Properties

Label 624.6.a.k.1.1
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.74166\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -61.4166 q^{5} +46.3165 q^{7} +81.0000 q^{9} -16.2992 q^{11} -169.000 q^{13} -552.749 q^{15} +659.231 q^{17} -17.7180 q^{19} +416.848 q^{21} +2141.20 q^{23} +646.996 q^{25} +729.000 q^{27} -3177.40 q^{29} -4033.87 q^{31} -146.693 q^{33} -2844.60 q^{35} +14286.6 q^{37} -1521.00 q^{39} -17898.8 q^{41} +3558.19 q^{43} -4974.74 q^{45} +25247.9 q^{47} -14661.8 q^{49} +5933.08 q^{51} -5306.59 q^{53} +1001.04 q^{55} -159.462 q^{57} +36537.0 q^{59} -6510.90 q^{61} +3751.63 q^{63} +10379.4 q^{65} -41120.1 q^{67} +19270.8 q^{69} -20914.4 q^{71} -71088.4 q^{73} +5822.96 q^{75} -754.922 q^{77} -49177.9 q^{79} +6561.00 q^{81} -99939.9 q^{83} -40487.7 q^{85} -28596.6 q^{87} +47291.4 q^{89} -7827.48 q^{91} -36304.8 q^{93} +1088.18 q^{95} -39729.5 q^{97} -1320.24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} - 48 q^{5} - 72 q^{7} + 162 q^{9} + 596 q^{11} - 338 q^{13} - 432 q^{15} - 268 q^{17} - 1128 q^{19} - 648 q^{21} + 1768 q^{23} - 2298 q^{25} + 1458 q^{27} - 7612 q^{29} + 4160 q^{31} + 5364 q^{33}+ \cdots + 48276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −61.4166 −1.09865 −0.549327 0.835608i \(-0.685116\pi\)
−0.549327 + 0.835608i \(0.685116\pi\)
\(6\) 0 0
\(7\) 46.3165 0.357265 0.178632 0.983916i \(-0.442833\pi\)
0.178632 + 0.983916i \(0.442833\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −16.2992 −0.0406149 −0.0203074 0.999794i \(-0.506465\pi\)
−0.0203074 + 0.999794i \(0.506465\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) −552.749 −0.634308
\(16\) 0 0
\(17\) 659.231 0.553243 0.276621 0.960979i \(-0.410785\pi\)
0.276621 + 0.960979i \(0.410785\pi\)
\(18\) 0 0
\(19\) −17.7180 −0.0112598 −0.00562991 0.999984i \(-0.501792\pi\)
−0.00562991 + 0.999984i \(0.501792\pi\)
\(20\) 0 0
\(21\) 416.848 0.206267
\(22\) 0 0
\(23\) 2141.20 0.843989 0.421995 0.906598i \(-0.361330\pi\)
0.421995 + 0.906598i \(0.361330\pi\)
\(24\) 0 0
\(25\) 646.996 0.207039
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −3177.40 −0.701580 −0.350790 0.936454i \(-0.614087\pi\)
−0.350790 + 0.936454i \(0.614087\pi\)
\(30\) 0 0
\(31\) −4033.87 −0.753906 −0.376953 0.926232i \(-0.623028\pi\)
−0.376953 + 0.926232i \(0.623028\pi\)
\(32\) 0 0
\(33\) −146.693 −0.0234490
\(34\) 0 0
\(35\) −2844.60 −0.392510
\(36\) 0 0
\(37\) 14286.6 1.71564 0.857818 0.513954i \(-0.171820\pi\)
0.857818 + 0.513954i \(0.171820\pi\)
\(38\) 0 0
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) −17898.8 −1.66289 −0.831447 0.555604i \(-0.812487\pi\)
−0.831447 + 0.555604i \(0.812487\pi\)
\(42\) 0 0
\(43\) 3558.19 0.293466 0.146733 0.989176i \(-0.453124\pi\)
0.146733 + 0.989176i \(0.453124\pi\)
\(44\) 0 0
\(45\) −4974.74 −0.366218
\(46\) 0 0
\(47\) 25247.9 1.66717 0.833586 0.552389i \(-0.186284\pi\)
0.833586 + 0.552389i \(0.186284\pi\)
\(48\) 0 0
\(49\) −14661.8 −0.872362
\(50\) 0 0
\(51\) 5933.08 0.319415
\(52\) 0 0
\(53\) −5306.59 −0.259493 −0.129746 0.991547i \(-0.541416\pi\)
−0.129746 + 0.991547i \(0.541416\pi\)
\(54\) 0 0
\(55\) 1001.04 0.0446217
\(56\) 0 0
\(57\) −159.462 −0.00650086
\(58\) 0 0
\(59\) 36537.0 1.36648 0.683239 0.730195i \(-0.260571\pi\)
0.683239 + 0.730195i \(0.260571\pi\)
\(60\) 0 0
\(61\) −6510.90 −0.224035 −0.112018 0.993706i \(-0.535731\pi\)
−0.112018 + 0.993706i \(0.535731\pi\)
\(62\) 0 0
\(63\) 3751.63 0.119088
\(64\) 0 0
\(65\) 10379.4 0.304712
\(66\) 0 0
\(67\) −41120.1 −1.11910 −0.559548 0.828798i \(-0.689025\pi\)
−0.559548 + 0.828798i \(0.689025\pi\)
\(68\) 0 0
\(69\) 19270.8 0.487278
\(70\) 0 0
\(71\) −20914.4 −0.492379 −0.246190 0.969222i \(-0.579179\pi\)
−0.246190 + 0.969222i \(0.579179\pi\)
\(72\) 0 0
\(73\) −71088.4 −1.56132 −0.780660 0.624956i \(-0.785117\pi\)
−0.780660 + 0.624956i \(0.785117\pi\)
\(74\) 0 0
\(75\) 5822.96 0.119534
\(76\) 0 0
\(77\) −754.922 −0.0145103
\(78\) 0 0
\(79\) −49177.9 −0.886549 −0.443274 0.896386i \(-0.646183\pi\)
−0.443274 + 0.896386i \(0.646183\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −99939.9 −1.59237 −0.796185 0.605054i \(-0.793152\pi\)
−0.796185 + 0.605054i \(0.793152\pi\)
\(84\) 0 0
\(85\) −40487.7 −0.607822
\(86\) 0 0
\(87\) −28596.6 −0.405057
\(88\) 0 0
\(89\) 47291.4 0.632859 0.316430 0.948616i \(-0.397516\pi\)
0.316430 + 0.948616i \(0.397516\pi\)
\(90\) 0 0
\(91\) −7827.48 −0.0990874
\(92\) 0 0
\(93\) −36304.8 −0.435268
\(94\) 0 0
\(95\) 1088.18 0.0123706
\(96\) 0 0
\(97\) −39729.5 −0.428730 −0.214365 0.976754i \(-0.568768\pi\)
−0.214365 + 0.976754i \(0.568768\pi\)
\(98\) 0 0
\(99\) −1320.24 −0.0135383
\(100\) 0 0
\(101\) −75862.3 −0.739984 −0.369992 0.929035i \(-0.620640\pi\)
−0.369992 + 0.929035i \(0.620640\pi\)
\(102\) 0 0
\(103\) −133421. −1.23917 −0.619586 0.784928i \(-0.712700\pi\)
−0.619586 + 0.784928i \(0.712700\pi\)
\(104\) 0 0
\(105\) −25601.4 −0.226616
\(106\) 0 0
\(107\) 2628.95 0.0221985 0.0110992 0.999938i \(-0.496467\pi\)
0.0110992 + 0.999938i \(0.496467\pi\)
\(108\) 0 0
\(109\) 189286. 1.52599 0.762997 0.646401i \(-0.223727\pi\)
0.762997 + 0.646401i \(0.223727\pi\)
\(110\) 0 0
\(111\) 128580. 0.990523
\(112\) 0 0
\(113\) −151984. −1.11970 −0.559848 0.828595i \(-0.689141\pi\)
−0.559848 + 0.828595i \(0.689141\pi\)
\(114\) 0 0
\(115\) −131505. −0.927252
\(116\) 0 0
\(117\) −13689.0 −0.0924500
\(118\) 0 0
\(119\) 30533.3 0.197654
\(120\) 0 0
\(121\) −160785. −0.998350
\(122\) 0 0
\(123\) −161089. −0.960072
\(124\) 0 0
\(125\) 152191. 0.871190
\(126\) 0 0
\(127\) −254370. −1.39945 −0.699724 0.714414i \(-0.746694\pi\)
−0.699724 + 0.714414i \(0.746694\pi\)
\(128\) 0 0
\(129\) 32023.7 0.169433
\(130\) 0 0
\(131\) 254479. 1.29561 0.647804 0.761807i \(-0.275687\pi\)
0.647804 + 0.761807i \(0.275687\pi\)
\(132\) 0 0
\(133\) −820.636 −0.00402274
\(134\) 0 0
\(135\) −44772.7 −0.211436
\(136\) 0 0
\(137\) −248583. −1.13154 −0.565769 0.824564i \(-0.691421\pi\)
−0.565769 + 0.824564i \(0.691421\pi\)
\(138\) 0 0
\(139\) −42062.4 −0.184653 −0.0923267 0.995729i \(-0.529430\pi\)
−0.0923267 + 0.995729i \(0.529430\pi\)
\(140\) 0 0
\(141\) 227231. 0.962542
\(142\) 0 0
\(143\) 2754.57 0.0112645
\(144\) 0 0
\(145\) 195145. 0.770793
\(146\) 0 0
\(147\) −131956. −0.503658
\(148\) 0 0
\(149\) 183520. 0.677200 0.338600 0.940930i \(-0.390047\pi\)
0.338600 + 0.940930i \(0.390047\pi\)
\(150\) 0 0
\(151\) −9544.14 −0.0340639 −0.0170319 0.999855i \(-0.505422\pi\)
−0.0170319 + 0.999855i \(0.505422\pi\)
\(152\) 0 0
\(153\) 53397.7 0.184414
\(154\) 0 0
\(155\) 247746. 0.828282
\(156\) 0 0
\(157\) −250307. −0.810445 −0.405223 0.914218i \(-0.632806\pi\)
−0.405223 + 0.914218i \(0.632806\pi\)
\(158\) 0 0
\(159\) −47759.3 −0.149818
\(160\) 0 0
\(161\) 99172.7 0.301528
\(162\) 0 0
\(163\) 219671. 0.647595 0.323798 0.946126i \(-0.395040\pi\)
0.323798 + 0.946126i \(0.395040\pi\)
\(164\) 0 0
\(165\) 9009.38 0.0257623
\(166\) 0 0
\(167\) −92356.1 −0.256256 −0.128128 0.991758i \(-0.540897\pi\)
−0.128128 + 0.991758i \(0.540897\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −1435.16 −0.00375327
\(172\) 0 0
\(173\) −236712. −0.601319 −0.300660 0.953731i \(-0.597207\pi\)
−0.300660 + 0.953731i \(0.597207\pi\)
\(174\) 0 0
\(175\) 29966.5 0.0739676
\(176\) 0 0
\(177\) 328833. 0.788936
\(178\) 0 0
\(179\) −525225. −1.22522 −0.612608 0.790387i \(-0.709880\pi\)
−0.612608 + 0.790387i \(0.709880\pi\)
\(180\) 0 0
\(181\) −784923. −1.78086 −0.890432 0.455116i \(-0.849598\pi\)
−0.890432 + 0.455116i \(0.849598\pi\)
\(182\) 0 0
\(183\) −58598.1 −0.129347
\(184\) 0 0
\(185\) −877435. −1.88489
\(186\) 0 0
\(187\) −10745.0 −0.0224699
\(188\) 0 0
\(189\) 33764.7 0.0687557
\(190\) 0 0
\(191\) 571365. 1.13326 0.566630 0.823972i \(-0.308247\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(192\) 0 0
\(193\) −726656. −1.40422 −0.702111 0.712068i \(-0.747759\pi\)
−0.702111 + 0.712068i \(0.747759\pi\)
\(194\) 0 0
\(195\) 93414.6 0.175925
\(196\) 0 0
\(197\) 48808.7 0.0896049 0.0448025 0.998996i \(-0.485734\pi\)
0.0448025 + 0.998996i \(0.485734\pi\)
\(198\) 0 0
\(199\) 1.04968e6 1.87898 0.939491 0.342574i \(-0.111299\pi\)
0.939491 + 0.342574i \(0.111299\pi\)
\(200\) 0 0
\(201\) −370081. −0.646110
\(202\) 0 0
\(203\) −147166. −0.250650
\(204\) 0 0
\(205\) 1.09928e6 1.82694
\(206\) 0 0
\(207\) 173437. 0.281330
\(208\) 0 0
\(209\) 288.790 0.000457316 0
\(210\) 0 0
\(211\) −431486. −0.667206 −0.333603 0.942714i \(-0.608265\pi\)
−0.333603 + 0.942714i \(0.608265\pi\)
\(212\) 0 0
\(213\) −188230. −0.284275
\(214\) 0 0
\(215\) −218532. −0.322417
\(216\) 0 0
\(217\) −186835. −0.269344
\(218\) 0 0
\(219\) −639796. −0.901428
\(220\) 0 0
\(221\) −111410. −0.153442
\(222\) 0 0
\(223\) −1.41878e6 −1.91052 −0.955261 0.295765i \(-0.904425\pi\)
−0.955261 + 0.295765i \(0.904425\pi\)
\(224\) 0 0
\(225\) 52406.6 0.0690129
\(226\) 0 0
\(227\) −261098. −0.336309 −0.168154 0.985761i \(-0.553781\pi\)
−0.168154 + 0.985761i \(0.553781\pi\)
\(228\) 0 0
\(229\) −76335.3 −0.0961915 −0.0480957 0.998843i \(-0.515315\pi\)
−0.0480957 + 0.998843i \(0.515315\pi\)
\(230\) 0 0
\(231\) −6794.30 −0.00837751
\(232\) 0 0
\(233\) 614891. 0.742008 0.371004 0.928631i \(-0.379014\pi\)
0.371004 + 0.928631i \(0.379014\pi\)
\(234\) 0 0
\(235\) −1.55064e6 −1.83164
\(236\) 0 0
\(237\) −442601. −0.511849
\(238\) 0 0
\(239\) −241610. −0.273602 −0.136801 0.990599i \(-0.543682\pi\)
−0.136801 + 0.990599i \(0.543682\pi\)
\(240\) 0 0
\(241\) −906551. −1.00543 −0.502713 0.864454i \(-0.667665\pi\)
−0.502713 + 0.864454i \(0.667665\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 900477. 0.958423
\(246\) 0 0
\(247\) 2994.35 0.00312291
\(248\) 0 0
\(249\) −899459. −0.919355
\(250\) 0 0
\(251\) −1.55237e6 −1.55529 −0.777643 0.628706i \(-0.783585\pi\)
−0.777643 + 0.628706i \(0.783585\pi\)
\(252\) 0 0
\(253\) −34899.8 −0.0342785
\(254\) 0 0
\(255\) −364390. −0.350926
\(256\) 0 0
\(257\) −1.37303e6 −1.29672 −0.648361 0.761333i \(-0.724545\pi\)
−0.648361 + 0.761333i \(0.724545\pi\)
\(258\) 0 0
\(259\) 661706. 0.612936
\(260\) 0 0
\(261\) −257370. −0.233860
\(262\) 0 0
\(263\) 457871. 0.408182 0.204091 0.978952i \(-0.434576\pi\)
0.204091 + 0.978952i \(0.434576\pi\)
\(264\) 0 0
\(265\) 325912. 0.285093
\(266\) 0 0
\(267\) 425623. 0.365382
\(268\) 0 0
\(269\) −1.91682e6 −1.61511 −0.807553 0.589795i \(-0.799209\pi\)
−0.807553 + 0.589795i \(0.799209\pi\)
\(270\) 0 0
\(271\) 1.81342e6 1.49995 0.749973 0.661469i \(-0.230067\pi\)
0.749973 + 0.661469i \(0.230067\pi\)
\(272\) 0 0
\(273\) −70447.3 −0.0572082
\(274\) 0 0
\(275\) −10545.5 −0.00840885
\(276\) 0 0
\(277\) −792085. −0.620258 −0.310129 0.950694i \(-0.600372\pi\)
−0.310129 + 0.950694i \(0.600372\pi\)
\(278\) 0 0
\(279\) −326743. −0.251302
\(280\) 0 0
\(281\) −90711.0 −0.0685321 −0.0342661 0.999413i \(-0.510909\pi\)
−0.0342661 + 0.999413i \(0.510909\pi\)
\(282\) 0 0
\(283\) 809381. 0.600741 0.300370 0.953823i \(-0.402890\pi\)
0.300370 + 0.953823i \(0.402890\pi\)
\(284\) 0 0
\(285\) 9793.62 0.00714219
\(286\) 0 0
\(287\) −829009. −0.594093
\(288\) 0 0
\(289\) −985271. −0.693923
\(290\) 0 0
\(291\) −357565. −0.247527
\(292\) 0 0
\(293\) 1.22134e6 0.831125 0.415562 0.909565i \(-0.363585\pi\)
0.415562 + 0.909565i \(0.363585\pi\)
\(294\) 0 0
\(295\) −2.24398e6 −1.50128
\(296\) 0 0
\(297\) −11882.1 −0.00781634
\(298\) 0 0
\(299\) −361862. −0.234081
\(300\) 0 0
\(301\) 164803. 0.104845
\(302\) 0 0
\(303\) −682760. −0.427230
\(304\) 0 0
\(305\) 399877. 0.246137
\(306\) 0 0
\(307\) −385603. −0.233504 −0.116752 0.993161i \(-0.537248\pi\)
−0.116752 + 0.993161i \(0.537248\pi\)
\(308\) 0 0
\(309\) −1.20079e6 −0.715437
\(310\) 0 0
\(311\) 1.14737e6 0.672670 0.336335 0.941742i \(-0.390813\pi\)
0.336335 + 0.941742i \(0.390813\pi\)
\(312\) 0 0
\(313\) 3.13172e6 1.80685 0.903425 0.428746i \(-0.141044\pi\)
0.903425 + 0.428746i \(0.141044\pi\)
\(314\) 0 0
\(315\) −230412. −0.130837
\(316\) 0 0
\(317\) 867095. 0.484639 0.242320 0.970196i \(-0.422092\pi\)
0.242320 + 0.970196i \(0.422092\pi\)
\(318\) 0 0
\(319\) 51789.2 0.0284946
\(320\) 0 0
\(321\) 23660.6 0.0128163
\(322\) 0 0
\(323\) −11680.3 −0.00622941
\(324\) 0 0
\(325\) −109342. −0.0574222
\(326\) 0 0
\(327\) 1.70358e6 0.881034
\(328\) 0 0
\(329\) 1.16939e6 0.595622
\(330\) 0 0
\(331\) −454460. −0.227995 −0.113998 0.993481i \(-0.536366\pi\)
−0.113998 + 0.993481i \(0.536366\pi\)
\(332\) 0 0
\(333\) 1.15722e6 0.571879
\(334\) 0 0
\(335\) 2.52546e6 1.22950
\(336\) 0 0
\(337\) 3.55249e6 1.70396 0.851978 0.523577i \(-0.175403\pi\)
0.851978 + 0.523577i \(0.175403\pi\)
\(338\) 0 0
\(339\) −1.36785e6 −0.646457
\(340\) 0 0
\(341\) 65748.9 0.0306198
\(342\) 0 0
\(343\) −1.45752e6 −0.668929
\(344\) 0 0
\(345\) −1.18354e6 −0.535349
\(346\) 0 0
\(347\) 1.52993e6 0.682102 0.341051 0.940045i \(-0.389217\pi\)
0.341051 + 0.940045i \(0.389217\pi\)
\(348\) 0 0
\(349\) −1.45386e6 −0.638939 −0.319469 0.947597i \(-0.603505\pi\)
−0.319469 + 0.947597i \(0.603505\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 0 0
\(353\) 1.73292e6 0.740189 0.370095 0.928994i \(-0.379325\pi\)
0.370095 + 0.928994i \(0.379325\pi\)
\(354\) 0 0
\(355\) 1.28449e6 0.540954
\(356\) 0 0
\(357\) 274799. 0.114116
\(358\) 0 0
\(359\) 1.66707e6 0.682683 0.341341 0.939939i \(-0.389119\pi\)
0.341341 + 0.939939i \(0.389119\pi\)
\(360\) 0 0
\(361\) −2.47579e6 −0.999873
\(362\) 0 0
\(363\) −1.44707e6 −0.576398
\(364\) 0 0
\(365\) 4.36601e6 1.71535
\(366\) 0 0
\(367\) −2.97554e6 −1.15319 −0.576595 0.817030i \(-0.695619\pi\)
−0.576595 + 0.817030i \(0.695619\pi\)
\(368\) 0 0
\(369\) −1.44980e6 −0.554298
\(370\) 0 0
\(371\) −245782. −0.0927077
\(372\) 0 0
\(373\) −51413.5 −0.0191340 −0.00956698 0.999954i \(-0.503045\pi\)
−0.00956698 + 0.999954i \(0.503045\pi\)
\(374\) 0 0
\(375\) 1.36971e6 0.502981
\(376\) 0 0
\(377\) 536981. 0.194583
\(378\) 0 0
\(379\) 3.85498e6 1.37856 0.689278 0.724497i \(-0.257928\pi\)
0.689278 + 0.724497i \(0.257928\pi\)
\(380\) 0 0
\(381\) −2.28933e6 −0.807971
\(382\) 0 0
\(383\) −3.13730e6 −1.09285 −0.546423 0.837510i \(-0.684011\pi\)
−0.546423 + 0.837510i \(0.684011\pi\)
\(384\) 0 0
\(385\) 46364.7 0.0159417
\(386\) 0 0
\(387\) 288213. 0.0978220
\(388\) 0 0
\(389\) 1.85567e6 0.621766 0.310883 0.950448i \(-0.399375\pi\)
0.310883 + 0.950448i \(0.399375\pi\)
\(390\) 0 0
\(391\) 1.41154e6 0.466931
\(392\) 0 0
\(393\) 2.29031e6 0.748020
\(394\) 0 0
\(395\) 3.02034e6 0.974010
\(396\) 0 0
\(397\) 3.91561e6 1.24687 0.623437 0.781873i \(-0.285736\pi\)
0.623437 + 0.781873i \(0.285736\pi\)
\(398\) 0 0
\(399\) −7385.72 −0.00232253
\(400\) 0 0
\(401\) 318965. 0.0990562 0.0495281 0.998773i \(-0.484228\pi\)
0.0495281 + 0.998773i \(0.484228\pi\)
\(402\) 0 0
\(403\) 681724. 0.209096
\(404\) 0 0
\(405\) −402954. −0.122073
\(406\) 0 0
\(407\) −232861. −0.0696803
\(408\) 0 0
\(409\) −3.37547e6 −0.997760 −0.498880 0.866671i \(-0.666255\pi\)
−0.498880 + 0.866671i \(0.666255\pi\)
\(410\) 0 0
\(411\) −2.23724e6 −0.653294
\(412\) 0 0
\(413\) 1.69226e6 0.488194
\(414\) 0 0
\(415\) 6.13797e6 1.74946
\(416\) 0 0
\(417\) −378562. −0.106610
\(418\) 0 0
\(419\) 1.18257e6 0.329072 0.164536 0.986371i \(-0.447387\pi\)
0.164536 + 0.986371i \(0.447387\pi\)
\(420\) 0 0
\(421\) 2.06389e6 0.567521 0.283761 0.958895i \(-0.408418\pi\)
0.283761 + 0.958895i \(0.408418\pi\)
\(422\) 0 0
\(423\) 2.04508e6 0.555724
\(424\) 0 0
\(425\) 426520. 0.114543
\(426\) 0 0
\(427\) −301562. −0.0800399
\(428\) 0 0
\(429\) 24791.1 0.00650358
\(430\) 0 0
\(431\) 5.94590e6 1.54179 0.770893 0.636965i \(-0.219810\pi\)
0.770893 + 0.636965i \(0.219810\pi\)
\(432\) 0 0
\(433\) −6.20053e6 −1.58931 −0.794655 0.607061i \(-0.792348\pi\)
−0.794655 + 0.607061i \(0.792348\pi\)
\(434\) 0 0
\(435\) 1.75631e6 0.445017
\(436\) 0 0
\(437\) −37937.8 −0.00950316
\(438\) 0 0
\(439\) 2.81407e6 0.696906 0.348453 0.937326i \(-0.386707\pi\)
0.348453 + 0.937326i \(0.386707\pi\)
\(440\) 0 0
\(441\) −1.18760e6 −0.290787
\(442\) 0 0
\(443\) −6.68727e6 −1.61897 −0.809486 0.587139i \(-0.800254\pi\)
−0.809486 + 0.587139i \(0.800254\pi\)
\(444\) 0 0
\(445\) −2.90448e6 −0.695293
\(446\) 0 0
\(447\) 1.65168e6 0.390982
\(448\) 0 0
\(449\) 7.64990e6 1.79077 0.895385 0.445294i \(-0.146901\pi\)
0.895385 + 0.445294i \(0.146901\pi\)
\(450\) 0 0
\(451\) 291737. 0.0675382
\(452\) 0 0
\(453\) −85897.2 −0.0196668
\(454\) 0 0
\(455\) 480737. 0.108863
\(456\) 0 0
\(457\) −2.67357e6 −0.598826 −0.299413 0.954124i \(-0.596791\pi\)
−0.299413 + 0.954124i \(0.596791\pi\)
\(458\) 0 0
\(459\) 480580. 0.106472
\(460\) 0 0
\(461\) 1.32953e6 0.291370 0.145685 0.989331i \(-0.453461\pi\)
0.145685 + 0.989331i \(0.453461\pi\)
\(462\) 0 0
\(463\) −5.26984e6 −1.14247 −0.571235 0.820786i \(-0.693536\pi\)
−0.571235 + 0.820786i \(0.693536\pi\)
\(464\) 0 0
\(465\) 2.22972e6 0.478209
\(466\) 0 0
\(467\) 7.33908e6 1.55722 0.778609 0.627510i \(-0.215926\pi\)
0.778609 + 0.627510i \(0.215926\pi\)
\(468\) 0 0
\(469\) −1.90454e6 −0.399814
\(470\) 0 0
\(471\) −2.25276e6 −0.467911
\(472\) 0 0
\(473\) −57995.7 −0.0119191
\(474\) 0 0
\(475\) −11463.5 −0.00233122
\(476\) 0 0
\(477\) −429833. −0.0864976
\(478\) 0 0
\(479\) 1.52236e6 0.303165 0.151582 0.988445i \(-0.451563\pi\)
0.151582 + 0.988445i \(0.451563\pi\)
\(480\) 0 0
\(481\) −2.41444e6 −0.475832
\(482\) 0 0
\(483\) 892554. 0.174087
\(484\) 0 0
\(485\) 2.44005e6 0.471025
\(486\) 0 0
\(487\) −8.83569e6 −1.68818 −0.844088 0.536204i \(-0.819858\pi\)
−0.844088 + 0.536204i \(0.819858\pi\)
\(488\) 0 0
\(489\) 1.97704e6 0.373889
\(490\) 0 0
\(491\) −175648. −0.0328805 −0.0164403 0.999865i \(-0.505233\pi\)
−0.0164403 + 0.999865i \(0.505233\pi\)
\(492\) 0 0
\(493\) −2.09464e6 −0.388144
\(494\) 0 0
\(495\) 81084.4 0.0148739
\(496\) 0 0
\(497\) −968682. −0.175910
\(498\) 0 0
\(499\) 2.82489e6 0.507867 0.253934 0.967222i \(-0.418276\pi\)
0.253934 + 0.967222i \(0.418276\pi\)
\(500\) 0 0
\(501\) −831205. −0.147950
\(502\) 0 0
\(503\) 9.11142e6 1.60571 0.802854 0.596176i \(-0.203314\pi\)
0.802854 + 0.596176i \(0.203314\pi\)
\(504\) 0 0
\(505\) 4.65920e6 0.812986
\(506\) 0 0
\(507\) 257049. 0.0444116
\(508\) 0 0
\(509\) 4.05380e6 0.693534 0.346767 0.937951i \(-0.387280\pi\)
0.346767 + 0.937951i \(0.387280\pi\)
\(510\) 0 0
\(511\) −3.29256e6 −0.557805
\(512\) 0 0
\(513\) −12916.4 −0.00216695
\(514\) 0 0
\(515\) 8.19427e6 1.36142
\(516\) 0 0
\(517\) −411521. −0.0677120
\(518\) 0 0
\(519\) −2.13041e6 −0.347172
\(520\) 0 0
\(521\) −2.46630e6 −0.398062 −0.199031 0.979993i \(-0.563780\pi\)
−0.199031 + 0.979993i \(0.563780\pi\)
\(522\) 0 0
\(523\) −3.47559e6 −0.555615 −0.277808 0.960637i \(-0.589608\pi\)
−0.277808 + 0.960637i \(0.589608\pi\)
\(524\) 0 0
\(525\) 269699. 0.0427052
\(526\) 0 0
\(527\) −2.65925e6 −0.417093
\(528\) 0 0
\(529\) −1.85162e6 −0.287682
\(530\) 0 0
\(531\) 2.95949e6 0.455492
\(532\) 0 0
\(533\) 3.02490e6 0.461204
\(534\) 0 0
\(535\) −161461. −0.0243884
\(536\) 0 0
\(537\) −4.72702e6 −0.707379
\(538\) 0 0
\(539\) 238976. 0.0354309
\(540\) 0 0
\(541\) 7.20963e6 1.05906 0.529529 0.848292i \(-0.322369\pi\)
0.529529 + 0.848292i \(0.322369\pi\)
\(542\) 0 0
\(543\) −7.06431e6 −1.02818
\(544\) 0 0
\(545\) −1.16253e7 −1.67654
\(546\) 0 0
\(547\) 4.25767e6 0.608420 0.304210 0.952605i \(-0.401608\pi\)
0.304210 + 0.952605i \(0.401608\pi\)
\(548\) 0 0
\(549\) −527383. −0.0746784
\(550\) 0 0
\(551\) 56297.3 0.00789966
\(552\) 0 0
\(553\) −2.27775e6 −0.316733
\(554\) 0 0
\(555\) −7.89692e6 −1.08824
\(556\) 0 0
\(557\) 1.41670e7 1.93481 0.967405 0.253233i \(-0.0814938\pi\)
0.967405 + 0.253233i \(0.0814938\pi\)
\(558\) 0 0
\(559\) −601334. −0.0813928
\(560\) 0 0
\(561\) −96704.6 −0.0129730
\(562\) 0 0
\(563\) 9.71182e6 1.29131 0.645654 0.763630i \(-0.276585\pi\)
0.645654 + 0.763630i \(0.276585\pi\)
\(564\) 0 0
\(565\) 9.33431e6 1.23016
\(566\) 0 0
\(567\) 303882. 0.0396961
\(568\) 0 0
\(569\) 1.11053e7 1.43796 0.718982 0.695029i \(-0.244608\pi\)
0.718982 + 0.695029i \(0.244608\pi\)
\(570\) 0 0
\(571\) 6.04167e6 0.775473 0.387737 0.921770i \(-0.373257\pi\)
0.387737 + 0.921770i \(0.373257\pi\)
\(572\) 0 0
\(573\) 5.14228e6 0.654288
\(574\) 0 0
\(575\) 1.38534e6 0.174738
\(576\) 0 0
\(577\) 1.19079e7 1.48900 0.744500 0.667623i \(-0.232688\pi\)
0.744500 + 0.667623i \(0.232688\pi\)
\(578\) 0 0
\(579\) −6.53991e6 −0.810728
\(580\) 0 0
\(581\) −4.62886e6 −0.568898
\(582\) 0 0
\(583\) 86493.2 0.0105393
\(584\) 0 0
\(585\) 840731. 0.101571
\(586\) 0 0
\(587\) −6.16538e6 −0.738523 −0.369262 0.929325i \(-0.620389\pi\)
−0.369262 + 0.929325i \(0.620389\pi\)
\(588\) 0 0
\(589\) 71472.2 0.00848885
\(590\) 0 0
\(591\) 439278. 0.0517334
\(592\) 0 0
\(593\) −2.25563e6 −0.263410 −0.131705 0.991289i \(-0.542045\pi\)
−0.131705 + 0.991289i \(0.542045\pi\)
\(594\) 0 0
\(595\) −1.87525e6 −0.217153
\(596\) 0 0
\(597\) 9.44708e6 1.08483
\(598\) 0 0
\(599\) 4.27181e6 0.486458 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(600\) 0 0
\(601\) −4.97463e6 −0.561791 −0.280895 0.959738i \(-0.590631\pi\)
−0.280895 + 0.959738i \(0.590631\pi\)
\(602\) 0 0
\(603\) −3.33073e6 −0.373032
\(604\) 0 0
\(605\) 9.87488e6 1.09684
\(606\) 0 0
\(607\) −9.85476e6 −1.08561 −0.542806 0.839858i \(-0.682638\pi\)
−0.542806 + 0.839858i \(0.682638\pi\)
\(608\) 0 0
\(609\) −1.32449e6 −0.144713
\(610\) 0 0
\(611\) −4.26689e6 −0.462390
\(612\) 0 0
\(613\) −9.84769e6 −1.05848 −0.529241 0.848472i \(-0.677523\pi\)
−0.529241 + 0.848472i \(0.677523\pi\)
\(614\) 0 0
\(615\) 9.89355e6 1.05479
\(616\) 0 0
\(617\) −5.41851e6 −0.573016 −0.286508 0.958078i \(-0.592495\pi\)
−0.286508 + 0.958078i \(0.592495\pi\)
\(618\) 0 0
\(619\) −6.15964e6 −0.646143 −0.323071 0.946375i \(-0.604715\pi\)
−0.323071 + 0.946375i \(0.604715\pi\)
\(620\) 0 0
\(621\) 1.56093e6 0.162426
\(622\) 0 0
\(623\) 2.19037e6 0.226098
\(624\) 0 0
\(625\) −1.13689e7 −1.16417
\(626\) 0 0
\(627\) 2599.11 0.000264031 0
\(628\) 0 0
\(629\) 9.41819e6 0.949163
\(630\) 0 0
\(631\) −1.92146e6 −0.192114 −0.0960569 0.995376i \(-0.530623\pi\)
−0.0960569 + 0.995376i \(0.530623\pi\)
\(632\) 0 0
\(633\) −3.88337e6 −0.385212
\(634\) 0 0
\(635\) 1.56225e7 1.53751
\(636\) 0 0
\(637\) 2.47784e6 0.241950
\(638\) 0 0
\(639\) −1.69407e6 −0.164126
\(640\) 0 0
\(641\) −1.24396e7 −1.19581 −0.597904 0.801568i \(-0.704000\pi\)
−0.597904 + 0.801568i \(0.704000\pi\)
\(642\) 0 0
\(643\) 2.05927e6 0.196420 0.0982102 0.995166i \(-0.468688\pi\)
0.0982102 + 0.995166i \(0.468688\pi\)
\(644\) 0 0
\(645\) −1.96679e6 −0.186148
\(646\) 0 0
\(647\) 8.23244e6 0.773158 0.386579 0.922256i \(-0.373657\pi\)
0.386579 + 0.922256i \(0.373657\pi\)
\(648\) 0 0
\(649\) −595524. −0.0554993
\(650\) 0 0
\(651\) −1.68151e6 −0.155506
\(652\) 0 0
\(653\) −1.66572e7 −1.52869 −0.764345 0.644807i \(-0.776938\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(654\) 0 0
\(655\) −1.56292e7 −1.42342
\(656\) 0 0
\(657\) −5.75816e6 −0.520440
\(658\) 0 0
\(659\) −7.94491e6 −0.712649 −0.356324 0.934362i \(-0.615970\pi\)
−0.356324 + 0.934362i \(0.615970\pi\)
\(660\) 0 0
\(661\) 1.76591e7 1.57205 0.786024 0.618196i \(-0.212136\pi\)
0.786024 + 0.618196i \(0.212136\pi\)
\(662\) 0 0
\(663\) −1.00269e6 −0.0885897
\(664\) 0 0
\(665\) 50400.7 0.00441959
\(666\) 0 0
\(667\) −6.80344e6 −0.592126
\(668\) 0 0
\(669\) −1.27690e7 −1.10304
\(670\) 0 0
\(671\) 106123. 0.00909916
\(672\) 0 0
\(673\) −6.75780e6 −0.575132 −0.287566 0.957761i \(-0.592846\pi\)
−0.287566 + 0.957761i \(0.592846\pi\)
\(674\) 0 0
\(675\) 471660. 0.0398446
\(676\) 0 0
\(677\) 6.59598e6 0.553105 0.276552 0.960999i \(-0.410808\pi\)
0.276552 + 0.960999i \(0.410808\pi\)
\(678\) 0 0
\(679\) −1.84013e6 −0.153170
\(680\) 0 0
\(681\) −2.34988e6 −0.194168
\(682\) 0 0
\(683\) 1.33104e7 1.09179 0.545897 0.837852i \(-0.316189\pi\)
0.545897 + 0.837852i \(0.316189\pi\)
\(684\) 0 0
\(685\) 1.52671e7 1.24317
\(686\) 0 0
\(687\) −687018. −0.0555362
\(688\) 0 0
\(689\) 896813. 0.0719704
\(690\) 0 0
\(691\) 1.55105e7 1.23575 0.617873 0.786278i \(-0.287994\pi\)
0.617873 + 0.786278i \(0.287994\pi\)
\(692\) 0 0
\(693\) −61148.7 −0.00483676
\(694\) 0 0
\(695\) 2.58333e6 0.202870
\(696\) 0 0
\(697\) −1.17995e7 −0.919983
\(698\) 0 0
\(699\) 5.53402e6 0.428399
\(700\) 0 0
\(701\) 1.02799e7 0.790124 0.395062 0.918654i \(-0.370723\pi\)
0.395062 + 0.918654i \(0.370723\pi\)
\(702\) 0 0
\(703\) −253131. −0.0193177
\(704\) 0 0
\(705\) −1.39558e7 −1.05750
\(706\) 0 0
\(707\) −3.51367e6 −0.264370
\(708\) 0 0
\(709\) −1.47793e7 −1.10417 −0.552086 0.833787i \(-0.686168\pi\)
−0.552086 + 0.833787i \(0.686168\pi\)
\(710\) 0 0
\(711\) −3.98341e6 −0.295516
\(712\) 0 0
\(713\) −8.63731e6 −0.636289
\(714\) 0 0
\(715\) −169176. −0.0123758
\(716\) 0 0
\(717\) −2.17449e6 −0.157964
\(718\) 0 0
\(719\) −2.24114e7 −1.61677 −0.808383 0.588657i \(-0.799657\pi\)
−0.808383 + 0.588657i \(0.799657\pi\)
\(720\) 0 0
\(721\) −6.17960e6 −0.442713
\(722\) 0 0
\(723\) −8.15896e6 −0.580483
\(724\) 0 0
\(725\) −2.05576e6 −0.145254
\(726\) 0 0
\(727\) 5.73926e6 0.402735 0.201368 0.979516i \(-0.435461\pi\)
0.201368 + 0.979516i \(0.435461\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.34567e6 0.162358
\(732\) 0 0
\(733\) 1.21128e7 0.832694 0.416347 0.909206i \(-0.363310\pi\)
0.416347 + 0.909206i \(0.363310\pi\)
\(734\) 0 0
\(735\) 8.10429e6 0.553346
\(736\) 0 0
\(737\) 670226. 0.0454519
\(738\) 0 0
\(739\) −1.12661e7 −0.758863 −0.379432 0.925220i \(-0.623880\pi\)
−0.379432 + 0.925220i \(0.623880\pi\)
\(740\) 0 0
\(741\) 26949.1 0.00180301
\(742\) 0 0
\(743\) 1.70415e7 1.13250 0.566248 0.824235i \(-0.308394\pi\)
0.566248 + 0.824235i \(0.308394\pi\)
\(744\) 0 0
\(745\) −1.12712e7 −0.744008
\(746\) 0 0
\(747\) −8.09514e6 −0.530790
\(748\) 0 0
\(749\) 121764. 0.00793074
\(750\) 0 0
\(751\) −9.96885e6 −0.644979 −0.322489 0.946573i \(-0.604520\pi\)
−0.322489 + 0.946573i \(0.604520\pi\)
\(752\) 0 0
\(753\) −1.39713e7 −0.897945
\(754\) 0 0
\(755\) 586168. 0.0374244
\(756\) 0 0
\(757\) 7.74370e6 0.491144 0.245572 0.969378i \(-0.421024\pi\)
0.245572 + 0.969378i \(0.421024\pi\)
\(758\) 0 0
\(759\) −314099. −0.0197907
\(760\) 0 0
\(761\) −5.83133e6 −0.365011 −0.182505 0.983205i \(-0.558421\pi\)
−0.182505 + 0.983205i \(0.558421\pi\)
\(762\) 0 0
\(763\) 8.76708e6 0.545184
\(764\) 0 0
\(765\) −3.27951e6 −0.202607
\(766\) 0 0
\(767\) −6.17475e6 −0.378993
\(768\) 0 0
\(769\) −2.48999e7 −1.51839 −0.759193 0.650866i \(-0.774406\pi\)
−0.759193 + 0.650866i \(0.774406\pi\)
\(770\) 0 0
\(771\) −1.23573e7 −0.748663
\(772\) 0 0
\(773\) 697284. 0.0419721 0.0209861 0.999780i \(-0.493319\pi\)
0.0209861 + 0.999780i \(0.493319\pi\)
\(774\) 0 0
\(775\) −2.60989e6 −0.156088
\(776\) 0 0
\(777\) 5.95535e6 0.353879
\(778\) 0 0
\(779\) 317131. 0.0187239
\(780\) 0 0
\(781\) 340889. 0.0199979
\(782\) 0 0
\(783\) −2.31633e6 −0.135019
\(784\) 0 0
\(785\) 1.53730e7 0.890398
\(786\) 0 0
\(787\) −1.21605e7 −0.699865 −0.349933 0.936775i \(-0.613796\pi\)
−0.349933 + 0.936775i \(0.613796\pi\)
\(788\) 0 0
\(789\) 4.12084e6 0.235664
\(790\) 0 0
\(791\) −7.03934e6 −0.400028
\(792\) 0 0
\(793\) 1.10034e6 0.0621362
\(794\) 0 0
\(795\) 2.93321e6 0.164598
\(796\) 0 0
\(797\) 9.61296e6 0.536058 0.268029 0.963411i \(-0.413628\pi\)
0.268029 + 0.963411i \(0.413628\pi\)
\(798\) 0 0
\(799\) 1.66442e7 0.922351
\(800\) 0 0
\(801\) 3.83060e6 0.210953
\(802\) 0 0
\(803\) 1.15869e6 0.0634128
\(804\) 0 0
\(805\) −6.09085e6 −0.331274
\(806\) 0 0
\(807\) −1.72514e7 −0.932482
\(808\) 0 0
\(809\) −2.32130e7 −1.24698 −0.623492 0.781830i \(-0.714287\pi\)
−0.623492 + 0.781830i \(0.714287\pi\)
\(810\) 0 0
\(811\) 4.90107e6 0.261661 0.130830 0.991405i \(-0.458236\pi\)
0.130830 + 0.991405i \(0.458236\pi\)
\(812\) 0 0
\(813\) 1.63208e7 0.865994
\(814\) 0 0
\(815\) −1.34914e7 −0.711482
\(816\) 0 0
\(817\) −63044.1 −0.00330437
\(818\) 0 0
\(819\) −634026. −0.0330291
\(820\) 0 0
\(821\) 1.38159e7 0.715354 0.357677 0.933845i \(-0.383569\pi\)
0.357677 + 0.933845i \(0.383569\pi\)
\(822\) 0 0
\(823\) 2.74254e7 1.41141 0.705706 0.708505i \(-0.250630\pi\)
0.705706 + 0.708505i \(0.250630\pi\)
\(824\) 0 0
\(825\) −94909.7 −0.00485485
\(826\) 0 0
\(827\) −2.28348e7 −1.16100 −0.580502 0.814259i \(-0.697143\pi\)
−0.580502 + 0.814259i \(0.697143\pi\)
\(828\) 0 0
\(829\) 1.83487e7 0.927297 0.463649 0.886019i \(-0.346540\pi\)
0.463649 + 0.886019i \(0.346540\pi\)
\(830\) 0 0
\(831\) −7.12877e6 −0.358106
\(832\) 0 0
\(833\) −9.66551e6 −0.482628
\(834\) 0 0
\(835\) 5.67219e6 0.281537
\(836\) 0 0
\(837\) −2.94069e6 −0.145089
\(838\) 0 0
\(839\) −6.63289e6 −0.325310 −0.162655 0.986683i \(-0.552006\pi\)
−0.162655 + 0.986683i \(0.552006\pi\)
\(840\) 0 0
\(841\) −1.04153e7 −0.507786
\(842\) 0 0
\(843\) −816399. −0.0395670
\(844\) 0 0
\(845\) −1.75412e6 −0.0845118
\(846\) 0 0
\(847\) −7.44701e6 −0.356676
\(848\) 0 0
\(849\) 7.28443e6 0.346838
\(850\) 0 0
\(851\) 3.05905e7 1.44798
\(852\) 0 0
\(853\) −3.02938e7 −1.42554 −0.712772 0.701395i \(-0.752561\pi\)
−0.712772 + 0.701395i \(0.752561\pi\)
\(854\) 0 0
\(855\) 88142.6 0.00412354
\(856\) 0 0
\(857\) −1.37741e7 −0.640636 −0.320318 0.947310i \(-0.603790\pi\)
−0.320318 + 0.947310i \(0.603790\pi\)
\(858\) 0 0
\(859\) −2.06680e7 −0.955687 −0.477843 0.878445i \(-0.658581\pi\)
−0.477843 + 0.878445i \(0.658581\pi\)
\(860\) 0 0
\(861\) −7.46108e6 −0.343000
\(862\) 0 0
\(863\) 1.17441e7 0.536775 0.268387 0.963311i \(-0.413509\pi\)
0.268387 + 0.963311i \(0.413509\pi\)
\(864\) 0 0
\(865\) 1.45380e7 0.660641
\(866\) 0 0
\(867\) −8.86744e6 −0.400636
\(868\) 0 0
\(869\) 801562. 0.0360071
\(870\) 0 0
\(871\) 6.94930e6 0.310381
\(872\) 0 0
\(873\) −3.21809e6 −0.142910
\(874\) 0 0
\(875\) 7.04893e6 0.311245
\(876\) 0 0
\(877\) 7.54480e6 0.331245 0.165622 0.986189i \(-0.447037\pi\)
0.165622 + 0.986189i \(0.447037\pi\)
\(878\) 0 0
\(879\) 1.09920e7 0.479850
\(880\) 0 0
\(881\) −7.88797e6 −0.342394 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(882\) 0 0
\(883\) −2.26784e7 −0.978836 −0.489418 0.872049i \(-0.662791\pi\)
−0.489418 + 0.872049i \(0.662791\pi\)
\(884\) 0 0
\(885\) −2.01958e7 −0.866767
\(886\) 0 0
\(887\) −3.42780e7 −1.46287 −0.731436 0.681911i \(-0.761149\pi\)
−0.731436 + 0.681911i \(0.761149\pi\)
\(888\) 0 0
\(889\) −1.17815e7 −0.499973
\(890\) 0 0
\(891\) −106939. −0.00451276
\(892\) 0 0
\(893\) −447343. −0.0187721
\(894\) 0 0
\(895\) 3.22575e7 1.34609
\(896\) 0 0
\(897\) −3.25676e6 −0.135146
\(898\) 0 0
\(899\) 1.28172e7 0.528926
\(900\) 0 0
\(901\) −3.49827e6 −0.143563
\(902\) 0 0
\(903\) 1.48322e6 0.0605323
\(904\) 0 0
\(905\) 4.82073e7 1.95655
\(906\) 0 0
\(907\) −3.53458e7 −1.42666 −0.713328 0.700830i \(-0.752813\pi\)
−0.713328 + 0.700830i \(0.752813\pi\)
\(908\) 0 0
\(909\) −6.14484e6 −0.246661
\(910\) 0 0
\(911\) −1.18935e7 −0.474804 −0.237402 0.971411i \(-0.576296\pi\)
−0.237402 + 0.971411i \(0.576296\pi\)
\(912\) 0 0
\(913\) 1.62894e6 0.0646739
\(914\) 0 0
\(915\) 3.59889e6 0.142107
\(916\) 0 0
\(917\) 1.17866e7 0.462876
\(918\) 0 0
\(919\) 2.49027e7 0.972653 0.486327 0.873777i \(-0.338337\pi\)
0.486327 + 0.873777i \(0.338337\pi\)
\(920\) 0 0
\(921\) −3.47042e6 −0.134814
\(922\) 0 0
\(923\) 3.53454e6 0.136561
\(924\) 0 0
\(925\) 9.24338e6 0.355203
\(926\) 0 0
\(927\) −1.08071e7 −0.413058
\(928\) 0 0
\(929\) −1.51280e7 −0.575097 −0.287549 0.957766i \(-0.592840\pi\)
−0.287549 + 0.957766i \(0.592840\pi\)
\(930\) 0 0
\(931\) 259778. 0.00982263
\(932\) 0 0
\(933\) 1.03263e7 0.388366
\(934\) 0 0
\(935\) 659918. 0.0246866
\(936\) 0 0
\(937\) −4.75041e6 −0.176759 −0.0883797 0.996087i \(-0.528169\pi\)
−0.0883797 + 0.996087i \(0.528169\pi\)
\(938\) 0 0
\(939\) 2.81855e7 1.04319
\(940\) 0 0
\(941\) −2.34813e7 −0.864466 −0.432233 0.901762i \(-0.642274\pi\)
−0.432233 + 0.901762i \(0.642274\pi\)
\(942\) 0 0
\(943\) −3.83249e7 −1.40346
\(944\) 0 0
\(945\) −2.07371e6 −0.0755386
\(946\) 0 0
\(947\) 7.01784e6 0.254289 0.127145 0.991884i \(-0.459419\pi\)
0.127145 + 0.991884i \(0.459419\pi\)
\(948\) 0 0
\(949\) 1.20139e7 0.433032
\(950\) 0 0
\(951\) 7.80385e6 0.279807
\(952\) 0 0
\(953\) 3.35891e7 1.19803 0.599013 0.800739i \(-0.295560\pi\)
0.599013 + 0.800739i \(0.295560\pi\)
\(954\) 0 0
\(955\) −3.50913e7 −1.24506
\(956\) 0 0
\(957\) 466103. 0.0164514
\(958\) 0 0
\(959\) −1.15135e7 −0.404259
\(960\) 0 0
\(961\) −1.23571e7 −0.431625
\(962\) 0 0
\(963\) 212945. 0.00739950
\(964\) 0 0
\(965\) 4.46287e7 1.54275
\(966\) 0 0
\(967\) 6.65688e6 0.228931 0.114466 0.993427i \(-0.463484\pi\)
0.114466 + 0.993427i \(0.463484\pi\)
\(968\) 0 0
\(969\) −105122. −0.00359655
\(970\) 0 0
\(971\) 1.05043e6 0.0357537 0.0178769 0.999840i \(-0.494309\pi\)
0.0178769 + 0.999840i \(0.494309\pi\)
\(972\) 0 0
\(973\) −1.94818e6 −0.0659702
\(974\) 0 0
\(975\) −984080. −0.0331527
\(976\) 0 0
\(977\) −7.59396e6 −0.254526 −0.127263 0.991869i \(-0.540619\pi\)
−0.127263 + 0.991869i \(0.540619\pi\)
\(978\) 0 0
\(979\) −770813. −0.0257035
\(980\) 0 0
\(981\) 1.53322e7 0.508665
\(982\) 0 0
\(983\) −3.33190e7 −1.09978 −0.549892 0.835235i \(-0.685331\pi\)
−0.549892 + 0.835235i \(0.685331\pi\)
\(984\) 0 0
\(985\) −2.99766e6 −0.0984447
\(986\) 0 0
\(987\) 1.05245e7 0.343883
\(988\) 0 0
\(989\) 7.61878e6 0.247682
\(990\) 0 0
\(991\) −5.11503e7 −1.65449 −0.827245 0.561841i \(-0.810093\pi\)
−0.827245 + 0.561841i \(0.810093\pi\)
\(992\) 0 0
\(993\) −4.09014e6 −0.131633
\(994\) 0 0
\(995\) −6.44675e7 −2.06435
\(996\) 0 0
\(997\) −5.11313e7 −1.62911 −0.814553 0.580089i \(-0.803018\pi\)
−0.814553 + 0.580089i \(0.803018\pi\)
\(998\) 0 0
\(999\) 1.04149e7 0.330174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.k.1.1 2
4.3 odd 2 39.6.a.b.1.2 2
12.11 even 2 117.6.a.b.1.1 2
20.19 odd 2 975.6.a.c.1.1 2
52.51 odd 2 507.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.b.1.2 2 4.3 odd 2
117.6.a.b.1.1 2 12.11 even 2
507.6.a.c.1.1 2 52.51 odd 2
624.6.a.k.1.1 2 1.1 even 1 trivial
975.6.a.c.1.1 2 20.19 odd 2