Properties

Label 624.6.a.k.1.2
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.74166\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +13.4166 q^{5} -118.316 q^{7} +81.0000 q^{9} +612.299 q^{11} -169.000 q^{13} +120.749 q^{15} -927.231 q^{17} -1110.28 q^{19} -1064.85 q^{21} -373.197 q^{23} -2945.00 q^{25} +729.000 q^{27} -4434.60 q^{29} +8193.87 q^{31} +5510.69 q^{33} -1587.40 q^{35} +3181.38 q^{37} -1521.00 q^{39} -10101.2 q^{41} +20769.8 q^{43} +1086.74 q^{45} -7139.89 q^{47} -2808.21 q^{49} -8345.08 q^{51} +6726.59 q^{53} +8214.96 q^{55} -9992.54 q^{57} -43325.0 q^{59} -30637.1 q^{61} -9583.63 q^{63} -2267.40 q^{65} -64991.9 q^{67} -3358.77 q^{69} +51374.4 q^{71} +33468.4 q^{73} -26505.0 q^{75} -72445.1 q^{77} +51337.9 q^{79} +6561.00 q^{81} -107064. q^{83} -12440.3 q^{85} -39911.4 q^{87} -121427. q^{89} +19995.5 q^{91} +73744.8 q^{93} -14896.2 q^{95} -81426.5 q^{97} +49596.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} - 48 q^{5} - 72 q^{7} + 162 q^{9} + 596 q^{11} - 338 q^{13} - 432 q^{15} - 268 q^{17} - 1128 q^{19} - 648 q^{21} + 1768 q^{23} - 2298 q^{25} + 1458 q^{27} - 7612 q^{29} + 4160 q^{31} + 5364 q^{33}+ \cdots + 48276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 13.4166 0.240003 0.120001 0.992774i \(-0.461710\pi\)
0.120001 + 0.992774i \(0.461710\pi\)
\(6\) 0 0
\(7\) −118.316 −0.912641 −0.456321 0.889815i \(-0.650833\pi\)
−0.456321 + 0.889815i \(0.650833\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 612.299 1.52575 0.762873 0.646549i \(-0.223788\pi\)
0.762873 + 0.646549i \(0.223788\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) 120.749 0.138566
\(16\) 0 0
\(17\) −927.231 −0.778154 −0.389077 0.921205i \(-0.627206\pi\)
−0.389077 + 0.921205i \(0.627206\pi\)
\(18\) 0 0
\(19\) −1110.28 −0.705585 −0.352792 0.935702i \(-0.614768\pi\)
−0.352792 + 0.935702i \(0.614768\pi\)
\(20\) 0 0
\(21\) −1064.85 −0.526914
\(22\) 0 0
\(23\) −373.197 −0.147102 −0.0735510 0.997291i \(-0.523433\pi\)
−0.0735510 + 0.997291i \(0.523433\pi\)
\(24\) 0 0
\(25\) −2945.00 −0.942399
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4434.60 −0.979173 −0.489586 0.871955i \(-0.662852\pi\)
−0.489586 + 0.871955i \(0.662852\pi\)
\(30\) 0 0
\(31\) 8193.87 1.53139 0.765693 0.643206i \(-0.222396\pi\)
0.765693 + 0.643206i \(0.222396\pi\)
\(32\) 0 0
\(33\) 5510.69 0.880889
\(34\) 0 0
\(35\) −1587.40 −0.219037
\(36\) 0 0
\(37\) 3181.38 0.382042 0.191021 0.981586i \(-0.438820\pi\)
0.191021 + 0.981586i \(0.438820\pi\)
\(38\) 0 0
\(39\) −1521.00 −0.160128
\(40\) 0 0
\(41\) −10101.2 −0.938454 −0.469227 0.883078i \(-0.655467\pi\)
−0.469227 + 0.883078i \(0.655467\pi\)
\(42\) 0 0
\(43\) 20769.8 1.71302 0.856508 0.516134i \(-0.172629\pi\)
0.856508 + 0.516134i \(0.172629\pi\)
\(44\) 0 0
\(45\) 1086.74 0.0800010
\(46\) 0 0
\(47\) −7139.89 −0.471462 −0.235731 0.971818i \(-0.575748\pi\)
−0.235731 + 0.971818i \(0.575748\pi\)
\(48\) 0 0
\(49\) −2808.21 −0.167086
\(50\) 0 0
\(51\) −8345.08 −0.449268
\(52\) 0 0
\(53\) 6726.59 0.328931 0.164466 0.986383i \(-0.447410\pi\)
0.164466 + 0.986383i \(0.447410\pi\)
\(54\) 0 0
\(55\) 8214.96 0.366183
\(56\) 0 0
\(57\) −9992.54 −0.407370
\(58\) 0 0
\(59\) −43325.0 −1.62035 −0.810174 0.586190i \(-0.800627\pi\)
−0.810174 + 0.586190i \(0.800627\pi\)
\(60\) 0 0
\(61\) −30637.1 −1.05420 −0.527100 0.849803i \(-0.676721\pi\)
−0.527100 + 0.849803i \(0.676721\pi\)
\(62\) 0 0
\(63\) −9583.63 −0.304214
\(64\) 0 0
\(65\) −2267.40 −0.0665648
\(66\) 0 0
\(67\) −64991.9 −1.76877 −0.884387 0.466755i \(-0.845423\pi\)
−0.884387 + 0.466755i \(0.845423\pi\)
\(68\) 0 0
\(69\) −3358.77 −0.0849293
\(70\) 0 0
\(71\) 51374.4 1.20949 0.604743 0.796421i \(-0.293276\pi\)
0.604743 + 0.796421i \(0.293276\pi\)
\(72\) 0 0
\(73\) 33468.4 0.735069 0.367535 0.930010i \(-0.380202\pi\)
0.367535 + 0.930010i \(0.380202\pi\)
\(74\) 0 0
\(75\) −26505.0 −0.544094
\(76\) 0 0
\(77\) −72445.1 −1.39246
\(78\) 0 0
\(79\) 51337.9 0.925488 0.462744 0.886492i \(-0.346865\pi\)
0.462744 + 0.886492i \(0.346865\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −107064. −1.70588 −0.852940 0.522009i \(-0.825183\pi\)
−0.852940 + 0.522009i \(0.825183\pi\)
\(84\) 0 0
\(85\) −12440.3 −0.186759
\(86\) 0 0
\(87\) −39911.4 −0.565326
\(88\) 0 0
\(89\) −121427. −1.62496 −0.812478 0.582992i \(-0.801882\pi\)
−0.812478 + 0.582992i \(0.801882\pi\)
\(90\) 0 0
\(91\) 19995.5 0.253121
\(92\) 0 0
\(93\) 73744.8 0.884146
\(94\) 0 0
\(95\) −14896.2 −0.169342
\(96\) 0 0
\(97\) −81426.5 −0.878692 −0.439346 0.898318i \(-0.644790\pi\)
−0.439346 + 0.898318i \(0.644790\pi\)
\(98\) 0 0
\(99\) 49596.2 0.508582
\(100\) 0 0
\(101\) 166986. 1.62884 0.814418 0.580279i \(-0.197056\pi\)
0.814418 + 0.580279i \(0.197056\pi\)
\(102\) 0 0
\(103\) 38605.2 0.358553 0.179276 0.983799i \(-0.442624\pi\)
0.179276 + 0.983799i \(0.442624\pi\)
\(104\) 0 0
\(105\) −14286.6 −0.126461
\(106\) 0 0
\(107\) 73451.0 0.620210 0.310105 0.950702i \(-0.399636\pi\)
0.310105 + 0.950702i \(0.399636\pi\)
\(108\) 0 0
\(109\) −102802. −0.828775 −0.414388 0.910100i \(-0.636004\pi\)
−0.414388 + 0.910100i \(0.636004\pi\)
\(110\) 0 0
\(111\) 28632.4 0.220572
\(112\) 0 0
\(113\) −58292.4 −0.429454 −0.214727 0.976674i \(-0.568886\pi\)
−0.214727 + 0.976674i \(0.568886\pi\)
\(114\) 0 0
\(115\) −5007.02 −0.0353049
\(116\) 0 0
\(117\) −13689.0 −0.0924500
\(118\) 0 0
\(119\) 109707. 0.710176
\(120\) 0 0
\(121\) 213859. 1.32790
\(122\) 0 0
\(123\) −90910.7 −0.541817
\(124\) 0 0
\(125\) −81438.5 −0.466181
\(126\) 0 0
\(127\) −84798.0 −0.466527 −0.233263 0.972414i \(-0.574940\pi\)
−0.233263 + 0.972414i \(0.574940\pi\)
\(128\) 0 0
\(129\) 186928. 0.989010
\(130\) 0 0
\(131\) −130223. −0.662994 −0.331497 0.943456i \(-0.607554\pi\)
−0.331497 + 0.943456i \(0.607554\pi\)
\(132\) 0 0
\(133\) 131365. 0.643946
\(134\) 0 0
\(135\) 9780.68 0.0461886
\(136\) 0 0
\(137\) −100697. −0.458371 −0.229185 0.973383i \(-0.573606\pi\)
−0.229185 + 0.973383i \(0.573606\pi\)
\(138\) 0 0
\(139\) −336666. −1.47796 −0.738978 0.673729i \(-0.764691\pi\)
−0.738978 + 0.673729i \(0.764691\pi\)
\(140\) 0 0
\(141\) −64259.0 −0.272199
\(142\) 0 0
\(143\) −103479. −0.423166
\(144\) 0 0
\(145\) −59497.1 −0.235004
\(146\) 0 0
\(147\) −25273.9 −0.0964672
\(148\) 0 0
\(149\) 110168. 0.406528 0.203264 0.979124i \(-0.434845\pi\)
0.203264 + 0.979124i \(0.434845\pi\)
\(150\) 0 0
\(151\) −402104. −1.43515 −0.717573 0.696484i \(-0.754747\pi\)
−0.717573 + 0.696484i \(0.754747\pi\)
\(152\) 0 0
\(153\) −75105.7 −0.259385
\(154\) 0 0
\(155\) 109934. 0.367537
\(156\) 0 0
\(157\) −337233. −1.09190 −0.545948 0.837819i \(-0.683830\pi\)
−0.545948 + 0.837819i \(0.683830\pi\)
\(158\) 0 0
\(159\) 60539.3 0.189908
\(160\) 0 0
\(161\) 44155.3 0.134251
\(162\) 0 0
\(163\) −416815. −1.22878 −0.614390 0.789002i \(-0.710598\pi\)
−0.614390 + 0.789002i \(0.710598\pi\)
\(164\) 0 0
\(165\) 73934.6 0.211416
\(166\) 0 0
\(167\) 219728. 0.609669 0.304835 0.952405i \(-0.401399\pi\)
0.304835 + 0.952405i \(0.401399\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −89932.8 −0.235195
\(172\) 0 0
\(173\) −438612. −1.11421 −0.557103 0.830444i \(-0.688087\pi\)
−0.557103 + 0.830444i \(0.688087\pi\)
\(174\) 0 0
\(175\) 348441. 0.860072
\(176\) 0 0
\(177\) −389925. −0.935508
\(178\) 0 0
\(179\) 489393. 1.14163 0.570815 0.821079i \(-0.306628\pi\)
0.570815 + 0.821079i \(0.306628\pi\)
\(180\) 0 0
\(181\) −143753. −0.326152 −0.163076 0.986614i \(-0.552142\pi\)
−0.163076 + 0.986614i \(0.552142\pi\)
\(182\) 0 0
\(183\) −275734. −0.608643
\(184\) 0 0
\(185\) 42683.2 0.0916913
\(186\) 0 0
\(187\) −567743. −1.18727
\(188\) 0 0
\(189\) −86252.7 −0.175638
\(190\) 0 0
\(191\) −673141. −1.33513 −0.667563 0.744553i \(-0.732663\pi\)
−0.667563 + 0.744553i \(0.732663\pi\)
\(192\) 0 0
\(193\) 719060. 1.38954 0.694772 0.719230i \(-0.255505\pi\)
0.694772 + 0.719230i \(0.255505\pi\)
\(194\) 0 0
\(195\) −20406.6 −0.0384312
\(196\) 0 0
\(197\) −862345. −1.58313 −0.791563 0.611088i \(-0.790732\pi\)
−0.791563 + 0.611088i \(0.790732\pi\)
\(198\) 0 0
\(199\) −709292. −1.26967 −0.634837 0.772646i \(-0.718933\pi\)
−0.634837 + 0.772646i \(0.718933\pi\)
\(200\) 0 0
\(201\) −584927. −1.02120
\(202\) 0 0
\(203\) 524686. 0.893633
\(204\) 0 0
\(205\) −135523. −0.225232
\(206\) 0 0
\(207\) −30228.9 −0.0490340
\(208\) 0 0
\(209\) −679825. −1.07654
\(210\) 0 0
\(211\) 611270. 0.945206 0.472603 0.881275i \(-0.343314\pi\)
0.472603 + 0.881275i \(0.343314\pi\)
\(212\) 0 0
\(213\) 462370. 0.698297
\(214\) 0 0
\(215\) 278660. 0.411129
\(216\) 0 0
\(217\) −969469. −1.39761
\(218\) 0 0
\(219\) 301216. 0.424392
\(220\) 0 0
\(221\) 156702. 0.215821
\(222\) 0 0
\(223\) 1.24428e6 1.67555 0.837773 0.546019i \(-0.183857\pi\)
0.837773 + 0.546019i \(0.183857\pi\)
\(224\) 0 0
\(225\) −238545. −0.314133
\(226\) 0 0
\(227\) 671174. 0.864511 0.432255 0.901751i \(-0.357718\pi\)
0.432255 + 0.901751i \(0.357718\pi\)
\(228\) 0 0
\(229\) −201277. −0.253632 −0.126816 0.991926i \(-0.540476\pi\)
−0.126816 + 0.991926i \(0.540476\pi\)
\(230\) 0 0
\(231\) −652006. −0.803936
\(232\) 0 0
\(233\) 371265. 0.448016 0.224008 0.974587i \(-0.428086\pi\)
0.224008 + 0.974587i \(0.428086\pi\)
\(234\) 0 0
\(235\) −95792.9 −0.113152
\(236\) 0 0
\(237\) 462041. 0.534331
\(238\) 0 0
\(239\) −139866. −0.158387 −0.0791934 0.996859i \(-0.525234\pi\)
−0.0791934 + 0.996859i \(0.525234\pi\)
\(240\) 0 0
\(241\) −208957. −0.231747 −0.115873 0.993264i \(-0.536967\pi\)
−0.115873 + 0.993264i \(0.536967\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −37676.6 −0.0401011
\(246\) 0 0
\(247\) 187638. 0.195694
\(248\) 0 0
\(249\) −963577. −0.984890
\(250\) 0 0
\(251\) −1.57949e6 −1.58246 −0.791229 0.611521i \(-0.790558\pi\)
−0.791229 + 0.611521i \(0.790558\pi\)
\(252\) 0 0
\(253\) −228508. −0.224440
\(254\) 0 0
\(255\) −111962. −0.107826
\(256\) 0 0
\(257\) 1.42319e6 1.34409 0.672046 0.740510i \(-0.265416\pi\)
0.672046 + 0.740510i \(0.265416\pi\)
\(258\) 0 0
\(259\) −376410. −0.348667
\(260\) 0 0
\(261\) −359202. −0.326391
\(262\) 0 0
\(263\) −377447. −0.336485 −0.168243 0.985746i \(-0.553809\pi\)
−0.168243 + 0.985746i \(0.553809\pi\)
\(264\) 0 0
\(265\) 90247.7 0.0789444
\(266\) 0 0
\(267\) −1.09285e6 −0.938169
\(268\) 0 0
\(269\) −186022. −0.156741 −0.0783705 0.996924i \(-0.524972\pi\)
−0.0783705 + 0.996924i \(0.524972\pi\)
\(270\) 0 0
\(271\) −394501. −0.326306 −0.163153 0.986601i \(-0.552166\pi\)
−0.163153 + 0.986601i \(0.552166\pi\)
\(272\) 0 0
\(273\) 179959. 0.146140
\(274\) 0 0
\(275\) −1.80322e6 −1.43786
\(276\) 0 0
\(277\) 801681. 0.627773 0.313886 0.949461i \(-0.398369\pi\)
0.313886 + 0.949461i \(0.398369\pi\)
\(278\) 0 0
\(279\) 663703. 0.510462
\(280\) 0 0
\(281\) −258921. −0.195615 −0.0978073 0.995205i \(-0.531183\pi\)
−0.0978073 + 0.995205i \(0.531183\pi\)
\(282\) 0 0
\(283\) −1.39529e6 −1.03562 −0.517809 0.855496i \(-0.673252\pi\)
−0.517809 + 0.855496i \(0.673252\pi\)
\(284\) 0 0
\(285\) −134066. −0.0977699
\(286\) 0 0
\(287\) 1.19514e6 0.856472
\(288\) 0 0
\(289\) −560099. −0.394476
\(290\) 0 0
\(291\) −732839. −0.507313
\(292\) 0 0
\(293\) 1.67750e6 1.14155 0.570774 0.821107i \(-0.306643\pi\)
0.570774 + 0.821107i \(0.306643\pi\)
\(294\) 0 0
\(295\) −581273. −0.388888
\(296\) 0 0
\(297\) 446366. 0.293630
\(298\) 0 0
\(299\) 63070.3 0.0407987
\(300\) 0 0
\(301\) −2.45741e6 −1.56337
\(302\) 0 0
\(303\) 1.50288e6 0.940409
\(304\) 0 0
\(305\) −411045. −0.253011
\(306\) 0 0
\(307\) −1.03523e6 −0.626889 −0.313444 0.949607i \(-0.601483\pi\)
−0.313444 + 0.949607i \(0.601483\pi\)
\(308\) 0 0
\(309\) 347447. 0.207010
\(310\) 0 0
\(311\) 405024. 0.237454 0.118727 0.992927i \(-0.462119\pi\)
0.118727 + 0.992927i \(0.462119\pi\)
\(312\) 0 0
\(313\) −1.87084e6 −1.07939 −0.539693 0.841862i \(-0.681460\pi\)
−0.539693 + 0.841862i \(0.681460\pi\)
\(314\) 0 0
\(315\) −128580. −0.0730122
\(316\) 0 0
\(317\) 65497.1 0.0366078 0.0183039 0.999832i \(-0.494173\pi\)
0.0183039 + 0.999832i \(0.494173\pi\)
\(318\) 0 0
\(319\) −2.71530e6 −1.49397
\(320\) 0 0
\(321\) 661059. 0.358078
\(322\) 0 0
\(323\) 1.02949e6 0.549054
\(324\) 0 0
\(325\) 497704. 0.261374
\(326\) 0 0
\(327\) −925221. −0.478494
\(328\) 0 0
\(329\) 844767. 0.430276
\(330\) 0 0
\(331\) 1.39675e6 0.700726 0.350363 0.936614i \(-0.386058\pi\)
0.350363 + 0.936614i \(0.386058\pi\)
\(332\) 0 0
\(333\) 257692. 0.127347
\(334\) 0 0
\(335\) −871968. −0.424511
\(336\) 0 0
\(337\) −1.31579e6 −0.631121 −0.315561 0.948905i \(-0.602193\pi\)
−0.315561 + 0.948905i \(0.602193\pi\)
\(338\) 0 0
\(339\) −524632. −0.247945
\(340\) 0 0
\(341\) 5.01710e6 2.33651
\(342\) 0 0
\(343\) 2.32080e6 1.06513
\(344\) 0 0
\(345\) −45063.2 −0.0203833
\(346\) 0 0
\(347\) −1.12101e6 −0.499790 −0.249895 0.968273i \(-0.580396\pi\)
−0.249895 + 0.968273i \(0.580396\pi\)
\(348\) 0 0
\(349\) −733696. −0.322443 −0.161221 0.986918i \(-0.551543\pi\)
−0.161221 + 0.986918i \(0.551543\pi\)
\(350\) 0 0
\(351\) −123201. −0.0533761
\(352\) 0 0
\(353\) −190812. −0.0815021 −0.0407510 0.999169i \(-0.512975\pi\)
−0.0407510 + 0.999169i \(0.512975\pi\)
\(354\) 0 0
\(355\) 689269. 0.290280
\(356\) 0 0
\(357\) 987361. 0.410020
\(358\) 0 0
\(359\) −530326. −0.217174 −0.108587 0.994087i \(-0.534633\pi\)
−0.108587 + 0.994087i \(0.534633\pi\)
\(360\) 0 0
\(361\) −1.24337e6 −0.502150
\(362\) 0 0
\(363\) 1.92473e6 0.766662
\(364\) 0 0
\(365\) 449032. 0.176419
\(366\) 0 0
\(367\) 1.87975e6 0.728509 0.364255 0.931299i \(-0.381324\pi\)
0.364255 + 0.931299i \(0.381324\pi\)
\(368\) 0 0
\(369\) −818197. −0.312818
\(370\) 0 0
\(371\) −795866. −0.300196
\(372\) 0 0
\(373\) 2.61492e6 0.973165 0.486583 0.873635i \(-0.338243\pi\)
0.486583 + 0.873635i \(0.338243\pi\)
\(374\) 0 0
\(375\) −732947. −0.269150
\(376\) 0 0
\(377\) 749447. 0.271574
\(378\) 0 0
\(379\) 3.76631e6 1.34684 0.673422 0.739258i \(-0.264824\pi\)
0.673422 + 0.739258i \(0.264824\pi\)
\(380\) 0 0
\(381\) −763182. −0.269349
\(382\) 0 0
\(383\) 1.42058e6 0.494845 0.247422 0.968908i \(-0.420416\pi\)
0.247422 + 0.968908i \(0.420416\pi\)
\(384\) 0 0
\(385\) −971965. −0.334194
\(386\) 0 0
\(387\) 1.68235e6 0.571005
\(388\) 0 0
\(389\) −4.90670e6 −1.64405 −0.822026 0.569450i \(-0.807156\pi\)
−0.822026 + 0.569450i \(0.807156\pi\)
\(390\) 0 0
\(391\) 346040. 0.114468
\(392\) 0 0
\(393\) −1.17201e6 −0.382780
\(394\) 0 0
\(395\) 688779. 0.222120
\(396\) 0 0
\(397\) 1.52253e6 0.484831 0.242416 0.970173i \(-0.422060\pi\)
0.242416 + 0.970173i \(0.422060\pi\)
\(398\) 0 0
\(399\) 1.18228e6 0.371782
\(400\) 0 0
\(401\) −388493. −0.120649 −0.0603243 0.998179i \(-0.519213\pi\)
−0.0603243 + 0.998179i \(0.519213\pi\)
\(402\) 0 0
\(403\) −1.38476e6 −0.424730
\(404\) 0 0
\(405\) 88026.1 0.0266670
\(406\) 0 0
\(407\) 1.94796e6 0.582899
\(408\) 0 0
\(409\) 1.28523e6 0.379902 0.189951 0.981794i \(-0.439167\pi\)
0.189951 + 0.981794i \(0.439167\pi\)
\(410\) 0 0
\(411\) −906276. −0.264640
\(412\) 0 0
\(413\) 5.12606e6 1.47880
\(414\) 0 0
\(415\) −1.43643e6 −0.409416
\(416\) 0 0
\(417\) −3.02999e6 −0.853299
\(418\) 0 0
\(419\) 4.49606e6 1.25111 0.625557 0.780179i \(-0.284872\pi\)
0.625557 + 0.780179i \(0.284872\pi\)
\(420\) 0 0
\(421\) 5.20144e6 1.43027 0.715135 0.698986i \(-0.246365\pi\)
0.715135 + 0.698986i \(0.246365\pi\)
\(422\) 0 0
\(423\) −578331. −0.157154
\(424\) 0 0
\(425\) 2.73069e6 0.733332
\(426\) 0 0
\(427\) 3.62487e6 0.962107
\(428\) 0 0
\(429\) −931307. −0.244315
\(430\) 0 0
\(431\) 6.97009e6 1.80736 0.903681 0.428205i \(-0.140854\pi\)
0.903681 + 0.428205i \(0.140854\pi\)
\(432\) 0 0
\(433\) −2.91882e6 −0.748149 −0.374074 0.927399i \(-0.622040\pi\)
−0.374074 + 0.927399i \(0.622040\pi\)
\(434\) 0 0
\(435\) −535474. −0.135680
\(436\) 0 0
\(437\) 414354. 0.103793
\(438\) 0 0
\(439\) −2.54724e6 −0.630825 −0.315413 0.948955i \(-0.602143\pi\)
−0.315413 + 0.948955i \(0.602143\pi\)
\(440\) 0 0
\(441\) −227465. −0.0556953
\(442\) 0 0
\(443\) −473306. −0.114586 −0.0572931 0.998357i \(-0.518247\pi\)
−0.0572931 + 0.998357i \(0.518247\pi\)
\(444\) 0 0
\(445\) −1.62914e6 −0.389994
\(446\) 0 0
\(447\) 991514. 0.234709
\(448\) 0 0
\(449\) 3.22203e6 0.754248 0.377124 0.926163i \(-0.376913\pi\)
0.377124 + 0.926163i \(0.376913\pi\)
\(450\) 0 0
\(451\) −6.18495e6 −1.43184
\(452\) 0 0
\(453\) −3.61893e6 −0.828582
\(454\) 0 0
\(455\) 268271. 0.0607498
\(456\) 0 0
\(457\) 2.72127e6 0.609511 0.304756 0.952431i \(-0.401425\pi\)
0.304756 + 0.952431i \(0.401425\pi\)
\(458\) 0 0
\(459\) −675952. −0.149756
\(460\) 0 0
\(461\) 1.09863e6 0.240769 0.120385 0.992727i \(-0.461587\pi\)
0.120385 + 0.992727i \(0.461587\pi\)
\(462\) 0 0
\(463\) 2.65063e6 0.574642 0.287321 0.957834i \(-0.407235\pi\)
0.287321 + 0.957834i \(0.407235\pi\)
\(464\) 0 0
\(465\) 989403. 0.212198
\(466\) 0 0
\(467\) 2.26844e6 0.481322 0.240661 0.970609i \(-0.422636\pi\)
0.240661 + 0.970609i \(0.422636\pi\)
\(468\) 0 0
\(469\) 7.68961e6 1.61426
\(470\) 0 0
\(471\) −3.03510e6 −0.630406
\(472\) 0 0
\(473\) 1.27173e7 2.61363
\(474\) 0 0
\(475\) 3.26978e6 0.664942
\(476\) 0 0
\(477\) 544853. 0.109644
\(478\) 0 0
\(479\) −1.59887e6 −0.318401 −0.159200 0.987246i \(-0.550892\pi\)
−0.159200 + 0.987246i \(0.550892\pi\)
\(480\) 0 0
\(481\) −537653. −0.105959
\(482\) 0 0
\(483\) 397398. 0.0775100
\(484\) 0 0
\(485\) −1.09246e6 −0.210889
\(486\) 0 0
\(487\) 7.79908e6 1.49012 0.745059 0.666998i \(-0.232421\pi\)
0.745059 + 0.666998i \(0.232421\pi\)
\(488\) 0 0
\(489\) −3.75133e6 −0.709437
\(490\) 0 0
\(491\) 9.05475e6 1.69501 0.847506 0.530786i \(-0.178103\pi\)
0.847506 + 0.530786i \(0.178103\pi\)
\(492\) 0 0
\(493\) 4.11190e6 0.761948
\(494\) 0 0
\(495\) 665412. 0.122061
\(496\) 0 0
\(497\) −6.07844e6 −1.10383
\(498\) 0 0
\(499\) 738198. 0.132715 0.0663577 0.997796i \(-0.478862\pi\)
0.0663577 + 0.997796i \(0.478862\pi\)
\(500\) 0 0
\(501\) 1.97755e6 0.351993
\(502\) 0 0
\(503\) 6.10876e6 1.07655 0.538274 0.842770i \(-0.319077\pi\)
0.538274 + 0.842770i \(0.319077\pi\)
\(504\) 0 0
\(505\) 2.24038e6 0.390925
\(506\) 0 0
\(507\) 257049. 0.0444116
\(508\) 0 0
\(509\) −2.30922e6 −0.395067 −0.197534 0.980296i \(-0.563293\pi\)
−0.197534 + 0.980296i \(0.563293\pi\)
\(510\) 0 0
\(511\) −3.95987e6 −0.670855
\(512\) 0 0
\(513\) −809396. −0.135790
\(514\) 0 0
\(515\) 517950. 0.0860537
\(516\) 0 0
\(517\) −4.37175e6 −0.719331
\(518\) 0 0
\(519\) −3.94751e6 −0.643287
\(520\) 0 0
\(521\) −2.27443e6 −0.367094 −0.183547 0.983011i \(-0.558758\pi\)
−0.183547 + 0.983011i \(0.558758\pi\)
\(522\) 0 0
\(523\) −4.26373e6 −0.681609 −0.340805 0.940134i \(-0.610700\pi\)
−0.340805 + 0.940134i \(0.610700\pi\)
\(524\) 0 0
\(525\) 3.13597e6 0.496563
\(526\) 0 0
\(527\) −7.59761e6 −1.19166
\(528\) 0 0
\(529\) −6.29707e6 −0.978361
\(530\) 0 0
\(531\) −3.50932e6 −0.540116
\(532\) 0 0
\(533\) 1.70710e6 0.260280
\(534\) 0 0
\(535\) 985461. 0.148852
\(536\) 0 0
\(537\) 4.40454e6 0.659120
\(538\) 0 0
\(539\) −1.71947e6 −0.254931
\(540\) 0 0
\(541\) 1.16109e7 1.70558 0.852791 0.522252i \(-0.174908\pi\)
0.852791 + 0.522252i \(0.174908\pi\)
\(542\) 0 0
\(543\) −1.29378e6 −0.188304
\(544\) 0 0
\(545\) −1.37926e6 −0.198909
\(546\) 0 0
\(547\) −8.74492e6 −1.24965 −0.624824 0.780766i \(-0.714829\pi\)
−0.624824 + 0.780766i \(0.714829\pi\)
\(548\) 0 0
\(549\) −2.48161e6 −0.351400
\(550\) 0 0
\(551\) 4.92365e6 0.690890
\(552\) 0 0
\(553\) −6.07412e6 −0.844638
\(554\) 0 0
\(555\) 384149. 0.0529380
\(556\) 0 0
\(557\) 1.26430e7 1.72669 0.863343 0.504617i \(-0.168366\pi\)
0.863343 + 0.504617i \(0.168366\pi\)
\(558\) 0 0
\(559\) −3.51010e6 −0.475105
\(560\) 0 0
\(561\) −5.10969e6 −0.685468
\(562\) 0 0
\(563\) 1.00809e7 1.34038 0.670190 0.742189i \(-0.266213\pi\)
0.670190 + 0.742189i \(0.266213\pi\)
\(564\) 0 0
\(565\) −782085. −0.103070
\(566\) 0 0
\(567\) −776274. −0.101405
\(568\) 0 0
\(569\) −9.17539e6 −1.18808 −0.594038 0.804437i \(-0.702467\pi\)
−0.594038 + 0.804437i \(0.702467\pi\)
\(570\) 0 0
\(571\) −7.99125e6 −1.02571 −0.512855 0.858475i \(-0.671412\pi\)
−0.512855 + 0.858475i \(0.671412\pi\)
\(572\) 0 0
\(573\) −6.05827e6 −0.770836
\(574\) 0 0
\(575\) 1.09906e6 0.138629
\(576\) 0 0
\(577\) −1.21730e7 −1.52215 −0.761077 0.648661i \(-0.775329\pi\)
−0.761077 + 0.648661i \(0.775329\pi\)
\(578\) 0 0
\(579\) 6.47154e6 0.802253
\(580\) 0 0
\(581\) 1.26674e7 1.55686
\(582\) 0 0
\(583\) 4.11868e6 0.501865
\(584\) 0 0
\(585\) −183659. −0.0221883
\(586\) 0 0
\(587\) 7.54508e6 0.903792 0.451896 0.892071i \(-0.350748\pi\)
0.451896 + 0.892071i \(0.350748\pi\)
\(588\) 0 0
\(589\) −9.09750e6 −1.08052
\(590\) 0 0
\(591\) −7.76110e6 −0.914018
\(592\) 0 0
\(593\) −2.02354e6 −0.236307 −0.118153 0.992995i \(-0.537697\pi\)
−0.118153 + 0.992995i \(0.537697\pi\)
\(594\) 0 0
\(595\) 1.47189e6 0.170444
\(596\) 0 0
\(597\) −6.38363e6 −0.733047
\(598\) 0 0
\(599\) −5.94968e6 −0.677527 −0.338763 0.940872i \(-0.610009\pi\)
−0.338763 + 0.940872i \(0.610009\pi\)
\(600\) 0 0
\(601\) −7.08696e6 −0.800339 −0.400169 0.916441i \(-0.631049\pi\)
−0.400169 + 0.916441i \(0.631049\pi\)
\(602\) 0 0
\(603\) −5.26434e6 −0.589591
\(604\) 0 0
\(605\) 2.86926e6 0.318700
\(606\) 0 0
\(607\) 3.40921e6 0.375562 0.187781 0.982211i \(-0.439870\pi\)
0.187781 + 0.982211i \(0.439870\pi\)
\(608\) 0 0
\(609\) 4.72217e6 0.515939
\(610\) 0 0
\(611\) 1.20664e6 0.130760
\(612\) 0 0
\(613\) 1.62737e7 1.74918 0.874589 0.484865i \(-0.161131\pi\)
0.874589 + 0.484865i \(0.161131\pi\)
\(614\) 0 0
\(615\) −1.21971e6 −0.130038
\(616\) 0 0
\(617\) 1.29932e7 1.37405 0.687027 0.726632i \(-0.258915\pi\)
0.687027 + 0.726632i \(0.258915\pi\)
\(618\) 0 0
\(619\) −724313. −0.0759801 −0.0379900 0.999278i \(-0.512096\pi\)
−0.0379900 + 0.999278i \(0.512096\pi\)
\(620\) 0 0
\(621\) −272061. −0.0283098
\(622\) 0 0
\(623\) 1.43669e7 1.48300
\(624\) 0 0
\(625\) 8.11048e6 0.830514
\(626\) 0 0
\(627\) −6.11842e6 −0.621542
\(628\) 0 0
\(629\) −2.94988e6 −0.297288
\(630\) 0 0
\(631\) −1.68295e7 −1.68267 −0.841333 0.540518i \(-0.818228\pi\)
−0.841333 + 0.540518i \(0.818228\pi\)
\(632\) 0 0
\(633\) 5.50143e6 0.545715
\(634\) 0 0
\(635\) −1.13770e6 −0.111968
\(636\) 0 0
\(637\) 474588. 0.0463413
\(638\) 0 0
\(639\) 4.16133e6 0.403162
\(640\) 0 0
\(641\) −3.52575e6 −0.338927 −0.169464 0.985536i \(-0.554204\pi\)
−0.169464 + 0.985536i \(0.554204\pi\)
\(642\) 0 0
\(643\) −8.25422e6 −0.787315 −0.393657 0.919257i \(-0.628790\pi\)
−0.393657 + 0.919257i \(0.628790\pi\)
\(644\) 0 0
\(645\) 2.50794e6 0.237365
\(646\) 0 0
\(647\) 1.55380e6 0.145926 0.0729631 0.997335i \(-0.476754\pi\)
0.0729631 + 0.997335i \(0.476754\pi\)
\(648\) 0 0
\(649\) −2.65278e7 −2.47224
\(650\) 0 0
\(651\) −8.72523e6 −0.806908
\(652\) 0 0
\(653\) 1.52484e6 0.139940 0.0699699 0.997549i \(-0.477710\pi\)
0.0699699 + 0.997549i \(0.477710\pi\)
\(654\) 0 0
\(655\) −1.74715e6 −0.159121
\(656\) 0 0
\(657\) 2.71094e6 0.245023
\(658\) 0 0
\(659\) 1.70633e7 1.53056 0.765279 0.643699i \(-0.222601\pi\)
0.765279 + 0.643699i \(0.222601\pi\)
\(660\) 0 0
\(661\) −9.27424e6 −0.825610 −0.412805 0.910819i \(-0.635451\pi\)
−0.412805 + 0.910819i \(0.635451\pi\)
\(662\) 0 0
\(663\) 1.41032e6 0.124604
\(664\) 0 0
\(665\) 1.76246e6 0.154549
\(666\) 0 0
\(667\) 1.65498e6 0.144038
\(668\) 0 0
\(669\) 1.11985e7 0.967377
\(670\) 0 0
\(671\) −1.87591e7 −1.60844
\(672\) 0 0
\(673\) 1.49675e7 1.27383 0.636916 0.770933i \(-0.280210\pi\)
0.636916 + 0.770933i \(0.280210\pi\)
\(674\) 0 0
\(675\) −2.14690e6 −0.181365
\(676\) 0 0
\(677\) 3.65749e6 0.306698 0.153349 0.988172i \(-0.450994\pi\)
0.153349 + 0.988172i \(0.450994\pi\)
\(678\) 0 0
\(679\) 9.63410e6 0.801930
\(680\) 0 0
\(681\) 6.04056e6 0.499125
\(682\) 0 0
\(683\) 1.46597e7 1.20247 0.601233 0.799074i \(-0.294676\pi\)
0.601233 + 0.799074i \(0.294676\pi\)
\(684\) 0 0
\(685\) −1.35101e6 −0.110010
\(686\) 0 0
\(687\) −1.81149e6 −0.146435
\(688\) 0 0
\(689\) −1.13679e6 −0.0912291
\(690\) 0 0
\(691\) 2.45762e7 1.95803 0.979015 0.203789i \(-0.0653256\pi\)
0.979015 + 0.203789i \(0.0653256\pi\)
\(692\) 0 0
\(693\) −5.86805e6 −0.464153
\(694\) 0 0
\(695\) −4.51690e6 −0.354714
\(696\) 0 0
\(697\) 9.36614e6 0.730262
\(698\) 0 0
\(699\) 3.34138e6 0.258662
\(700\) 0 0
\(701\) 1.83004e7 1.40658 0.703292 0.710901i \(-0.251713\pi\)
0.703292 + 0.710901i \(0.251713\pi\)
\(702\) 0 0
\(703\) −3.53223e6 −0.269563
\(704\) 0 0
\(705\) −862136. −0.0653286
\(706\) 0 0
\(707\) −1.97572e7 −1.48654
\(708\) 0 0
\(709\) −1.28635e7 −0.961047 −0.480523 0.876982i \(-0.659553\pi\)
−0.480523 + 0.876982i \(0.659553\pi\)
\(710\) 0 0
\(711\) 4.15837e6 0.308496
\(712\) 0 0
\(713\) −3.05793e6 −0.225270
\(714\) 0 0
\(715\) −1.38833e6 −0.101561
\(716\) 0 0
\(717\) −1.25880e6 −0.0914446
\(718\) 0 0
\(719\) 1.15140e7 0.830626 0.415313 0.909679i \(-0.363672\pi\)
0.415313 + 0.909679i \(0.363672\pi\)
\(720\) 0 0
\(721\) −4.56763e6 −0.327230
\(722\) 0 0
\(723\) −1.88061e6 −0.133799
\(724\) 0 0
\(725\) 1.30599e7 0.922771
\(726\) 0 0
\(727\) 8.18615e6 0.574439 0.287219 0.957865i \(-0.407269\pi\)
0.287219 + 0.957865i \(0.407269\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.92584e7 −1.33299
\(732\) 0 0
\(733\) −5.14729e6 −0.353849 −0.176925 0.984224i \(-0.556615\pi\)
−0.176925 + 0.984224i \(0.556615\pi\)
\(734\) 0 0
\(735\) −339090. −0.0231524
\(736\) 0 0
\(737\) −3.97945e7 −2.69870
\(738\) 0 0
\(739\) −8.80802e6 −0.593290 −0.296645 0.954988i \(-0.595868\pi\)
−0.296645 + 0.954988i \(0.595868\pi\)
\(740\) 0 0
\(741\) 1.68874e6 0.112984
\(742\) 0 0
\(743\) −1.29105e7 −0.857971 −0.428985 0.903311i \(-0.641129\pi\)
−0.428985 + 0.903311i \(0.641129\pi\)
\(744\) 0 0
\(745\) 1.47808e6 0.0975680
\(746\) 0 0
\(747\) −8.67219e6 −0.568627
\(748\) 0 0
\(749\) −8.69047e6 −0.566029
\(750\) 0 0
\(751\) −2.07147e7 −1.34023 −0.670116 0.742257i \(-0.733756\pi\)
−0.670116 + 0.742257i \(0.733756\pi\)
\(752\) 0 0
\(753\) −1.42154e7 −0.913632
\(754\) 0 0
\(755\) −5.39486e6 −0.344439
\(756\) 0 0
\(757\) −2.41483e7 −1.53161 −0.765804 0.643074i \(-0.777659\pi\)
−0.765804 + 0.643074i \(0.777659\pi\)
\(758\) 0 0
\(759\) −2.05657e6 −0.129581
\(760\) 0 0
\(761\) −1.83678e7 −1.14973 −0.574864 0.818249i \(-0.694945\pi\)
−0.574864 + 0.818249i \(0.694945\pi\)
\(762\) 0 0
\(763\) 1.21632e7 0.756375
\(764\) 0 0
\(765\) −1.00766e6 −0.0622531
\(766\) 0 0
\(767\) 7.32192e6 0.449404
\(768\) 0 0
\(769\) −7.53946e6 −0.459753 −0.229876 0.973220i \(-0.573832\pi\)
−0.229876 + 0.973220i \(0.573832\pi\)
\(770\) 0 0
\(771\) 1.28087e7 0.776011
\(772\) 0 0
\(773\) −2.00447e7 −1.20656 −0.603282 0.797528i \(-0.706141\pi\)
−0.603282 + 0.797528i \(0.706141\pi\)
\(774\) 0 0
\(775\) −2.41309e7 −1.44318
\(776\) 0 0
\(777\) −3.38769e6 −0.201303
\(778\) 0 0
\(779\) 1.12152e7 0.662159
\(780\) 0 0
\(781\) 3.14565e7 1.84537
\(782\) 0 0
\(783\) −3.23282e6 −0.188442
\(784\) 0 0
\(785\) −4.52451e6 −0.262058
\(786\) 0 0
\(787\) −5.74414e6 −0.330589 −0.165294 0.986244i \(-0.552857\pi\)
−0.165294 + 0.986244i \(0.552857\pi\)
\(788\) 0 0
\(789\) −3.39702e6 −0.194270
\(790\) 0 0
\(791\) 6.89696e6 0.391937
\(792\) 0 0
\(793\) 5.17767e6 0.292383
\(794\) 0 0
\(795\) 812230. 0.0455786
\(796\) 0 0
\(797\) 1.41069e7 0.786656 0.393328 0.919398i \(-0.371324\pi\)
0.393328 + 0.919398i \(0.371324\pi\)
\(798\) 0 0
\(799\) 6.62033e6 0.366871
\(800\) 0 0
\(801\) −9.83562e6 −0.541652
\(802\) 0 0
\(803\) 2.04927e7 1.12153
\(804\) 0 0
\(805\) 592413. 0.0322207
\(806\) 0 0
\(807\) −1.67419e6 −0.0904944
\(808\) 0 0
\(809\) 1.08102e7 0.580716 0.290358 0.956918i \(-0.406226\pi\)
0.290358 + 0.956918i \(0.406226\pi\)
\(810\) 0 0
\(811\) 1.38874e7 0.741430 0.370715 0.928747i \(-0.379113\pi\)
0.370715 + 0.928747i \(0.379113\pi\)
\(812\) 0 0
\(813\) −3.55051e6 −0.188393
\(814\) 0 0
\(815\) −5.59223e6 −0.294911
\(816\) 0 0
\(817\) −2.30603e7 −1.20868
\(818\) 0 0
\(819\) 1.61963e6 0.0843737
\(820\) 0 0
\(821\) 3.41545e6 0.176844 0.0884218 0.996083i \(-0.471818\pi\)
0.0884218 + 0.996083i \(0.471818\pi\)
\(822\) 0 0
\(823\) 1.17308e7 0.603712 0.301856 0.953354i \(-0.402394\pi\)
0.301856 + 0.953354i \(0.402394\pi\)
\(824\) 0 0
\(825\) −1.62290e7 −0.830149
\(826\) 0 0
\(827\) 2.06476e7 1.04980 0.524899 0.851164i \(-0.324103\pi\)
0.524899 + 0.851164i \(0.324103\pi\)
\(828\) 0 0
\(829\) −1.82141e7 −0.920496 −0.460248 0.887790i \(-0.652239\pi\)
−0.460248 + 0.887790i \(0.652239\pi\)
\(830\) 0 0
\(831\) 7.21513e6 0.362445
\(832\) 0 0
\(833\) 2.60386e6 0.130019
\(834\) 0 0
\(835\) 2.94800e6 0.146322
\(836\) 0 0
\(837\) 5.97333e6 0.294715
\(838\) 0 0
\(839\) −1.01638e7 −0.498483 −0.249242 0.968441i \(-0.580181\pi\)
−0.249242 + 0.968441i \(0.580181\pi\)
\(840\) 0 0
\(841\) −845486. −0.0412208
\(842\) 0 0
\(843\) −2.33029e6 −0.112938
\(844\) 0 0
\(845\) 383191. 0.0184618
\(846\) 0 0
\(847\) −2.53031e7 −1.21189
\(848\) 0 0
\(849\) −1.25576e7 −0.597914
\(850\) 0 0
\(851\) −1.18728e6 −0.0561991
\(852\) 0 0
\(853\) 2.04589e7 0.962740 0.481370 0.876518i \(-0.340139\pi\)
0.481370 + 0.876518i \(0.340139\pi\)
\(854\) 0 0
\(855\) −1.20659e6 −0.0564475
\(856\) 0 0
\(857\) −7.05028e6 −0.327910 −0.163955 0.986468i \(-0.552425\pi\)
−0.163955 + 0.986468i \(0.552425\pi\)
\(858\) 0 0
\(859\) −2.38609e7 −1.10332 −0.551662 0.834068i \(-0.686006\pi\)
−0.551662 + 0.834068i \(0.686006\pi\)
\(860\) 0 0
\(861\) 1.07562e7 0.494484
\(862\) 0 0
\(863\) −2.60533e7 −1.19079 −0.595396 0.803432i \(-0.703005\pi\)
−0.595396 + 0.803432i \(0.703005\pi\)
\(864\) 0 0
\(865\) −5.88467e6 −0.267413
\(866\) 0 0
\(867\) −5.04089e6 −0.227751
\(868\) 0 0
\(869\) 3.14342e7 1.41206
\(870\) 0 0
\(871\) 1.09836e7 0.490569
\(872\) 0 0
\(873\) −6.59555e6 −0.292897
\(874\) 0 0
\(875\) 9.63552e6 0.425456
\(876\) 0 0
\(877\) 3.93550e7 1.72783 0.863914 0.503639i \(-0.168006\pi\)
0.863914 + 0.503639i \(0.168006\pi\)
\(878\) 0 0
\(879\) 1.50975e7 0.659074
\(880\) 0 0
\(881\) −8.81546e6 −0.382653 −0.191326 0.981526i \(-0.561279\pi\)
−0.191326 + 0.981526i \(0.561279\pi\)
\(882\) 0 0
\(883\) −3.32092e7 −1.43336 −0.716681 0.697401i \(-0.754340\pi\)
−0.716681 + 0.697401i \(0.754340\pi\)
\(884\) 0 0
\(885\) −5.23145e6 −0.224525
\(886\) 0 0
\(887\) −3.09033e6 −0.131885 −0.0659426 0.997823i \(-0.521005\pi\)
−0.0659426 + 0.997823i \(0.521005\pi\)
\(888\) 0 0
\(889\) 1.00330e7 0.425772
\(890\) 0 0
\(891\) 4.01730e6 0.169527
\(892\) 0 0
\(893\) 7.92729e6 0.332657
\(894\) 0 0
\(895\) 6.56598e6 0.273994
\(896\) 0 0
\(897\) 567632. 0.0235552
\(898\) 0 0
\(899\) −3.63365e7 −1.49949
\(900\) 0 0
\(901\) −6.23710e6 −0.255959
\(902\) 0 0
\(903\) −2.21167e7 −0.902612
\(904\) 0 0
\(905\) −1.92867e6 −0.0782774
\(906\) 0 0
\(907\) 1.51978e7 0.613425 0.306712 0.951802i \(-0.400771\pi\)
0.306712 + 0.951802i \(0.400771\pi\)
\(908\) 0 0
\(909\) 1.35259e7 0.542945
\(910\) 0 0
\(911\) 8.92224e6 0.356187 0.178094 0.984014i \(-0.443007\pi\)
0.178094 + 0.984014i \(0.443007\pi\)
\(912\) 0 0
\(913\) −6.55552e7 −2.60274
\(914\) 0 0
\(915\) −3.69940e6 −0.146076
\(916\) 0 0
\(917\) 1.54075e7 0.605076
\(918\) 0 0
\(919\) −2.94149e7 −1.14889 −0.574446 0.818542i \(-0.694783\pi\)
−0.574446 + 0.818542i \(0.694783\pi\)
\(920\) 0 0
\(921\) −9.31706e6 −0.361934
\(922\) 0 0
\(923\) −8.68228e6 −0.335451
\(924\) 0 0
\(925\) −9.36915e6 −0.360036
\(926\) 0 0
\(927\) 3.12702e6 0.119518
\(928\) 0 0
\(929\) 1.64015e7 0.623510 0.311755 0.950163i \(-0.399083\pi\)
0.311755 + 0.950163i \(0.399083\pi\)
\(930\) 0 0
\(931\) 3.11791e6 0.117893
\(932\) 0 0
\(933\) 3.64521e6 0.137094
\(934\) 0 0
\(935\) −7.61717e6 −0.284947
\(936\) 0 0
\(937\) 3.89038e7 1.44758 0.723791 0.690019i \(-0.242398\pi\)
0.723791 + 0.690019i \(0.242398\pi\)
\(938\) 0 0
\(939\) −1.68376e7 −0.623184
\(940\) 0 0
\(941\) 2.82311e7 1.03933 0.519666 0.854369i \(-0.326056\pi\)
0.519666 + 0.854369i \(0.326056\pi\)
\(942\) 0 0
\(943\) 3.76973e6 0.138048
\(944\) 0 0
\(945\) −1.15722e6 −0.0421536
\(946\) 0 0
\(947\) 3.19191e7 1.15658 0.578291 0.815831i \(-0.303720\pi\)
0.578291 + 0.815831i \(0.303720\pi\)
\(948\) 0 0
\(949\) −5.65617e6 −0.203872
\(950\) 0 0
\(951\) 589474. 0.0211356
\(952\) 0 0
\(953\) −2.27842e7 −0.812645 −0.406323 0.913730i \(-0.633189\pi\)
−0.406323 + 0.913730i \(0.633189\pi\)
\(954\) 0 0
\(955\) −9.03124e6 −0.320434
\(956\) 0 0
\(957\) −2.44377e7 −0.862543
\(958\) 0 0
\(959\) 1.19142e7 0.418328
\(960\) 0 0
\(961\) 3.85103e7 1.34514
\(962\) 0 0
\(963\) 5.94953e6 0.206737
\(964\) 0 0
\(965\) 9.64733e6 0.333494
\(966\) 0 0
\(967\) 1.68036e7 0.577878 0.288939 0.957347i \(-0.406697\pi\)
0.288939 + 0.957347i \(0.406697\pi\)
\(968\) 0 0
\(969\) 9.26539e6 0.316997
\(970\) 0 0
\(971\) −5.22521e7 −1.77851 −0.889254 0.457413i \(-0.848776\pi\)
−0.889254 + 0.457413i \(0.848776\pi\)
\(972\) 0 0
\(973\) 3.98331e7 1.34884
\(974\) 0 0
\(975\) 4.47934e6 0.150905
\(976\) 0 0
\(977\) −2.90452e7 −0.973503 −0.486752 0.873540i \(-0.661818\pi\)
−0.486752 + 0.873540i \(0.661818\pi\)
\(978\) 0 0
\(979\) −7.43499e7 −2.47927
\(980\) 0 0
\(981\) −8.32699e6 −0.276258
\(982\) 0 0
\(983\) −2.88765e7 −0.953150 −0.476575 0.879134i \(-0.658122\pi\)
−0.476575 + 0.879134i \(0.658122\pi\)
\(984\) 0 0
\(985\) −1.15697e7 −0.379955
\(986\) 0 0
\(987\) 7.60290e6 0.248420
\(988\) 0 0
\(989\) −7.75123e6 −0.251988
\(990\) 0 0
\(991\) −8.85182e6 −0.286318 −0.143159 0.989700i \(-0.545726\pi\)
−0.143159 + 0.989700i \(0.545726\pi\)
\(992\) 0 0
\(993\) 1.25707e7 0.404564
\(994\) 0 0
\(995\) −9.51627e6 −0.304726
\(996\) 0 0
\(997\) −4.58013e7 −1.45928 −0.729642 0.683829i \(-0.760313\pi\)
−0.729642 + 0.683829i \(0.760313\pi\)
\(998\) 0 0
\(999\) 2.31923e6 0.0735240
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.k.1.2 2
4.3 odd 2 39.6.a.b.1.1 2
12.11 even 2 117.6.a.b.1.2 2
20.19 odd 2 975.6.a.c.1.2 2
52.51 odd 2 507.6.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.b.1.1 2 4.3 odd 2
117.6.a.b.1.2 2 12.11 even 2
507.6.a.c.1.2 2 52.51 odd 2
624.6.a.k.1.2 2 1.1 even 1 trivial
975.6.a.c.1.2 2 20.19 odd 2