Properties

Label 624.6.a.k.1.1
Level 624624
Weight 66
Character 624.1
Self dual yes
Analytic conductor 100.080100.080
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.079503563100.079503563
Analytic rank: 11
Dimension: 22
Coefficient field: Q(14)\Q(\sqrt{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x214 x^{2} - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 39)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 3.74166-3.74166 of defining polynomial
Character χ\chi == 624.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+9.00000q361.4166q5+46.3165q7+81.0000q916.2992q11169.000q13552.749q15+659.231q1717.7180q19+416.848q21+2141.20q23+646.996q25+729.000q273177.40q294033.87q31146.693q332844.60q35+14286.6q371521.00q3917898.8q41+3558.19q434974.74q45+25247.9q4714661.8q49+5933.08q515306.59q53+1001.04q55159.462q57+36537.0q596510.90q61+3751.63q63+10379.4q6541120.1q67+19270.8q6920914.4q7171088.4q73+5822.96q75754.922q7749177.9q79+6561.00q8199939.9q8340487.7q8528596.6q87+47291.4q897827.48q9136304.8q93+1088.18q9539729.5q971320.24q99+O(q100)q+9.00000 q^{3} -61.4166 q^{5} +46.3165 q^{7} +81.0000 q^{9} -16.2992 q^{11} -169.000 q^{13} -552.749 q^{15} +659.231 q^{17} -17.7180 q^{19} +416.848 q^{21} +2141.20 q^{23} +646.996 q^{25} +729.000 q^{27} -3177.40 q^{29} -4033.87 q^{31} -146.693 q^{33} -2844.60 q^{35} +14286.6 q^{37} -1521.00 q^{39} -17898.8 q^{41} +3558.19 q^{43} -4974.74 q^{45} +25247.9 q^{47} -14661.8 q^{49} +5933.08 q^{51} -5306.59 q^{53} +1001.04 q^{55} -159.462 q^{57} +36537.0 q^{59} -6510.90 q^{61} +3751.63 q^{63} +10379.4 q^{65} -41120.1 q^{67} +19270.8 q^{69} -20914.4 q^{71} -71088.4 q^{73} +5822.96 q^{75} -754.922 q^{77} -49177.9 q^{79} +6561.00 q^{81} -99939.9 q^{83} -40487.7 q^{85} -28596.6 q^{87} +47291.4 q^{89} -7827.48 q^{91} -36304.8 q^{93} +1088.18 q^{95} -39729.5 q^{97} -1320.24 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+18q348q572q7+162q9+596q11338q13432q15268q171128q19648q21+1768q232298q25+1458q277612q29+4160q31+5364q33++48276q99+O(q100) 2 q + 18 q^{3} - 48 q^{5} - 72 q^{7} + 162 q^{9} + 596 q^{11} - 338 q^{13} - 432 q^{15} - 268 q^{17} - 1128 q^{19} - 648 q^{21} + 1768 q^{23} - 2298 q^{25} + 1458 q^{27} - 7612 q^{29} + 4160 q^{31} + 5364 q^{33}+ \cdots + 48276 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 9.00000 0.577350
44 0 0
55 −61.4166 −1.09865 −0.549327 0.835608i 0.685116π-0.685116\pi
−0.549327 + 0.835608i 0.685116π0.685116\pi
66 0 0
77 46.3165 0.357265 0.178632 0.983916i 0.442833π-0.442833\pi
0.178632 + 0.983916i 0.442833π0.442833\pi
88 0 0
99 81.0000 0.333333
1010 0 0
1111 −16.2992 −0.0406149 −0.0203074 0.999794i 0.506465π-0.506465\pi
−0.0203074 + 0.999794i 0.506465π0.506465\pi
1212 0 0
1313 −169.000 −0.277350
1414 0 0
1515 −552.749 −0.634308
1616 0 0
1717 659.231 0.553243 0.276621 0.960979i 0.410785π-0.410785\pi
0.276621 + 0.960979i 0.410785π0.410785\pi
1818 0 0
1919 −17.7180 −0.0112598 −0.00562991 0.999984i 0.501792π-0.501792\pi
−0.00562991 + 0.999984i 0.501792π0.501792\pi
2020 0 0
2121 416.848 0.206267
2222 0 0
2323 2141.20 0.843989 0.421995 0.906598i 0.361330π-0.361330\pi
0.421995 + 0.906598i 0.361330π0.361330\pi
2424 0 0
2525 646.996 0.207039
2626 0 0
2727 729.000 0.192450
2828 0 0
2929 −3177.40 −0.701580 −0.350790 0.936454i 0.614087π-0.614087\pi
−0.350790 + 0.936454i 0.614087π0.614087\pi
3030 0 0
3131 −4033.87 −0.753906 −0.376953 0.926232i 0.623028π-0.623028\pi
−0.376953 + 0.926232i 0.623028π0.623028\pi
3232 0 0
3333 −146.693 −0.0234490
3434 0 0
3535 −2844.60 −0.392510
3636 0 0
3737 14286.6 1.71564 0.857818 0.513954i 0.171820π-0.171820\pi
0.857818 + 0.513954i 0.171820π0.171820\pi
3838 0 0
3939 −1521.00 −0.160128
4040 0 0
4141 −17898.8 −1.66289 −0.831447 0.555604i 0.812487π-0.812487\pi
−0.831447 + 0.555604i 0.812487π0.812487\pi
4242 0 0
4343 3558.19 0.293466 0.146733 0.989176i 0.453124π-0.453124\pi
0.146733 + 0.989176i 0.453124π0.453124\pi
4444 0 0
4545 −4974.74 −0.366218
4646 0 0
4747 25247.9 1.66717 0.833586 0.552389i 0.186284π-0.186284\pi
0.833586 + 0.552389i 0.186284π0.186284\pi
4848 0 0
4949 −14661.8 −0.872362
5050 0 0
5151 5933.08 0.319415
5252 0 0
5353 −5306.59 −0.259493 −0.129746 0.991547i 0.541416π-0.541416\pi
−0.129746 + 0.991547i 0.541416π0.541416\pi
5454 0 0
5555 1001.04 0.0446217
5656 0 0
5757 −159.462 −0.00650086
5858 0 0
5959 36537.0 1.36648 0.683239 0.730195i 0.260571π-0.260571\pi
0.683239 + 0.730195i 0.260571π0.260571\pi
6060 0 0
6161 −6510.90 −0.224035 −0.112018 0.993706i 0.535731π-0.535731\pi
−0.112018 + 0.993706i 0.535731π0.535731\pi
6262 0 0
6363 3751.63 0.119088
6464 0 0
6565 10379.4 0.304712
6666 0 0
6767 −41120.1 −1.11910 −0.559548 0.828798i 0.689025π-0.689025\pi
−0.559548 + 0.828798i 0.689025π0.689025\pi
6868 0 0
6969 19270.8 0.487278
7070 0 0
7171 −20914.4 −0.492379 −0.246190 0.969222i 0.579179π-0.579179\pi
−0.246190 + 0.969222i 0.579179π0.579179\pi
7272 0 0
7373 −71088.4 −1.56132 −0.780660 0.624956i 0.785117π-0.785117\pi
−0.780660 + 0.624956i 0.785117π0.785117\pi
7474 0 0
7575 5822.96 0.119534
7676 0 0
7777 −754.922 −0.0145103
7878 0 0
7979 −49177.9 −0.886549 −0.443274 0.896386i 0.646183π-0.646183\pi
−0.443274 + 0.896386i 0.646183π0.646183\pi
8080 0 0
8181 6561.00 0.111111
8282 0 0
8383 −99939.9 −1.59237 −0.796185 0.605054i 0.793152π-0.793152\pi
−0.796185 + 0.605054i 0.793152π0.793152\pi
8484 0 0
8585 −40487.7 −0.607822
8686 0 0
8787 −28596.6 −0.405057
8888 0 0
8989 47291.4 0.632859 0.316430 0.948616i 0.397516π-0.397516\pi
0.316430 + 0.948616i 0.397516π0.397516\pi
9090 0 0
9191 −7827.48 −0.0990874
9292 0 0
9393 −36304.8 −0.435268
9494 0 0
9595 1088.18 0.0123706
9696 0 0
9797 −39729.5 −0.428730 −0.214365 0.976754i 0.568768π-0.568768\pi
−0.214365 + 0.976754i 0.568768π0.568768\pi
9898 0 0
9999 −1320.24 −0.0135383
100100 0 0
101101 −75862.3 −0.739984 −0.369992 0.929035i 0.620640π-0.620640\pi
−0.369992 + 0.929035i 0.620640π0.620640\pi
102102 0 0
103103 −133421. −1.23917 −0.619586 0.784928i 0.712700π-0.712700\pi
−0.619586 + 0.784928i 0.712700π0.712700\pi
104104 0 0
105105 −25601.4 −0.226616
106106 0 0
107107 2628.95 0.0221985 0.0110992 0.999938i 0.496467π-0.496467\pi
0.0110992 + 0.999938i 0.496467π0.496467\pi
108108 0 0
109109 189286. 1.52599 0.762997 0.646401i 0.223727π-0.223727\pi
0.762997 + 0.646401i 0.223727π0.223727\pi
110110 0 0
111111 128580. 0.990523
112112 0 0
113113 −151984. −1.11970 −0.559848 0.828595i 0.689141π-0.689141\pi
−0.559848 + 0.828595i 0.689141π0.689141\pi
114114 0 0
115115 −131505. −0.927252
116116 0 0
117117 −13689.0 −0.0924500
118118 0 0
119119 30533.3 0.197654
120120 0 0
121121 −160785. −0.998350
122122 0 0
123123 −161089. −0.960072
124124 0 0
125125 152191. 0.871190
126126 0 0
127127 −254370. −1.39945 −0.699724 0.714414i 0.746694π-0.746694\pi
−0.699724 + 0.714414i 0.746694π0.746694\pi
128128 0 0
129129 32023.7 0.169433
130130 0 0
131131 254479. 1.29561 0.647804 0.761807i 0.275687π-0.275687\pi
0.647804 + 0.761807i 0.275687π0.275687\pi
132132 0 0
133133 −820.636 −0.00402274
134134 0 0
135135 −44772.7 −0.211436
136136 0 0
137137 −248583. −1.13154 −0.565769 0.824564i 0.691421π-0.691421\pi
−0.565769 + 0.824564i 0.691421π0.691421\pi
138138 0 0
139139 −42062.4 −0.184653 −0.0923267 0.995729i 0.529430π-0.529430\pi
−0.0923267 + 0.995729i 0.529430π0.529430\pi
140140 0 0
141141 227231. 0.962542
142142 0 0
143143 2754.57 0.0112645
144144 0 0
145145 195145. 0.770793
146146 0 0
147147 −131956. −0.503658
148148 0 0
149149 183520. 0.677200 0.338600 0.940930i 0.390047π-0.390047\pi
0.338600 + 0.940930i 0.390047π0.390047\pi
150150 0 0
151151 −9544.14 −0.0340639 −0.0170319 0.999855i 0.505422π-0.505422\pi
−0.0170319 + 0.999855i 0.505422π0.505422\pi
152152 0 0
153153 53397.7 0.184414
154154 0 0
155155 247746. 0.828282
156156 0 0
157157 −250307. −0.810445 −0.405223 0.914218i 0.632806π-0.632806\pi
−0.405223 + 0.914218i 0.632806π0.632806\pi
158158 0 0
159159 −47759.3 −0.149818
160160 0 0
161161 99172.7 0.301528
162162 0 0
163163 219671. 0.647595 0.323798 0.946126i 0.395040π-0.395040\pi
0.323798 + 0.946126i 0.395040π0.395040\pi
164164 0 0
165165 9009.38 0.0257623
166166 0 0
167167 −92356.1 −0.256256 −0.128128 0.991758i 0.540897π-0.540897\pi
−0.128128 + 0.991758i 0.540897π0.540897\pi
168168 0 0
169169 28561.0 0.0769231
170170 0 0
171171 −1435.16 −0.00375327
172172 0 0
173173 −236712. −0.601319 −0.300660 0.953731i 0.597207π-0.597207\pi
−0.300660 + 0.953731i 0.597207π0.597207\pi
174174 0 0
175175 29966.5 0.0739676
176176 0 0
177177 328833. 0.788936
178178 0 0
179179 −525225. −1.22522 −0.612608 0.790387i 0.709880π-0.709880\pi
−0.612608 + 0.790387i 0.709880π0.709880\pi
180180 0 0
181181 −784923. −1.78086 −0.890432 0.455116i 0.849598π-0.849598\pi
−0.890432 + 0.455116i 0.849598π0.849598\pi
182182 0 0
183183 −58598.1 −0.129347
184184 0 0
185185 −877435. −1.88489
186186 0 0
187187 −10745.0 −0.0224699
188188 0 0
189189 33764.7 0.0687557
190190 0 0
191191 571365. 1.13326 0.566630 0.823972i 0.308247π-0.308247\pi
0.566630 + 0.823972i 0.308247π0.308247\pi
192192 0 0
193193 −726656. −1.40422 −0.702111 0.712068i 0.747759π-0.747759\pi
−0.702111 + 0.712068i 0.747759π0.747759\pi
194194 0 0
195195 93414.6 0.175925
196196 0 0
197197 48808.7 0.0896049 0.0448025 0.998996i 0.485734π-0.485734\pi
0.0448025 + 0.998996i 0.485734π0.485734\pi
198198 0 0
199199 1.04968e6 1.87898 0.939491 0.342574i 0.111299π-0.111299\pi
0.939491 + 0.342574i 0.111299π0.111299\pi
200200 0 0
201201 −370081. −0.646110
202202 0 0
203203 −147166. −0.250650
204204 0 0
205205 1.09928e6 1.82694
206206 0 0
207207 173437. 0.281330
208208 0 0
209209 288.790 0.000457316 0
210210 0 0
211211 −431486. −0.667206 −0.333603 0.942714i 0.608265π-0.608265\pi
−0.333603 + 0.942714i 0.608265π0.608265\pi
212212 0 0
213213 −188230. −0.284275
214214 0 0
215215 −218532. −0.322417
216216 0 0
217217 −186835. −0.269344
218218 0 0
219219 −639796. −0.901428
220220 0 0
221221 −111410. −0.153442
222222 0 0
223223 −1.41878e6 −1.91052 −0.955261 0.295765i 0.904425π-0.904425\pi
−0.955261 + 0.295765i 0.904425π0.904425\pi
224224 0 0
225225 52406.6 0.0690129
226226 0 0
227227 −261098. −0.336309 −0.168154 0.985761i 0.553781π-0.553781\pi
−0.168154 + 0.985761i 0.553781π0.553781\pi
228228 0 0
229229 −76335.3 −0.0961915 −0.0480957 0.998843i 0.515315π-0.515315\pi
−0.0480957 + 0.998843i 0.515315π0.515315\pi
230230 0 0
231231 −6794.30 −0.00837751
232232 0 0
233233 614891. 0.742008 0.371004 0.928631i 0.379014π-0.379014\pi
0.371004 + 0.928631i 0.379014π0.379014\pi
234234 0 0
235235 −1.55064e6 −1.83164
236236 0 0
237237 −442601. −0.511849
238238 0 0
239239 −241610. −0.273602 −0.136801 0.990599i 0.543682π-0.543682\pi
−0.136801 + 0.990599i 0.543682π0.543682\pi
240240 0 0
241241 −906551. −1.00543 −0.502713 0.864454i 0.667665π-0.667665\pi
−0.502713 + 0.864454i 0.667665π0.667665\pi
242242 0 0
243243 59049.0 0.0641500
244244 0 0
245245 900477. 0.958423
246246 0 0
247247 2994.35 0.00312291
248248 0 0
249249 −899459. −0.919355
250250 0 0
251251 −1.55237e6 −1.55529 −0.777643 0.628706i 0.783585π-0.783585\pi
−0.777643 + 0.628706i 0.783585π0.783585\pi
252252 0 0
253253 −34899.8 −0.0342785
254254 0 0
255255 −364390. −0.350926
256256 0 0
257257 −1.37303e6 −1.29672 −0.648361 0.761333i 0.724545π-0.724545\pi
−0.648361 + 0.761333i 0.724545π0.724545\pi
258258 0 0
259259 661706. 0.612936
260260 0 0
261261 −257370. −0.233860
262262 0 0
263263 457871. 0.408182 0.204091 0.978952i 0.434576π-0.434576\pi
0.204091 + 0.978952i 0.434576π0.434576\pi
264264 0 0
265265 325912. 0.285093
266266 0 0
267267 425623. 0.365382
268268 0 0
269269 −1.91682e6 −1.61511 −0.807553 0.589795i 0.799209π-0.799209\pi
−0.807553 + 0.589795i 0.799209π0.799209\pi
270270 0 0
271271 1.81342e6 1.49995 0.749973 0.661469i 0.230067π-0.230067\pi
0.749973 + 0.661469i 0.230067π0.230067\pi
272272 0 0
273273 −70447.3 −0.0572082
274274 0 0
275275 −10545.5 −0.00840885
276276 0 0
277277 −792085. −0.620258 −0.310129 0.950694i 0.600372π-0.600372\pi
−0.310129 + 0.950694i 0.600372π0.600372\pi
278278 0 0
279279 −326743. −0.251302
280280 0 0
281281 −90711.0 −0.0685321 −0.0342661 0.999413i 0.510909π-0.510909\pi
−0.0342661 + 0.999413i 0.510909π0.510909\pi
282282 0 0
283283 809381. 0.600741 0.300370 0.953823i 0.402890π-0.402890\pi
0.300370 + 0.953823i 0.402890π0.402890\pi
284284 0 0
285285 9793.62 0.00714219
286286 0 0
287287 −829009. −0.594093
288288 0 0
289289 −985271. −0.693923
290290 0 0
291291 −357565. −0.247527
292292 0 0
293293 1.22134e6 0.831125 0.415562 0.909565i 0.363585π-0.363585\pi
0.415562 + 0.909565i 0.363585π0.363585\pi
294294 0 0
295295 −2.24398e6 −1.50128
296296 0 0
297297 −11882.1 −0.00781634
298298 0 0
299299 −361862. −0.234081
300300 0 0
301301 164803. 0.104845
302302 0 0
303303 −682760. −0.427230
304304 0 0
305305 399877. 0.246137
306306 0 0
307307 −385603. −0.233504 −0.116752 0.993161i 0.537248π-0.537248\pi
−0.116752 + 0.993161i 0.537248π0.537248\pi
308308 0 0
309309 −1.20079e6 −0.715437
310310 0 0
311311 1.14737e6 0.672670 0.336335 0.941742i 0.390813π-0.390813\pi
0.336335 + 0.941742i 0.390813π0.390813\pi
312312 0 0
313313 3.13172e6 1.80685 0.903425 0.428746i 0.141044π-0.141044\pi
0.903425 + 0.428746i 0.141044π0.141044\pi
314314 0 0
315315 −230412. −0.130837
316316 0 0
317317 867095. 0.484639 0.242320 0.970196i 0.422092π-0.422092\pi
0.242320 + 0.970196i 0.422092π0.422092\pi
318318 0 0
319319 51789.2 0.0284946
320320 0 0
321321 23660.6 0.0128163
322322 0 0
323323 −11680.3 −0.00622941
324324 0 0
325325 −109342. −0.0574222
326326 0 0
327327 1.70358e6 0.881034
328328 0 0
329329 1.16939e6 0.595622
330330 0 0
331331 −454460. −0.227995 −0.113998 0.993481i 0.536366π-0.536366\pi
−0.113998 + 0.993481i 0.536366π0.536366\pi
332332 0 0
333333 1.15722e6 0.571879
334334 0 0
335335 2.52546e6 1.22950
336336 0 0
337337 3.55249e6 1.70396 0.851978 0.523577i 0.175403π-0.175403\pi
0.851978 + 0.523577i 0.175403π0.175403\pi
338338 0 0
339339 −1.36785e6 −0.646457
340340 0 0
341341 65748.9 0.0306198
342342 0 0
343343 −1.45752e6 −0.668929
344344 0 0
345345 −1.18354e6 −0.535349
346346 0 0
347347 1.52993e6 0.682102 0.341051 0.940045i 0.389217π-0.389217\pi
0.341051 + 0.940045i 0.389217π0.389217\pi
348348 0 0
349349 −1.45386e6 −0.638939 −0.319469 0.947597i 0.603505π-0.603505\pi
−0.319469 + 0.947597i 0.603505π0.603505\pi
350350 0 0
351351 −123201. −0.0533761
352352 0 0
353353 1.73292e6 0.740189 0.370095 0.928994i 0.379325π-0.379325\pi
0.370095 + 0.928994i 0.379325π0.379325\pi
354354 0 0
355355 1.28449e6 0.540954
356356 0 0
357357 274799. 0.114116
358358 0 0
359359 1.66707e6 0.682683 0.341341 0.939939i 0.389119π-0.389119\pi
0.341341 + 0.939939i 0.389119π0.389119\pi
360360 0 0
361361 −2.47579e6 −0.999873
362362 0 0
363363 −1.44707e6 −0.576398
364364 0 0
365365 4.36601e6 1.71535
366366 0 0
367367 −2.97554e6 −1.15319 −0.576595 0.817030i 0.695619π-0.695619\pi
−0.576595 + 0.817030i 0.695619π0.695619\pi
368368 0 0
369369 −1.44980e6 −0.554298
370370 0 0
371371 −245782. −0.0927077
372372 0 0
373373 −51413.5 −0.0191340 −0.00956698 0.999954i 0.503045π-0.503045\pi
−0.00956698 + 0.999954i 0.503045π0.503045\pi
374374 0 0
375375 1.36971e6 0.502981
376376 0 0
377377 536981. 0.194583
378378 0 0
379379 3.85498e6 1.37856 0.689278 0.724497i 0.257928π-0.257928\pi
0.689278 + 0.724497i 0.257928π0.257928\pi
380380 0 0
381381 −2.28933e6 −0.807971
382382 0 0
383383 −3.13730e6 −1.09285 −0.546423 0.837510i 0.684011π-0.684011\pi
−0.546423 + 0.837510i 0.684011π0.684011\pi
384384 0 0
385385 46364.7 0.0159417
386386 0 0
387387 288213. 0.0978220
388388 0 0
389389 1.85567e6 0.621766 0.310883 0.950448i 0.399375π-0.399375\pi
0.310883 + 0.950448i 0.399375π0.399375\pi
390390 0 0
391391 1.41154e6 0.466931
392392 0 0
393393 2.29031e6 0.748020
394394 0 0
395395 3.02034e6 0.974010
396396 0 0
397397 3.91561e6 1.24687 0.623437 0.781873i 0.285736π-0.285736\pi
0.623437 + 0.781873i 0.285736π0.285736\pi
398398 0 0
399399 −7385.72 −0.00232253
400400 0 0
401401 318965. 0.0990562 0.0495281 0.998773i 0.484228π-0.484228\pi
0.0495281 + 0.998773i 0.484228π0.484228\pi
402402 0 0
403403 681724. 0.209096
404404 0 0
405405 −402954. −0.122073
406406 0 0
407407 −232861. −0.0696803
408408 0 0
409409 −3.37547e6 −0.997760 −0.498880 0.866671i 0.666255π-0.666255\pi
−0.498880 + 0.866671i 0.666255π0.666255\pi
410410 0 0
411411 −2.23724e6 −0.653294
412412 0 0
413413 1.69226e6 0.488194
414414 0 0
415415 6.13797e6 1.74946
416416 0 0
417417 −378562. −0.106610
418418 0 0
419419 1.18257e6 0.329072 0.164536 0.986371i 0.447387π-0.447387\pi
0.164536 + 0.986371i 0.447387π0.447387\pi
420420 0 0
421421 2.06389e6 0.567521 0.283761 0.958895i 0.408418π-0.408418\pi
0.283761 + 0.958895i 0.408418π0.408418\pi
422422 0 0
423423 2.04508e6 0.555724
424424 0 0
425425 426520. 0.114543
426426 0 0
427427 −301562. −0.0800399
428428 0 0
429429 24791.1 0.00650358
430430 0 0
431431 5.94590e6 1.54179 0.770893 0.636965i 0.219810π-0.219810\pi
0.770893 + 0.636965i 0.219810π0.219810\pi
432432 0 0
433433 −6.20053e6 −1.58931 −0.794655 0.607061i 0.792348π-0.792348\pi
−0.794655 + 0.607061i 0.792348π0.792348\pi
434434 0 0
435435 1.75631e6 0.445017
436436 0 0
437437 −37937.8 −0.00950316
438438 0 0
439439 2.81407e6 0.696906 0.348453 0.937326i 0.386707π-0.386707\pi
0.348453 + 0.937326i 0.386707π0.386707\pi
440440 0 0
441441 −1.18760e6 −0.290787
442442 0 0
443443 −6.68727e6 −1.61897 −0.809486 0.587139i 0.800254π-0.800254\pi
−0.809486 + 0.587139i 0.800254π0.800254\pi
444444 0 0
445445 −2.90448e6 −0.695293
446446 0 0
447447 1.65168e6 0.390982
448448 0 0
449449 7.64990e6 1.79077 0.895385 0.445294i 0.146901π-0.146901\pi
0.895385 + 0.445294i 0.146901π0.146901\pi
450450 0 0
451451 291737. 0.0675382
452452 0 0
453453 −85897.2 −0.0196668
454454 0 0
455455 480737. 0.108863
456456 0 0
457457 −2.67357e6 −0.598826 −0.299413 0.954124i 0.596791π-0.596791\pi
−0.299413 + 0.954124i 0.596791π0.596791\pi
458458 0 0
459459 480580. 0.106472
460460 0 0
461461 1.32953e6 0.291370 0.145685 0.989331i 0.453461π-0.453461\pi
0.145685 + 0.989331i 0.453461π0.453461\pi
462462 0 0
463463 −5.26984e6 −1.14247 −0.571235 0.820786i 0.693536π-0.693536\pi
−0.571235 + 0.820786i 0.693536π0.693536\pi
464464 0 0
465465 2.22972e6 0.478209
466466 0 0
467467 7.33908e6 1.55722 0.778609 0.627510i 0.215926π-0.215926\pi
0.778609 + 0.627510i 0.215926π0.215926\pi
468468 0 0
469469 −1.90454e6 −0.399814
470470 0 0
471471 −2.25276e6 −0.467911
472472 0 0
473473 −57995.7 −0.0119191
474474 0 0
475475 −11463.5 −0.00233122
476476 0 0
477477 −429833. −0.0864976
478478 0 0
479479 1.52236e6 0.303165 0.151582 0.988445i 0.451563π-0.451563\pi
0.151582 + 0.988445i 0.451563π0.451563\pi
480480 0 0
481481 −2.41444e6 −0.475832
482482 0 0
483483 892554. 0.174087
484484 0 0
485485 2.44005e6 0.471025
486486 0 0
487487 −8.83569e6 −1.68818 −0.844088 0.536204i 0.819858π-0.819858\pi
−0.844088 + 0.536204i 0.819858π0.819858\pi
488488 0 0
489489 1.97704e6 0.373889
490490 0 0
491491 −175648. −0.0328805 −0.0164403 0.999865i 0.505233π-0.505233\pi
−0.0164403 + 0.999865i 0.505233π0.505233\pi
492492 0 0
493493 −2.09464e6 −0.388144
494494 0 0
495495 81084.4 0.0148739
496496 0 0
497497 −968682. −0.175910
498498 0 0
499499 2.82489e6 0.507867 0.253934 0.967222i 0.418276π-0.418276\pi
0.253934 + 0.967222i 0.418276π0.418276\pi
500500 0 0
501501 −831205. −0.147950
502502 0 0
503503 9.11142e6 1.60571 0.802854 0.596176i 0.203314π-0.203314\pi
0.802854 + 0.596176i 0.203314π0.203314\pi
504504 0 0
505505 4.65920e6 0.812986
506506 0 0
507507 257049. 0.0444116
508508 0 0
509509 4.05380e6 0.693534 0.346767 0.937951i 0.387280π-0.387280\pi
0.346767 + 0.937951i 0.387280π0.387280\pi
510510 0 0
511511 −3.29256e6 −0.557805
512512 0 0
513513 −12916.4 −0.00216695
514514 0 0
515515 8.19427e6 1.36142
516516 0 0
517517 −411521. −0.0677120
518518 0 0
519519 −2.13041e6 −0.347172
520520 0 0
521521 −2.46630e6 −0.398062 −0.199031 0.979993i 0.563780π-0.563780\pi
−0.199031 + 0.979993i 0.563780π0.563780\pi
522522 0 0
523523 −3.47559e6 −0.555615 −0.277808 0.960637i 0.589608π-0.589608\pi
−0.277808 + 0.960637i 0.589608π0.589608\pi
524524 0 0
525525 269699. 0.0427052
526526 0 0
527527 −2.65925e6 −0.417093
528528 0 0
529529 −1.85162e6 −0.287682
530530 0 0
531531 2.95949e6 0.455492
532532 0 0
533533 3.02490e6 0.461204
534534 0 0
535535 −161461. −0.0243884
536536 0 0
537537 −4.72702e6 −0.707379
538538 0 0
539539 238976. 0.0354309
540540 0 0
541541 7.20963e6 1.05906 0.529529 0.848292i 0.322369π-0.322369\pi
0.529529 + 0.848292i 0.322369π0.322369\pi
542542 0 0
543543 −7.06431e6 −1.02818
544544 0 0
545545 −1.16253e7 −1.67654
546546 0 0
547547 4.25767e6 0.608420 0.304210 0.952605i 0.401608π-0.401608\pi
0.304210 + 0.952605i 0.401608π0.401608\pi
548548 0 0
549549 −527383. −0.0746784
550550 0 0
551551 56297.3 0.00789966
552552 0 0
553553 −2.27775e6 −0.316733
554554 0 0
555555 −7.89692e6 −1.08824
556556 0 0
557557 1.41670e7 1.93481 0.967405 0.253233i 0.0814938π-0.0814938\pi
0.967405 + 0.253233i 0.0814938π0.0814938\pi
558558 0 0
559559 −601334. −0.0813928
560560 0 0
561561 −96704.6 −0.0129730
562562 0 0
563563 9.71182e6 1.29131 0.645654 0.763630i 0.276585π-0.276585\pi
0.645654 + 0.763630i 0.276585π0.276585\pi
564564 0 0
565565 9.33431e6 1.23016
566566 0 0
567567 303882. 0.0396961
568568 0 0
569569 1.11053e7 1.43796 0.718982 0.695029i 0.244608π-0.244608\pi
0.718982 + 0.695029i 0.244608π0.244608\pi
570570 0 0
571571 6.04167e6 0.775473 0.387737 0.921770i 0.373257π-0.373257\pi
0.387737 + 0.921770i 0.373257π0.373257\pi
572572 0 0
573573 5.14228e6 0.654288
574574 0 0
575575 1.38534e6 0.174738
576576 0 0
577577 1.19079e7 1.48900 0.744500 0.667623i 0.232688π-0.232688\pi
0.744500 + 0.667623i 0.232688π0.232688\pi
578578 0 0
579579 −6.53991e6 −0.810728
580580 0 0
581581 −4.62886e6 −0.568898
582582 0 0
583583 86493.2 0.0105393
584584 0 0
585585 840731. 0.101571
586586 0 0
587587 −6.16538e6 −0.738523 −0.369262 0.929325i 0.620389π-0.620389\pi
−0.369262 + 0.929325i 0.620389π0.620389\pi
588588 0 0
589589 71472.2 0.00848885
590590 0 0
591591 439278. 0.0517334
592592 0 0
593593 −2.25563e6 −0.263410 −0.131705 0.991289i 0.542045π-0.542045\pi
−0.131705 + 0.991289i 0.542045π0.542045\pi
594594 0 0
595595 −1.87525e6 −0.217153
596596 0 0
597597 9.44708e6 1.08483
598598 0 0
599599 4.27181e6 0.486458 0.243229 0.969969i 0.421793π-0.421793\pi
0.243229 + 0.969969i 0.421793π0.421793\pi
600600 0 0
601601 −4.97463e6 −0.561791 −0.280895 0.959738i 0.590631π-0.590631\pi
−0.280895 + 0.959738i 0.590631π0.590631\pi
602602 0 0
603603 −3.33073e6 −0.373032
604604 0 0
605605 9.87488e6 1.09684
606606 0 0
607607 −9.85476e6 −1.08561 −0.542806 0.839858i 0.682638π-0.682638\pi
−0.542806 + 0.839858i 0.682638π0.682638\pi
608608 0 0
609609 −1.32449e6 −0.144713
610610 0 0
611611 −4.26689e6 −0.462390
612612 0 0
613613 −9.84769e6 −1.05848 −0.529241 0.848472i 0.677523π-0.677523\pi
−0.529241 + 0.848472i 0.677523π0.677523\pi
614614 0 0
615615 9.89355e6 1.05479
616616 0 0
617617 −5.41851e6 −0.573016 −0.286508 0.958078i 0.592495π-0.592495\pi
−0.286508 + 0.958078i 0.592495π0.592495\pi
618618 0 0
619619 −6.15964e6 −0.646143 −0.323071 0.946375i 0.604715π-0.604715\pi
−0.323071 + 0.946375i 0.604715π0.604715\pi
620620 0 0
621621 1.56093e6 0.162426
622622 0 0
623623 2.19037e6 0.226098
624624 0 0
625625 −1.13689e7 −1.16417
626626 0 0
627627 2599.11 0.000264031 0
628628 0 0
629629 9.41819e6 0.949163
630630 0 0
631631 −1.92146e6 −0.192114 −0.0960569 0.995376i 0.530623π-0.530623\pi
−0.0960569 + 0.995376i 0.530623π0.530623\pi
632632 0 0
633633 −3.88337e6 −0.385212
634634 0 0
635635 1.56225e7 1.53751
636636 0 0
637637 2.47784e6 0.241950
638638 0 0
639639 −1.69407e6 −0.164126
640640 0 0
641641 −1.24396e7 −1.19581 −0.597904 0.801568i 0.704000π-0.704000\pi
−0.597904 + 0.801568i 0.704000π0.704000\pi
642642 0 0
643643 2.05927e6 0.196420 0.0982102 0.995166i 0.468688π-0.468688\pi
0.0982102 + 0.995166i 0.468688π0.468688\pi
644644 0 0
645645 −1.96679e6 −0.186148
646646 0 0
647647 8.23244e6 0.773158 0.386579 0.922256i 0.373657π-0.373657\pi
0.386579 + 0.922256i 0.373657π0.373657\pi
648648 0 0
649649 −595524. −0.0554993
650650 0 0
651651 −1.68151e6 −0.155506
652652 0 0
653653 −1.66572e7 −1.52869 −0.764345 0.644807i 0.776938π-0.776938\pi
−0.764345 + 0.644807i 0.776938π0.776938\pi
654654 0 0
655655 −1.56292e7 −1.42342
656656 0 0
657657 −5.75816e6 −0.520440
658658 0 0
659659 −7.94491e6 −0.712649 −0.356324 0.934362i 0.615970π-0.615970\pi
−0.356324 + 0.934362i 0.615970π0.615970\pi
660660 0 0
661661 1.76591e7 1.57205 0.786024 0.618196i 0.212136π-0.212136\pi
0.786024 + 0.618196i 0.212136π0.212136\pi
662662 0 0
663663 −1.00269e6 −0.0885897
664664 0 0
665665 50400.7 0.00441959
666666 0 0
667667 −6.80344e6 −0.592126
668668 0 0
669669 −1.27690e7 −1.10304
670670 0 0
671671 106123. 0.00909916
672672 0 0
673673 −6.75780e6 −0.575132 −0.287566 0.957761i 0.592846π-0.592846\pi
−0.287566 + 0.957761i 0.592846π0.592846\pi
674674 0 0
675675 471660. 0.0398446
676676 0 0
677677 6.59598e6 0.553105 0.276552 0.960999i 0.410808π-0.410808\pi
0.276552 + 0.960999i 0.410808π0.410808\pi
678678 0 0
679679 −1.84013e6 −0.153170
680680 0 0
681681 −2.34988e6 −0.194168
682682 0 0
683683 1.33104e7 1.09179 0.545897 0.837852i 0.316189π-0.316189\pi
0.545897 + 0.837852i 0.316189π0.316189\pi
684684 0 0
685685 1.52671e7 1.24317
686686 0 0
687687 −687018. −0.0555362
688688 0 0
689689 896813. 0.0719704
690690 0 0
691691 1.55105e7 1.23575 0.617873 0.786278i 0.287994π-0.287994\pi
0.617873 + 0.786278i 0.287994π0.287994\pi
692692 0 0
693693 −61148.7 −0.00483676
694694 0 0
695695 2.58333e6 0.202870
696696 0 0
697697 −1.17995e7 −0.919983
698698 0 0
699699 5.53402e6 0.428399
700700 0 0
701701 1.02799e7 0.790124 0.395062 0.918654i 0.370723π-0.370723\pi
0.395062 + 0.918654i 0.370723π0.370723\pi
702702 0 0
703703 −253131. −0.0193177
704704 0 0
705705 −1.39558e7 −1.05750
706706 0 0
707707 −3.51367e6 −0.264370
708708 0 0
709709 −1.47793e7 −1.10417 −0.552086 0.833787i 0.686168π-0.686168\pi
−0.552086 + 0.833787i 0.686168π0.686168\pi
710710 0 0
711711 −3.98341e6 −0.295516
712712 0 0
713713 −8.63731e6 −0.636289
714714 0 0
715715 −169176. −0.0123758
716716 0 0
717717 −2.17449e6 −0.157964
718718 0 0
719719 −2.24114e7 −1.61677 −0.808383 0.588657i 0.799657π-0.799657\pi
−0.808383 + 0.588657i 0.799657π0.799657\pi
720720 0 0
721721 −6.17960e6 −0.442713
722722 0 0
723723 −8.15896e6 −0.580483
724724 0 0
725725 −2.05576e6 −0.145254
726726 0 0
727727 5.73926e6 0.402735 0.201368 0.979516i 0.435461π-0.435461\pi
0.201368 + 0.979516i 0.435461π0.435461\pi
728728 0 0
729729 531441. 0.0370370
730730 0 0
731731 2.34567e6 0.162358
732732 0 0
733733 1.21128e7 0.832694 0.416347 0.909206i 0.363310π-0.363310\pi
0.416347 + 0.909206i 0.363310π0.363310\pi
734734 0 0
735735 8.10429e6 0.553346
736736 0 0
737737 670226. 0.0454519
738738 0 0
739739 −1.12661e7 −0.758863 −0.379432 0.925220i 0.623880π-0.623880\pi
−0.379432 + 0.925220i 0.623880π0.623880\pi
740740 0 0
741741 26949.1 0.00180301
742742 0 0
743743 1.70415e7 1.13250 0.566248 0.824235i 0.308394π-0.308394\pi
0.566248 + 0.824235i 0.308394π0.308394\pi
744744 0 0
745745 −1.12712e7 −0.744008
746746 0 0
747747 −8.09514e6 −0.530790
748748 0 0
749749 121764. 0.00793074
750750 0 0
751751 −9.96885e6 −0.644979 −0.322489 0.946573i 0.604520π-0.604520\pi
−0.322489 + 0.946573i 0.604520π0.604520\pi
752752 0 0
753753 −1.39713e7 −0.897945
754754 0 0
755755 586168. 0.0374244
756756 0 0
757757 7.74370e6 0.491144 0.245572 0.969378i 0.421024π-0.421024\pi
0.245572 + 0.969378i 0.421024π0.421024\pi
758758 0 0
759759 −314099. −0.0197907
760760 0 0
761761 −5.83133e6 −0.365011 −0.182505 0.983205i 0.558421π-0.558421\pi
−0.182505 + 0.983205i 0.558421π0.558421\pi
762762 0 0
763763 8.76708e6 0.545184
764764 0 0
765765 −3.27951e6 −0.202607
766766 0 0
767767 −6.17475e6 −0.378993
768768 0 0
769769 −2.48999e7 −1.51839 −0.759193 0.650866i 0.774406π-0.774406\pi
−0.759193 + 0.650866i 0.774406π0.774406\pi
770770 0 0
771771 −1.23573e7 −0.748663
772772 0 0
773773 697284. 0.0419721 0.0209861 0.999780i 0.493319π-0.493319\pi
0.0209861 + 0.999780i 0.493319π0.493319\pi
774774 0 0
775775 −2.60989e6 −0.156088
776776 0 0
777777 5.95535e6 0.353879
778778 0 0
779779 317131. 0.0187239
780780 0 0
781781 340889. 0.0199979
782782 0 0
783783 −2.31633e6 −0.135019
784784 0 0
785785 1.53730e7 0.890398
786786 0 0
787787 −1.21605e7 −0.699865 −0.349933 0.936775i 0.613796π-0.613796\pi
−0.349933 + 0.936775i 0.613796π0.613796\pi
788788 0 0
789789 4.12084e6 0.235664
790790 0 0
791791 −7.03934e6 −0.400028
792792 0 0
793793 1.10034e6 0.0621362
794794 0 0
795795 2.93321e6 0.164598
796796 0 0
797797 9.61296e6 0.536058 0.268029 0.963411i 0.413628π-0.413628\pi
0.268029 + 0.963411i 0.413628π0.413628\pi
798798 0 0
799799 1.66442e7 0.922351
800800 0 0
801801 3.83060e6 0.210953
802802 0 0
803803 1.15869e6 0.0634128
804804 0 0
805805 −6.09085e6 −0.331274
806806 0 0
807807 −1.72514e7 −0.932482
808808 0 0
809809 −2.32130e7 −1.24698 −0.623492 0.781830i 0.714287π-0.714287\pi
−0.623492 + 0.781830i 0.714287π0.714287\pi
810810 0 0
811811 4.90107e6 0.261661 0.130830 0.991405i 0.458236π-0.458236\pi
0.130830 + 0.991405i 0.458236π0.458236\pi
812812 0 0
813813 1.63208e7 0.865994
814814 0 0
815815 −1.34914e7 −0.711482
816816 0 0
817817 −63044.1 −0.00330437
818818 0 0
819819 −634026. −0.0330291
820820 0 0
821821 1.38159e7 0.715354 0.357677 0.933845i 0.383569π-0.383569\pi
0.357677 + 0.933845i 0.383569π0.383569\pi
822822 0 0
823823 2.74254e7 1.41141 0.705706 0.708505i 0.250630π-0.250630\pi
0.705706 + 0.708505i 0.250630π0.250630\pi
824824 0 0
825825 −94909.7 −0.00485485
826826 0 0
827827 −2.28348e7 −1.16100 −0.580502 0.814259i 0.697143π-0.697143\pi
−0.580502 + 0.814259i 0.697143π0.697143\pi
828828 0 0
829829 1.83487e7 0.927297 0.463649 0.886019i 0.346540π-0.346540\pi
0.463649 + 0.886019i 0.346540π0.346540\pi
830830 0 0
831831 −7.12877e6 −0.358106
832832 0 0
833833 −9.66551e6 −0.482628
834834 0 0
835835 5.67219e6 0.281537
836836 0 0
837837 −2.94069e6 −0.145089
838838 0 0
839839 −6.63289e6 −0.325310 −0.162655 0.986683i 0.552006π-0.552006\pi
−0.162655 + 0.986683i 0.552006π0.552006\pi
840840 0 0
841841 −1.04153e7 −0.507786
842842 0 0
843843 −816399. −0.0395670
844844 0 0
845845 −1.75412e6 −0.0845118
846846 0 0
847847 −7.44701e6 −0.356676
848848 0 0
849849 7.28443e6 0.346838
850850 0 0
851851 3.05905e7 1.44798
852852 0 0
853853 −3.02938e7 −1.42554 −0.712772 0.701395i 0.752561π-0.752561\pi
−0.712772 + 0.701395i 0.752561π0.752561\pi
854854 0 0
855855 88142.6 0.00412354
856856 0 0
857857 −1.37741e7 −0.640636 −0.320318 0.947310i 0.603790π-0.603790\pi
−0.320318 + 0.947310i 0.603790π0.603790\pi
858858 0 0
859859 −2.06680e7 −0.955687 −0.477843 0.878445i 0.658581π-0.658581\pi
−0.477843 + 0.878445i 0.658581π0.658581\pi
860860 0 0
861861 −7.46108e6 −0.343000
862862 0 0
863863 1.17441e7 0.536775 0.268387 0.963311i 0.413509π-0.413509\pi
0.268387 + 0.963311i 0.413509π0.413509\pi
864864 0 0
865865 1.45380e7 0.660641
866866 0 0
867867 −8.86744e6 −0.400636
868868 0 0
869869 801562. 0.0360071
870870 0 0
871871 6.94930e6 0.310381
872872 0 0
873873 −3.21809e6 −0.142910
874874 0 0
875875 7.04893e6 0.311245
876876 0 0
877877 7.54480e6 0.331245 0.165622 0.986189i 0.447037π-0.447037\pi
0.165622 + 0.986189i 0.447037π0.447037\pi
878878 0 0
879879 1.09920e7 0.479850
880880 0 0
881881 −7.88797e6 −0.342394 −0.171197 0.985237i 0.554763π-0.554763\pi
−0.171197 + 0.985237i 0.554763π0.554763\pi
882882 0 0
883883 −2.26784e7 −0.978836 −0.489418 0.872049i 0.662791π-0.662791\pi
−0.489418 + 0.872049i 0.662791π0.662791\pi
884884 0 0
885885 −2.01958e7 −0.866767
886886 0 0
887887 −3.42780e7 −1.46287 −0.731436 0.681911i 0.761149π-0.761149\pi
−0.731436 + 0.681911i 0.761149π0.761149\pi
888888 0 0
889889 −1.17815e7 −0.499973
890890 0 0
891891 −106939. −0.00451276
892892 0 0
893893 −447343. −0.0187721
894894 0 0
895895 3.22575e7 1.34609
896896 0 0
897897 −3.25676e6 −0.135146
898898 0 0
899899 1.28172e7 0.528926
900900 0 0
901901 −3.49827e6 −0.143563
902902 0 0
903903 1.48322e6 0.0605323
904904 0 0
905905 4.82073e7 1.95655
906906 0 0
907907 −3.53458e7 −1.42666 −0.713328 0.700830i 0.752813π-0.752813\pi
−0.713328 + 0.700830i 0.752813π0.752813\pi
908908 0 0
909909 −6.14484e6 −0.246661
910910 0 0
911911 −1.18935e7 −0.474804 −0.237402 0.971411i 0.576296π-0.576296\pi
−0.237402 + 0.971411i 0.576296π0.576296\pi
912912 0 0
913913 1.62894e6 0.0646739
914914 0 0
915915 3.59889e6 0.142107
916916 0 0
917917 1.17866e7 0.462876
918918 0 0
919919 2.49027e7 0.972653 0.486327 0.873777i 0.338337π-0.338337\pi
0.486327 + 0.873777i 0.338337π0.338337\pi
920920 0 0
921921 −3.47042e6 −0.134814
922922 0 0
923923 3.53454e6 0.136561
924924 0 0
925925 9.24338e6 0.355203
926926 0 0
927927 −1.08071e7 −0.413058
928928 0 0
929929 −1.51280e7 −0.575097 −0.287549 0.957766i 0.592840π-0.592840\pi
−0.287549 + 0.957766i 0.592840π0.592840\pi
930930 0 0
931931 259778. 0.00982263
932932 0 0
933933 1.03263e7 0.388366
934934 0 0
935935 659918. 0.0246866
936936 0 0
937937 −4.75041e6 −0.176759 −0.0883797 0.996087i 0.528169π-0.528169\pi
−0.0883797 + 0.996087i 0.528169π0.528169\pi
938938 0 0
939939 2.81855e7 1.04319
940940 0 0
941941 −2.34813e7 −0.864466 −0.432233 0.901762i 0.642274π-0.642274\pi
−0.432233 + 0.901762i 0.642274π0.642274\pi
942942 0 0
943943 −3.83249e7 −1.40346
944944 0 0
945945 −2.07371e6 −0.0755386
946946 0 0
947947 7.01784e6 0.254289 0.127145 0.991884i 0.459419π-0.459419\pi
0.127145 + 0.991884i 0.459419π0.459419\pi
948948 0 0
949949 1.20139e7 0.433032
950950 0 0
951951 7.80385e6 0.279807
952952 0 0
953953 3.35891e7 1.19803 0.599013 0.800739i 0.295560π-0.295560\pi
0.599013 + 0.800739i 0.295560π0.295560\pi
954954 0 0
955955 −3.50913e7 −1.24506
956956 0 0
957957 466103. 0.0164514
958958 0 0
959959 −1.15135e7 −0.404259
960960 0 0
961961 −1.23571e7 −0.431625
962962 0 0
963963 212945. 0.00739950
964964 0 0
965965 4.46287e7 1.54275
966966 0 0
967967 6.65688e6 0.228931 0.114466 0.993427i 0.463484π-0.463484\pi
0.114466 + 0.993427i 0.463484π0.463484\pi
968968 0 0
969969 −105122. −0.00359655
970970 0 0
971971 1.05043e6 0.0357537 0.0178769 0.999840i 0.494309π-0.494309\pi
0.0178769 + 0.999840i 0.494309π0.494309\pi
972972 0 0
973973 −1.94818e6 −0.0659702
974974 0 0
975975 −984080. −0.0331527
976976 0 0
977977 −7.59396e6 −0.254526 −0.127263 0.991869i 0.540619π-0.540619\pi
−0.127263 + 0.991869i 0.540619π0.540619\pi
978978 0 0
979979 −770813. −0.0257035
980980 0 0
981981 1.53322e7 0.508665
982982 0 0
983983 −3.33190e7 −1.09978 −0.549892 0.835235i 0.685331π-0.685331\pi
−0.549892 + 0.835235i 0.685331π0.685331\pi
984984 0 0
985985 −2.99766e6 −0.0984447
986986 0 0
987987 1.05245e7 0.343883
988988 0 0
989989 7.61878e6 0.247682
990990 0 0
991991 −5.11503e7 −1.65449 −0.827245 0.561841i 0.810093π-0.810093\pi
−0.827245 + 0.561841i 0.810093π0.810093\pi
992992 0 0
993993 −4.09014e6 −0.131633
994994 0 0
995995 −6.44675e7 −2.06435
996996 0 0
997997 −5.11313e7 −1.62911 −0.814553 0.580089i 0.803018π-0.803018\pi
−0.814553 + 0.580089i 0.803018π0.803018\pi
998998 0 0
999999 1.04149e7 0.330174
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.k.1.1 2
4.3 odd 2 39.6.a.b.1.2 2
12.11 even 2 117.6.a.b.1.1 2
20.19 odd 2 975.6.a.c.1.1 2
52.51 odd 2 507.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.b.1.2 2 4.3 odd 2
117.6.a.b.1.1 2 12.11 even 2
507.6.a.c.1.1 2 52.51 odd 2
624.6.a.k.1.1 2 1.1 even 1 trivial
975.6.a.c.1.1 2 20.19 odd 2