −0.410385 −0.205193 0.978722i \(-0.565782\pi\)
−0.205193 + 0.978722i \(0.565782\pi\)
\(660\) 0 0
\(661\) −1.94596e6 −0.173233 −0.0866164 0.996242i \(-0.527605\pi\)
−0.0866164 + 0.996242i \(0.527605\pi\)
\(662\) 0 0
\(663\) 797910. 0.0704969
\(664\) 0 0
\(665\) 1.03901e6 0.0911096
\(666\) 0 0
\(667\) 5.08552e6 0.442609
\(668\) 0 0
\(669\) −3.73200e6 −0.322386
\(670\) 0 0
\(671\) −1.01077e7 −0.866656
\(672\) 0 0
\(673\) 824071. 0.0701337 0.0350669 0.999385i \(-0.488836\pi\)
0.0350669 + 0.999385i \(0.488836\pi\)
\(674\) 0 0
\(675\) −517807. −0.0437430
\(676\) 0 0
\(677\) 1.06076e7 0.889496 0.444748 0.895656i \(-0.353293\pi\)
0.444748 + 0.895656i \(0.353293\pi\)
\(678\) 0 0
\(679\) 331896. 0.0276266
\(680\) 0 0
\(681\) −6.38312e6 −0.527430
\(682\) 0 0
\(683\) 1.54948e7 1.27097 0.635483 0.772115i \(-0.280801\pi\)
0.635483 + 0.772115i \(0.280801\pi\)
\(684\) 0 0
\(685\) −1.19841e7 −0.975842
\(686\) 0 0
\(687\) 4.08898e6 0.330539
\(688\) 0 0
\(689\) −861752. −0.0691567
\(690\) 0 0
\(691\) −2.90507e6 −0.231452 −0.115726 0.993281i \(-0.536919\pi\)
−0.115726 + 0.993281i \(0.536919\pi\)
\(692\) 0 0
\(693\) −179345. −0.0141859
\(694\) 0 0
\(695\) 1.02496e6 0.0804903
\(696\) 0 0
\(697\) −1.73228e6 −0.135063
\(698\) 0 0
\(699\) 3.12642e6 0.242022
\(700\) 0 0
\(701\) 8.10828e6 0.623209 0.311605 0.950212i \(-0.399134\pi\)
0.311605 + 0.950212i \(0.399134\pi\)
\(702\) 0 0
\(703\) 4.19159e6 0.319883
\(704\) 0 0
\(705\) −1.18113e7 −0.895004
\(706\) 0 0
\(707\) −1.40539e6 −0.105742
\(708\) 0 0
\(709\) −1.64144e7 −1.22634 −0.613168 0.789953i \(-0.710105\pi\)
−0.613168 + 0.789953i \(0.710105\pi\)
\(710\) 0 0
\(711\) 5.11858e6 0.379731
\(712\) 0 0
\(713\) −2.76317e6 −0.203556
\(714\) 0 0
\(715\) 1.91989e6 0.140447
\(716\) 0 0
\(717\) 4.52327e6 0.328590
\(718\) 0 0
\(719\) −6.27334e6 −0.452561 −0.226280 0.974062i \(-0.572657\pi\)
−0.226280 + 0.974062i \(0.572657\pi\)
\(720\) 0 0
\(721\) 964198. 0.0690761
\(722\) 0 0
\(723\) −7.97254e6 −0.567219
\(724\) 0 0
\(725\) −1.88468e6 −0.133166
\(726\) 0 0
\(727\) −6.27335e6 −0.440214 −0.220107 0.975476i \(-0.570641\pi\)
−0.220107 + 0.975476i \(0.570641\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 239470. 0.0165751
\(732\) 0 0
\(733\) 2.38673e7 1.64075 0.820376 0.571825i \(-0.193764\pi\)
0.820376 + 0.571825i \(0.193764\pi\)
\(734\) 0 0
\(735\) 9.28648e6 0.634064
\(736\) 0 0
\(737\) 5.43043e6 0.368269
\(738\) 0 0
\(739\) 1.74901e7 1.17810 0.589050 0.808097i \(-0.299502\pi\)
0.589050 + 0.808097i \(0.299502\pi\)
\(740\) 0 0
\(741\) 2.11413e6 0.141445
\(742\) 0 0
\(743\) −1.76450e7 −1.17260 −0.586299 0.810095i \(-0.699416\pi\)
−0.586299 + 0.810095i \(0.699416\pi\)
\(744\) 0 0
\(745\) −2.96706e7 −1.95856
\(746\) 0 0
\(747\) −1.62812e6 −0.106754
\(748\) 0 0
\(749\) 1.74023e6 0.113345
\(750\) 0 0
\(751\) 2.66005e7 1.72104 0.860519 0.509418i \(-0.170139\pi\)
0.860519 + 0.509418i \(0.170139\pi\)
\(752\) 0 0
\(753\) 1.00534e7 0.646140
\(754\) 0 0
\(755\) −1.95418e7 −1.24767
\(756\) 0 0
\(757\) 8.15204e6 0.517043 0.258521 0.966006i \(-0.416765\pi\)
0.258521 + 0.966006i \(0.416765\pi\)
\(758\) 0 0
\(759\) 3.16425e6 0.199373
\(760\) 0 0
\(761\) −2.70623e7 −1.69396 −0.846978 0.531627i \(-0.821581\pi\)
−0.846978 + 0.531627i \(0.821581\pi\)
\(762\) 0 0
\(763\) −1.70217e6 −0.105850
\(764\) 0 0
\(765\) −2.63154e6 −0.162576
\(766\) 0 0
\(767\) −117314. −0.00720047
\(768\) 0 0
\(769\) 3.05350e7 1.86201 0.931004 0.365009i \(-0.118934\pi\)
0.931004 + 0.365009i \(0.118934\pi\)
\(770\) 0 0
\(771\) −8.31868e6 −0.503986
\(772\) 0 0
\(773\) −1.86484e7 −1.12252 −0.561259 0.827640i \(-0.689683\pi\)
−0.561259 + 0.827640i \(0.689683\pi\)
\(774\) 0 0
\(775\) 1.02402e6 0.0612429
\(776\) 0 0
\(777\) −327592. −0.0194662
\(778\) 0 0
\(779\) −4.58984e6 −0.270991
\(780\) 0 0
\(781\) −5.57136e6 −0.326839
\(782\) 0 0
\(783\) 1.93430e6 0.112751
\(784\) 0 0
\(785\) −3.34894e7 −1.93969
\(786\) 0 0
\(787\) −1.71709e7 −0.988225 −0.494113 0.869398i \(-0.664507\pi\)
−0.494113 + 0.869398i \(0.664507\pi\)
\(788\) 0 0
\(789\) −1.19918e6 −0.0685789
\(790\) 0 0
\(791\) −2.20272e6 −0.125175
\(792\) 0 0
\(793\) −9.31215e6 −0.525856
\(794\) 0 0
\(795\) 2.84209e6 0.159485
\(796\) 0 0
\(797\) 1.22037e7 0.680526 0.340263 0.940330i \(-0.389484\pi\)
0.340263 + 0.940330i \(0.389484\pi\)
\(798\) 0 0
\(799\) −1.11168e7 −0.616046
\(800\) 0 0
\(801\) 9.56774e6 0.526900
\(802\) 0 0
\(803\) −8.05269e6 −0.440709
\(804\) 0 0
\(805\) 1.43269e6 0.0779225
\(806\) 0 0
\(807\) −1.40946e7 −0.761850
\(808\) 0 0
\(809\) −1.20229e7 −0.645862 −0.322931 0.946423i \(-0.604668\pi\)
−0.322931 + 0.946423i \(0.604668\pi\)
\(810\) 0 0
\(811\) −1.73884e7 −0.928339 −0.464169 0.885747i \(-0.653647\pi\)
−0.464169 + 0.885747i \(0.653647\pi\)
\(812\) 0 0
\(813\) −1.09809e7 −0.582654
\(814\) 0 0
\(815\) 5.02988e6 0.265255
\(816\) 0 0
\(817\) 634496. 0.0332563
\(818\) 0 0
\(819\) −165229. −0.00860750
\(820\) 0 0
\(821\) 865202. 0.0447981 0.0223990 0.999749i \(-0.492870\pi\)
0.0223990 + 0.999749i \(0.492870\pi\)
\(822\) 0 0
\(823\) −2.06811e7 −1.06432 −0.532162 0.846643i \(-0.678620\pi\)
−0.532162 + 0.846643i \(0.678620\pi\)
\(824\) 0 0
\(825\) −1.17266e6 −0.0599844
\(826\) 0 0
\(827\) −9.77186e6 −0.496836 −0.248418 0.968653i \(-0.579911\pi\)
−0.248418 + 0.968653i \(0.579911\pi\)
\(828\) 0 0
\(829\) 1.48880e7 0.752404 0.376202 0.926538i \(-0.377230\pi\)
0.376202 + 0.926538i \(0.377230\pi\)
\(830\) 0 0
\(831\) −1.67744e7 −0.842647
\(832\) 0 0
\(833\) 8.74045e6 0.436437
\(834\) 0 0
\(835\) −2.48598e7 −1.23390
\(836\) 0 0
\(837\) −1.05099e6 −0.0518542
\(838\) 0 0
\(839\) 4.00819e6 0.196582 0.0982908 0.995158i \(-0.468662\pi\)
0.0982908 + 0.995158i \(0.468662\pi\)
\(840\) 0 0
\(841\) −1.34708e7 −0.656755
\(842\) 0 0
\(843\) 7.63972e6 0.370261
\(844\) 0 0
\(845\) 1.76878e6 0.0852180
\(846\) 0 0
\(847\) 1.53776e6 0.0736514
\(848\) 0 0
\(849\) 4.30452e6 0.204953
\(850\) 0 0
\(851\) 5.77981e6 0.273583
\(852\) 0 0
\(853\) 2.59920e7 1.22312 0.611558 0.791200i \(-0.290543\pi\)
0.611558 + 0.791200i \(0.290543\pi\)
\(854\) 0 0
\(855\) −6.97249e6 −0.326192
\(856\) 0 0
\(857\) −2.99606e7 −1.39347 −0.696736 0.717327i \(-0.745365\pi\)
−0.696736 + 0.717327i \(0.745365\pi\)
\(858\) 0 0
\(859\) −3.34024e6 −0.154452 −0.0772261 0.997014i \(-0.524606\pi\)
−0.0772261 + 0.997014i \(0.524606\pi\)
\(860\) 0 0
\(861\) 358717. 0.0164909
\(862\) 0 0
\(863\) 2.95313e7 1.34976 0.674879 0.737928i \(-0.264196\pi\)
0.674879 + 0.737928i \(0.264196\pi\)
\(864\) 0 0
\(865\) −1.58832e7 −0.721770
\(866\) 0 0
\(867\) 1.03019e7 0.465447
\(868\) 0 0
\(869\) 1.15919e7 0.520721
\(870\) 0 0
\(871\) 5.00301e6 0.223453
\(872\) 0 0
\(873\) −2.22726e6 −0.0989090
\(874\) 0 0
\(875\) 1.80500e6 0.0797000
\(876\) 0 0
\(877\) 3.82361e7 1.67871 0.839353 0.543587i \(-0.182934\pi\)
0.839353 + 0.543587i \(0.182934\pi\)
\(878\) 0 0
\(879\) −1.02099e7 −0.445705
\(880\) 0 0
\(881\) −2.68726e7 −1.16646 −0.583229 0.812308i \(-0.698211\pi\)
−0.583229 + 0.812308i \(0.698211\pi\)
\(882\) 0 0
\(883\) −1.63532e7 −0.705832 −0.352916 0.935655i \(-0.614810\pi\)
−0.352916 + 0.935655i \(0.614810\pi\)
\(884\) 0 0
\(885\) 386905. 0.0166053
\(886\) 0 0
\(887\) 1.48121e6 0.0632133 0.0316066 0.999500i \(-0.489938\pi\)
0.0316066 + 0.999500i \(0.489938\pi\)
\(888\) 0 0
\(889\) 2.96051e6 0.125635
\(890\) 0 0
\(891\) 1.20354e6 0.0507885
\(892\) 0 0
\(893\) −2.94550e7 −1.23603
\(894\) 0 0
\(895\) −3.61718e7 −1.50943
\(896\) 0 0
\(897\) 2.91519e6 0.120972
\(898\) 0 0
\(899\) −3.82531e6 −0.157858
\(900\) 0 0
\(901\) 2.67498e6 0.109776
\(902\) 0 0
\(903\) −49588.8 −0.00202378
\(904\) 0 0
\(905\) −1.05625e7 −0.428693
\(906\) 0 0
\(907\) 1.14259e7 0.461181 0.230590 0.973051i \(-0.425934\pi\)
0.230590 + 0.973051i \(0.425934\pi\)
\(908\) 0 0
\(909\) 9.43119e6 0.378579
\(910\) 0 0
\(911\) −3.27578e7 −1.30773 −0.653866 0.756610i \(-0.726854\pi\)
−0.653866 + 0.756610i \(0.726854\pi\)
\(912\) 0 0
\(913\) −3.68715e6 −0.146391
\(914\) 0 0
\(915\) 3.07118e7 1.21270
\(916\) 0 0
\(917\) −852065. −0.0334618
\(918\) 0 0
\(919\) 9.44857e6 0.369043 0.184522 0.982828i \(-0.440926\pi\)
0.184522 + 0.982828i \(0.440926\pi\)
\(920\) 0 0
\(921\) −2.29043e7 −0.889750
\(922\) 0 0
\(923\) −5.13284e6 −0.198314
\(924\) 0 0
\(925\) −2.14198e6 −0.0823117
\(926\) 0 0
\(927\) −6.47047e6 −0.247307
\(928\) 0 0
\(929\) −1.64252e7 −0.624413 −0.312207 0.950014i \(-0.601068\pi\)
−0.312207 + 0.950014i \(0.601068\pi\)
\(930\) 0 0
\(931\) 2.31586e7 0.875666
\(932\) 0 0
\(933\) 4.57739e6 0.172153
\(934\) 0 0
\(935\) −5.95956e6 −0.222939
\(936\) 0 0
\(937\) −2.32993e7 −0.866948 −0.433474 0.901166i \(-0.642712\pi\)
−0.433474 + 0.901166i \(0.642712\pi\)
\(938\) 0 0
\(939\) 1.53448e7 0.567933
\(940\) 0 0
\(941\) −9.27042e6 −0.341291 −0.170646 0.985332i \(-0.554585\pi\)
−0.170646 + 0.985332i \(0.554585\pi\)
\(942\) 0 0
\(943\) −6.32897e6 −0.231768
\(944\) 0 0
\(945\) 544932. 0.0198501
\(946\) 0 0
\(947\) 1.92640e7 0.698025 0.349012 0.937118i \(-0.386517\pi\)
0.349012 + 0.937118i \(0.386517\pi\)
\(948\) 0 0
\(949\) −7.41887e6 −0.267407
\(950\) 0 0
\(951\) 1.02072e7 0.365977
\(952\) 0 0
\(953\) 2.81599e7 1.00438 0.502191 0.864756i \(-0.332527\pi\)
0.502191 + 0.864756i \(0.332527\pi\)
\(954\) 0 0
\(955\) −3.17407e7 −1.12618
\(956\) 0 0
\(957\) 4.38056e6 0.154614
\(958\) 0 0
\(959\) 2.33572e6 0.0820116
\(960\) 0 0
\(961\) −2.65507e7 −0.927401
\(962\) 0 0
\(963\) −1.16782e7 −0.405800
\(964\) 0 0
\(965\) 1.36329e7 0.471269
\(966\) 0 0
\(967\) −3.67528e7 −1.26393 −0.631967 0.774996i \(-0.717752\pi\)
−0.631967 + 0.774996i \(0.717752\pi\)
\(968\) 0 0
\(969\) −6.56252e6 −0.224523
\(970\) 0 0
\(971\) 5.55259e7 1.88994 0.944970 0.327158i \(-0.106091\pi\)
0.944970 + 0.327158i \(0.106091\pi\)
\(972\) 0 0
\(973\) −199766. −0.00676455
\(974\) 0 0
\(975\) −1.08036e6 −0.0363964
\(976\) 0 0
\(977\) 1.59739e7 0.535394 0.267697 0.963503i \(-0.413737\pi\)
0.267697 + 0.963503i \(0.413737\pi\)
\(978\) 0 0
\(979\) 2.16678e7 0.722532
\(980\) 0 0
\(981\) 1.14228e7 0.378966
\(982\) 0 0
\(983\) 4.69856e7 1.55089 0.775446 0.631414i \(-0.217525\pi\)
0.775446 + 0.631414i \(0.217525\pi\)
\(984\) 0 0
\(985\) 5.47395e6 0.179767
\(986\) 0 0
\(987\) 2.30204e6 0.0752178
\(988\) 0 0
\(989\) 874911. 0.0284429
\(990\) 0 0
\(991\) −3.05086e7 −0.986821 −0.493411 0.869797i \(-0.664250\pi\)
−0.493411 + 0.869797i \(0.664250\pi\)
\(992\) 0 0
\(993\) −1.32621e7 −0.426814
\(994\) 0 0
\(995\) −5.66120e7 −1.81280
\(996\) 0 0
\(997\) 1.52773e7 0.486754 0.243377 0.969932i \(-0.421745\pi\)
0.243377 + 0.969932i \(0.421745\pi\)
\(998\) 0 0
\(999\) 2.19838e6 0.0696930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.j.1.2 2
4.3 odd 2 78.6.a.h.1.2 2
12.11 even 2 234.6.a.i.1.1 2
52.51 odd 2 1014.6.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.h.1.2 2 4.3 odd 2
234.6.a.i.1.1 2 12.11 even 2
624.6.a.j.1.2 2 1.1 even 1 trivial
1014.6.a.i.1.1 2 52.51 odd 2