Properties

Label 624.6.a.k.1.2
Level 624624
Weight 66
Character 624.1
Self dual yes
Analytic conductor 100.080100.080
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.079503563100.079503563
Analytic rank: 11
Dimension: 22
Coefficient field: Q(14)\Q(\sqrt{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x214 x^{2} - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 39)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 3.741663.74166 of defining polynomial
Character χ\chi == 624.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+9.00000q3+13.4166q5118.316q7+81.0000q9+612.299q11169.000q13+120.749q15927.231q171110.28q191064.85q21373.197q232945.00q25+729.000q274434.60q29+8193.87q31+5510.69q331587.40q35+3181.38q371521.00q3910101.2q41+20769.8q43+1086.74q457139.89q472808.21q498345.08q51+6726.59q53+8214.96q559992.54q5743325.0q5930637.1q619583.63q632267.40q6564991.9q673358.77q69+51374.4q71+33468.4q7326505.0q7572445.1q77+51337.9q79+6561.00q81107064.q8312440.3q8539911.4q87121427.q89+19995.5q91+73744.8q9314896.2q9581426.5q97+49596.2q99+O(q100)q+9.00000 q^{3} +13.4166 q^{5} -118.316 q^{7} +81.0000 q^{9} +612.299 q^{11} -169.000 q^{13} +120.749 q^{15} -927.231 q^{17} -1110.28 q^{19} -1064.85 q^{21} -373.197 q^{23} -2945.00 q^{25} +729.000 q^{27} -4434.60 q^{29} +8193.87 q^{31} +5510.69 q^{33} -1587.40 q^{35} +3181.38 q^{37} -1521.00 q^{39} -10101.2 q^{41} +20769.8 q^{43} +1086.74 q^{45} -7139.89 q^{47} -2808.21 q^{49} -8345.08 q^{51} +6726.59 q^{53} +8214.96 q^{55} -9992.54 q^{57} -43325.0 q^{59} -30637.1 q^{61} -9583.63 q^{63} -2267.40 q^{65} -64991.9 q^{67} -3358.77 q^{69} +51374.4 q^{71} +33468.4 q^{73} -26505.0 q^{75} -72445.1 q^{77} +51337.9 q^{79} +6561.00 q^{81} -107064. q^{83} -12440.3 q^{85} -39911.4 q^{87} -121427. q^{89} +19995.5 q^{91} +73744.8 q^{93} -14896.2 q^{95} -81426.5 q^{97} +49596.2 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+18q348q572q7+162q9+596q11338q13432q15268q171128q19648q21+1768q232298q25+1458q277612q29+4160q31+5364q33++48276q99+O(q100) 2 q + 18 q^{3} - 48 q^{5} - 72 q^{7} + 162 q^{9} + 596 q^{11} - 338 q^{13} - 432 q^{15} - 268 q^{17} - 1128 q^{19} - 648 q^{21} + 1768 q^{23} - 2298 q^{25} + 1458 q^{27} - 7612 q^{29} + 4160 q^{31} + 5364 q^{33}+ \cdots + 48276 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 9.00000 0.577350
44 0 0
55 13.4166 0.240003 0.120001 0.992774i 0.461710π-0.461710\pi
0.120001 + 0.992774i 0.461710π0.461710\pi
66 0 0
77 −118.316 −0.912641 −0.456321 0.889815i 0.650833π-0.650833\pi
−0.456321 + 0.889815i 0.650833π0.650833\pi
88 0 0
99 81.0000 0.333333
1010 0 0
1111 612.299 1.52575 0.762873 0.646549i 0.223788π-0.223788\pi
0.762873 + 0.646549i 0.223788π0.223788\pi
1212 0 0
1313 −169.000 −0.277350
1414 0 0
1515 120.749 0.138566
1616 0 0
1717 −927.231 −0.778154 −0.389077 0.921205i 0.627206π-0.627206\pi
−0.389077 + 0.921205i 0.627206π0.627206\pi
1818 0 0
1919 −1110.28 −0.705585 −0.352792 0.935702i 0.614768π-0.614768\pi
−0.352792 + 0.935702i 0.614768π0.614768\pi
2020 0 0
2121 −1064.85 −0.526914
2222 0 0
2323 −373.197 −0.147102 −0.0735510 0.997291i 0.523433π-0.523433\pi
−0.0735510 + 0.997291i 0.523433π0.523433\pi
2424 0 0
2525 −2945.00 −0.942399
2626 0 0
2727 729.000 0.192450
2828 0 0
2929 −4434.60 −0.979173 −0.489586 0.871955i 0.662852π-0.662852\pi
−0.489586 + 0.871955i 0.662852π0.662852\pi
3030 0 0
3131 8193.87 1.53139 0.765693 0.643206i 0.222396π-0.222396\pi
0.765693 + 0.643206i 0.222396π0.222396\pi
3232 0 0
3333 5510.69 0.880889
3434 0 0
3535 −1587.40 −0.219037
3636 0 0
3737 3181.38 0.382042 0.191021 0.981586i 0.438820π-0.438820\pi
0.191021 + 0.981586i 0.438820π0.438820\pi
3838 0 0
3939 −1521.00 −0.160128
4040 0 0
4141 −10101.2 −0.938454 −0.469227 0.883078i 0.655467π-0.655467\pi
−0.469227 + 0.883078i 0.655467π0.655467\pi
4242 0 0
4343 20769.8 1.71302 0.856508 0.516134i 0.172629π-0.172629\pi
0.856508 + 0.516134i 0.172629π0.172629\pi
4444 0 0
4545 1086.74 0.0800010
4646 0 0
4747 −7139.89 −0.471462 −0.235731 0.971818i 0.575748π-0.575748\pi
−0.235731 + 0.971818i 0.575748π0.575748\pi
4848 0 0
4949 −2808.21 −0.167086
5050 0 0
5151 −8345.08 −0.449268
5252 0 0
5353 6726.59 0.328931 0.164466 0.986383i 0.447410π-0.447410\pi
0.164466 + 0.986383i 0.447410π0.447410\pi
5454 0 0
5555 8214.96 0.366183
5656 0 0
5757 −9992.54 −0.407370
5858 0 0
5959 −43325.0 −1.62035 −0.810174 0.586190i 0.800627π-0.800627\pi
−0.810174 + 0.586190i 0.800627π0.800627\pi
6060 0 0
6161 −30637.1 −1.05420 −0.527100 0.849803i 0.676721π-0.676721\pi
−0.527100 + 0.849803i 0.676721π0.676721\pi
6262 0 0
6363 −9583.63 −0.304214
6464 0 0
6565 −2267.40 −0.0665648
6666 0 0
6767 −64991.9 −1.76877 −0.884387 0.466755i 0.845423π-0.845423\pi
−0.884387 + 0.466755i 0.845423π0.845423\pi
6868 0 0
6969 −3358.77 −0.0849293
7070 0 0
7171 51374.4 1.20949 0.604743 0.796421i 0.293276π-0.293276\pi
0.604743 + 0.796421i 0.293276π0.293276\pi
7272 0 0
7373 33468.4 0.735069 0.367535 0.930010i 0.380202π-0.380202\pi
0.367535 + 0.930010i 0.380202π0.380202\pi
7474 0 0
7575 −26505.0 −0.544094
7676 0 0
7777 −72445.1 −1.39246
7878 0 0
7979 51337.9 0.925488 0.462744 0.886492i 0.346865π-0.346865\pi
0.462744 + 0.886492i 0.346865π0.346865\pi
8080 0 0
8181 6561.00 0.111111
8282 0 0
8383 −107064. −1.70588 −0.852940 0.522009i 0.825183π-0.825183\pi
−0.852940 + 0.522009i 0.825183π0.825183\pi
8484 0 0
8585 −12440.3 −0.186759
8686 0 0
8787 −39911.4 −0.565326
8888 0 0
8989 −121427. −1.62496 −0.812478 0.582992i 0.801882π-0.801882\pi
−0.812478 + 0.582992i 0.801882π0.801882\pi
9090 0 0
9191 19995.5 0.253121
9292 0 0
9393 73744.8 0.884146
9494 0 0
9595 −14896.2 −0.169342
9696 0 0
9797 −81426.5 −0.878692 −0.439346 0.898318i 0.644790π-0.644790\pi
−0.439346 + 0.898318i 0.644790π0.644790\pi
9898 0 0
9999 49596.2 0.508582
100100 0 0
101101 166986. 1.62884 0.814418 0.580279i 0.197056π-0.197056\pi
0.814418 + 0.580279i 0.197056π0.197056\pi
102102 0 0
103103 38605.2 0.358553 0.179276 0.983799i 0.442624π-0.442624\pi
0.179276 + 0.983799i 0.442624π0.442624\pi
104104 0 0
105105 −14286.6 −0.126461
106106 0 0
107107 73451.0 0.620210 0.310105 0.950702i 0.399636π-0.399636\pi
0.310105 + 0.950702i 0.399636π0.399636\pi
108108 0 0
109109 −102802. −0.828775 −0.414388 0.910100i 0.636004π-0.636004\pi
−0.414388 + 0.910100i 0.636004π0.636004\pi
110110 0 0
111111 28632.4 0.220572
112112 0 0
113113 −58292.4 −0.429454 −0.214727 0.976674i 0.568886π-0.568886\pi
−0.214727 + 0.976674i 0.568886π0.568886\pi
114114 0 0
115115 −5007.02 −0.0353049
116116 0 0
117117 −13689.0 −0.0924500
118118 0 0
119119 109707. 0.710176
120120 0 0
121121 213859. 1.32790
122122 0 0
123123 −90910.7 −0.541817
124124 0 0
125125 −81438.5 −0.466181
126126 0 0
127127 −84798.0 −0.466527 −0.233263 0.972414i 0.574940π-0.574940\pi
−0.233263 + 0.972414i 0.574940π0.574940\pi
128128 0 0
129129 186928. 0.989010
130130 0 0
131131 −130223. −0.662994 −0.331497 0.943456i 0.607554π-0.607554\pi
−0.331497 + 0.943456i 0.607554π0.607554\pi
132132 0 0
133133 131365. 0.643946
134134 0 0
135135 9780.68 0.0461886
136136 0 0
137137 −100697. −0.458371 −0.229185 0.973383i 0.573606π-0.573606\pi
−0.229185 + 0.973383i 0.573606π0.573606\pi
138138 0 0
139139 −336666. −1.47796 −0.738978 0.673729i 0.764691π-0.764691\pi
−0.738978 + 0.673729i 0.764691π0.764691\pi
140140 0 0
141141 −64259.0 −0.272199
142142 0 0
143143 −103479. −0.423166
144144 0 0
145145 −59497.1 −0.235004
146146 0 0
147147 −25273.9 −0.0964672
148148 0 0
149149 110168. 0.406528 0.203264 0.979124i 0.434845π-0.434845\pi
0.203264 + 0.979124i 0.434845π0.434845\pi
150150 0 0
151151 −402104. −1.43515 −0.717573 0.696484i 0.754747π-0.754747\pi
−0.717573 + 0.696484i 0.754747π0.754747\pi
152152 0 0
153153 −75105.7 −0.259385
154154 0 0
155155 109934. 0.367537
156156 0 0
157157 −337233. −1.09190 −0.545948 0.837819i 0.683830π-0.683830\pi
−0.545948 + 0.837819i 0.683830π0.683830\pi
158158 0 0
159159 60539.3 0.189908
160160 0 0
161161 44155.3 0.134251
162162 0 0
163163 −416815. −1.22878 −0.614390 0.789002i 0.710598π-0.710598\pi
−0.614390 + 0.789002i 0.710598π0.710598\pi
164164 0 0
165165 73934.6 0.211416
166166 0 0
167167 219728. 0.609669 0.304835 0.952405i 0.401399π-0.401399\pi
0.304835 + 0.952405i 0.401399π0.401399\pi
168168 0 0
169169 28561.0 0.0769231
170170 0 0
171171 −89932.8 −0.235195
172172 0 0
173173 −438612. −1.11421 −0.557103 0.830444i 0.688087π-0.688087\pi
−0.557103 + 0.830444i 0.688087π0.688087\pi
174174 0 0
175175 348441. 0.860072
176176 0 0
177177 −389925. −0.935508
178178 0 0
179179 489393. 1.14163 0.570815 0.821079i 0.306628π-0.306628\pi
0.570815 + 0.821079i 0.306628π0.306628\pi
180180 0 0
181181 −143753. −0.326152 −0.163076 0.986614i 0.552142π-0.552142\pi
−0.163076 + 0.986614i 0.552142π0.552142\pi
182182 0 0
183183 −275734. −0.608643
184184 0 0
185185 42683.2 0.0916913
186186 0 0
187187 −567743. −1.18727
188188 0 0
189189 −86252.7 −0.175638
190190 0 0
191191 −673141. −1.33513 −0.667563 0.744553i 0.732663π-0.732663\pi
−0.667563 + 0.744553i 0.732663π0.732663\pi
192192 0 0
193193 719060. 1.38954 0.694772 0.719230i 0.255505π-0.255505\pi
0.694772 + 0.719230i 0.255505π0.255505\pi
194194 0 0
195195 −20406.6 −0.0384312
196196 0 0
197197 −862345. −1.58313 −0.791563 0.611088i 0.790732π-0.790732\pi
−0.791563 + 0.611088i 0.790732π0.790732\pi
198198 0 0
199199 −709292. −1.26967 −0.634837 0.772646i 0.718933π-0.718933\pi
−0.634837 + 0.772646i 0.718933π0.718933\pi
200200 0 0
201201 −584927. −1.02120
202202 0 0
203203 524686. 0.893633
204204 0 0
205205 −135523. −0.225232
206206 0 0
207207 −30228.9 −0.0490340
208208 0 0
209209 −679825. −1.07654
210210 0 0
211211 611270. 0.945206 0.472603 0.881275i 0.343314π-0.343314\pi
0.472603 + 0.881275i 0.343314π0.343314\pi
212212 0 0
213213 462370. 0.698297
214214 0 0
215215 278660. 0.411129
216216 0 0
217217 −969469. −1.39761
218218 0 0
219219 301216. 0.424392
220220 0 0
221221 156702. 0.215821
222222 0 0
223223 1.24428e6 1.67555 0.837773 0.546019i 0.183857π-0.183857\pi
0.837773 + 0.546019i 0.183857π0.183857\pi
224224 0 0
225225 −238545. −0.314133
226226 0 0
227227 671174. 0.864511 0.432255 0.901751i 0.357718π-0.357718\pi
0.432255 + 0.901751i 0.357718π0.357718\pi
228228 0 0
229229 −201277. −0.253632 −0.126816 0.991926i 0.540476π-0.540476\pi
−0.126816 + 0.991926i 0.540476π0.540476\pi
230230 0 0
231231 −652006. −0.803936
232232 0 0
233233 371265. 0.448016 0.224008 0.974587i 0.428086π-0.428086\pi
0.224008 + 0.974587i 0.428086π0.428086\pi
234234 0 0
235235 −95792.9 −0.113152
236236 0 0
237237 462041. 0.534331
238238 0 0
239239 −139866. −0.158387 −0.0791934 0.996859i 0.525234π-0.525234\pi
−0.0791934 + 0.996859i 0.525234π0.525234\pi
240240 0 0
241241 −208957. −0.231747 −0.115873 0.993264i 0.536967π-0.536967\pi
−0.115873 + 0.993264i 0.536967π0.536967\pi
242242 0 0
243243 59049.0 0.0641500
244244 0 0
245245 −37676.6 −0.0401011
246246 0 0
247247 187638. 0.195694
248248 0 0
249249 −963577. −0.984890
250250 0 0
251251 −1.57949e6 −1.58246 −0.791229 0.611521i 0.790558π-0.790558\pi
−0.791229 + 0.611521i 0.790558π0.790558\pi
252252 0 0
253253 −228508. −0.224440
254254 0 0
255255 −111962. −0.107826
256256 0 0
257257 1.42319e6 1.34409 0.672046 0.740510i 0.265416π-0.265416\pi
0.672046 + 0.740510i 0.265416π0.265416\pi
258258 0 0
259259 −376410. −0.348667
260260 0 0
261261 −359202. −0.326391
262262 0 0
263263 −377447. −0.336485 −0.168243 0.985746i 0.553809π-0.553809\pi
−0.168243 + 0.985746i 0.553809π0.553809\pi
264264 0 0
265265 90247.7 0.0789444
266266 0 0
267267 −1.09285e6 −0.938169
268268 0 0
269269 −186022. −0.156741 −0.0783705 0.996924i 0.524972π-0.524972\pi
−0.0783705 + 0.996924i 0.524972π0.524972\pi
270270 0 0
271271 −394501. −0.326306 −0.163153 0.986601i 0.552166π-0.552166\pi
−0.163153 + 0.986601i 0.552166π0.552166\pi
272272 0 0
273273 179959. 0.146140
274274 0 0
275275 −1.80322e6 −1.43786
276276 0 0
277277 801681. 0.627773 0.313886 0.949461i 0.398369π-0.398369\pi
0.313886 + 0.949461i 0.398369π0.398369\pi
278278 0 0
279279 663703. 0.510462
280280 0 0
281281 −258921. −0.195615 −0.0978073 0.995205i 0.531183π-0.531183\pi
−0.0978073 + 0.995205i 0.531183π0.531183\pi
282282 0 0
283283 −1.39529e6 −1.03562 −0.517809 0.855496i 0.673252π-0.673252\pi
−0.517809 + 0.855496i 0.673252π0.673252\pi
284284 0 0
285285 −134066. −0.0977699
286286 0 0
287287 1.19514e6 0.856472
288288 0 0
289289 −560099. −0.394476
290290 0 0
291291 −732839. −0.507313
292292 0 0
293293 1.67750e6 1.14155 0.570774 0.821107i 0.306643π-0.306643\pi
0.570774 + 0.821107i 0.306643π0.306643\pi
294294 0 0
295295 −581273. −0.388888
296296 0 0
297297 446366. 0.293630
298298 0 0
299299 63070.3 0.0407987
300300 0 0
301301 −2.45741e6 −1.56337
302302 0 0
303303 1.50288e6 0.940409
304304 0 0
305305 −411045. −0.253011
306306 0 0
307307 −1.03523e6 −0.626889 −0.313444 0.949607i 0.601483π-0.601483\pi
−0.313444 + 0.949607i 0.601483π0.601483\pi
308308 0 0
309309 347447. 0.207010
310310 0 0
311311 405024. 0.237454 0.118727 0.992927i 0.462119π-0.462119\pi
0.118727 + 0.992927i 0.462119π0.462119\pi
312312 0 0
313313 −1.87084e6 −1.07939 −0.539693 0.841862i 0.681460π-0.681460\pi
−0.539693 + 0.841862i 0.681460π0.681460\pi
314314 0 0
315315 −128580. −0.0730122
316316 0 0
317317 65497.1 0.0366078 0.0183039 0.999832i 0.494173π-0.494173\pi
0.0183039 + 0.999832i 0.494173π0.494173\pi
318318 0 0
319319 −2.71530e6 −1.49397
320320 0 0
321321 661059. 0.358078
322322 0 0
323323 1.02949e6 0.549054
324324 0 0
325325 497704. 0.261374
326326 0 0
327327 −925221. −0.478494
328328 0 0
329329 844767. 0.430276
330330 0 0
331331 1.39675e6 0.700726 0.350363 0.936614i 0.386058π-0.386058\pi
0.350363 + 0.936614i 0.386058π0.386058\pi
332332 0 0
333333 257692. 0.127347
334334 0 0
335335 −871968. −0.424511
336336 0 0
337337 −1.31579e6 −0.631121 −0.315561 0.948905i 0.602193π-0.602193\pi
−0.315561 + 0.948905i 0.602193π0.602193\pi
338338 0 0
339339 −524632. −0.247945
340340 0 0
341341 5.01710e6 2.33651
342342 0 0
343343 2.32080e6 1.06513
344344 0 0
345345 −45063.2 −0.0203833
346346 0 0
347347 −1.12101e6 −0.499790 −0.249895 0.968273i 0.580396π-0.580396\pi
−0.249895 + 0.968273i 0.580396π0.580396\pi
348348 0 0
349349 −733696. −0.322443 −0.161221 0.986918i 0.551543π-0.551543\pi
−0.161221 + 0.986918i 0.551543π0.551543\pi
350350 0 0
351351 −123201. −0.0533761
352352 0 0
353353 −190812. −0.0815021 −0.0407510 0.999169i 0.512975π-0.512975\pi
−0.0407510 + 0.999169i 0.512975π0.512975\pi
354354 0 0
355355 689269. 0.290280
356356 0 0
357357 987361. 0.410020
358358 0 0
359359 −530326. −0.217174 −0.108587 0.994087i 0.534633π-0.534633\pi
−0.108587 + 0.994087i 0.534633π0.534633\pi
360360 0 0
361361 −1.24337e6 −0.502150
362362 0 0
363363 1.92473e6 0.766662
364364 0 0
365365 449032. 0.176419
366366 0 0
367367 1.87975e6 0.728509 0.364255 0.931299i 0.381324π-0.381324\pi
0.364255 + 0.931299i 0.381324π0.381324\pi
368368 0 0
369369 −818197. −0.312818
370370 0 0
371371 −795866. −0.300196
372372 0 0
373373 2.61492e6 0.973165 0.486583 0.873635i 0.338243π-0.338243\pi
0.486583 + 0.873635i 0.338243π0.338243\pi
374374 0 0
375375 −732947. −0.269150
376376 0 0
377377 749447. 0.271574
378378 0 0
379379 3.76631e6 1.34684 0.673422 0.739258i 0.264824π-0.264824\pi
0.673422 + 0.739258i 0.264824π0.264824\pi
380380 0 0
381381 −763182. −0.269349
382382 0 0
383383 1.42058e6 0.494845 0.247422 0.968908i 0.420416π-0.420416\pi
0.247422 + 0.968908i 0.420416π0.420416\pi
384384 0 0
385385 −971965. −0.334194
386386 0 0
387387 1.68235e6 0.571005
388388 0 0
389389 −4.90670e6 −1.64405 −0.822026 0.569450i 0.807156π-0.807156\pi
−0.822026 + 0.569450i 0.807156π0.807156\pi
390390 0 0
391391 346040. 0.114468
392392 0 0
393393 −1.17201e6 −0.382780
394394 0 0
395395 688779. 0.222120
396396 0 0
397397 1.52253e6 0.484831 0.242416 0.970173i 0.422060π-0.422060\pi
0.242416 + 0.970173i 0.422060π0.422060\pi
398398 0 0
399399 1.18228e6 0.371782
400400 0 0
401401 −388493. −0.120649 −0.0603243 0.998179i 0.519213π-0.519213\pi
−0.0603243 + 0.998179i 0.519213π0.519213\pi
402402 0 0
403403 −1.38476e6 −0.424730
404404 0 0
405405 88026.1 0.0266670
406406 0 0
407407 1.94796e6 0.582899
408408 0 0
409409 1.28523e6 0.379902 0.189951 0.981794i 0.439167π-0.439167\pi
0.189951 + 0.981794i 0.439167π0.439167\pi
410410 0 0
411411 −906276. −0.264640
412412 0 0
413413 5.12606e6 1.47880
414414 0 0
415415 −1.43643e6 −0.409416
416416 0 0
417417 −3.02999e6 −0.853299
418418 0 0
419419 4.49606e6 1.25111 0.625557 0.780179i 0.284872π-0.284872\pi
0.625557 + 0.780179i 0.284872π0.284872\pi
420420 0 0
421421 5.20144e6 1.43027 0.715135 0.698986i 0.246365π-0.246365\pi
0.715135 + 0.698986i 0.246365π0.246365\pi
422422 0 0
423423 −578331. −0.157154
424424 0 0
425425 2.73069e6 0.733332
426426 0 0
427427 3.62487e6 0.962107
428428 0 0
429429 −931307. −0.244315
430430 0 0
431431 6.97009e6 1.80736 0.903681 0.428205i 0.140854π-0.140854\pi
0.903681 + 0.428205i 0.140854π0.140854\pi
432432 0 0
433433 −2.91882e6 −0.748149 −0.374074 0.927399i 0.622040π-0.622040\pi
−0.374074 + 0.927399i 0.622040π0.622040\pi
434434 0 0
435435 −535474. −0.135680
436436 0 0
437437 414354. 0.103793
438438 0 0
439439 −2.54724e6 −0.630825 −0.315413 0.948955i 0.602143π-0.602143\pi
−0.315413 + 0.948955i 0.602143π0.602143\pi
440440 0 0
441441 −227465. −0.0556953
442442 0 0
443443 −473306. −0.114586 −0.0572931 0.998357i 0.518247π-0.518247\pi
−0.0572931 + 0.998357i 0.518247π0.518247\pi
444444 0 0
445445 −1.62914e6 −0.389994
446446 0 0
447447 991514. 0.234709
448448 0 0
449449 3.22203e6 0.754248 0.377124 0.926163i 0.376913π-0.376913\pi
0.377124 + 0.926163i 0.376913π0.376913\pi
450450 0 0
451451 −6.18495e6 −1.43184
452452 0 0
453453 −3.61893e6 −0.828582
454454 0 0
455455 268271. 0.0607498
456456 0 0
457457 2.72127e6 0.609511 0.304756 0.952431i 0.401425π-0.401425\pi
0.304756 + 0.952431i 0.401425π0.401425\pi
458458 0 0
459459 −675952. −0.149756
460460 0 0
461461 1.09863e6 0.240769 0.120385 0.992727i 0.461587π-0.461587\pi
0.120385 + 0.992727i 0.461587π0.461587\pi
462462 0 0
463463 2.65063e6 0.574642 0.287321 0.957834i 0.407235π-0.407235\pi
0.287321 + 0.957834i 0.407235π0.407235\pi
464464 0 0
465465 989403. 0.212198
466466 0 0
467467 2.26844e6 0.481322 0.240661 0.970609i 0.422636π-0.422636\pi
0.240661 + 0.970609i 0.422636π0.422636\pi
468468 0 0
469469 7.68961e6 1.61426
470470 0 0
471471 −3.03510e6 −0.630406
472472 0 0
473473 1.27173e7 2.61363
474474 0 0
475475 3.26978e6 0.664942
476476 0 0
477477 544853. 0.109644
478478 0 0
479479 −1.59887e6 −0.318401 −0.159200 0.987246i 0.550892π-0.550892\pi
−0.159200 + 0.987246i 0.550892π0.550892\pi
480480 0 0
481481 −537653. −0.105959
482482 0 0
483483 397398. 0.0775100
484484 0 0
485485 −1.09246e6 −0.210889
486486 0 0
487487 7.79908e6 1.49012 0.745059 0.666998i 0.232421π-0.232421\pi
0.745059 + 0.666998i 0.232421π0.232421\pi
488488 0 0
489489 −3.75133e6 −0.709437
490490 0 0
491491 9.05475e6 1.69501 0.847506 0.530786i 0.178103π-0.178103\pi
0.847506 + 0.530786i 0.178103π0.178103\pi
492492 0 0
493493 4.11190e6 0.761948
494494 0 0
495495 665412. 0.122061
496496 0 0
497497 −6.07844e6 −1.10383
498498 0 0
499499 738198. 0.132715 0.0663577 0.997796i 0.478862π-0.478862\pi
0.0663577 + 0.997796i 0.478862π0.478862\pi
500500 0 0
501501 1.97755e6 0.351993
502502 0 0
503503 6.10876e6 1.07655 0.538274 0.842770i 0.319077π-0.319077\pi
0.538274 + 0.842770i 0.319077π0.319077\pi
504504 0 0
505505 2.24038e6 0.390925
506506 0 0
507507 257049. 0.0444116
508508 0 0
509509 −2.30922e6 −0.395067 −0.197534 0.980296i 0.563293π-0.563293\pi
−0.197534 + 0.980296i 0.563293π0.563293\pi
510510 0 0
511511 −3.95987e6 −0.670855
512512 0 0
513513 −809396. −0.135790
514514 0 0
515515 517950. 0.0860537
516516 0 0
517517 −4.37175e6 −0.719331
518518 0 0
519519 −3.94751e6 −0.643287
520520 0 0
521521 −2.27443e6 −0.367094 −0.183547 0.983011i 0.558758π-0.558758\pi
−0.183547 + 0.983011i 0.558758π0.558758\pi
522522 0 0
523523 −4.26373e6 −0.681609 −0.340805 0.940134i 0.610700π-0.610700\pi
−0.340805 + 0.940134i 0.610700π0.610700\pi
524524 0 0
525525 3.13597e6 0.496563
526526 0 0
527527 −7.59761e6 −1.19166
528528 0 0
529529 −6.29707e6 −0.978361
530530 0 0
531531 −3.50932e6 −0.540116
532532 0 0
533533 1.70710e6 0.260280
534534 0 0
535535 985461. 0.148852
536536 0 0
537537 4.40454e6 0.659120
538538 0 0
539539 −1.71947e6 −0.254931
540540 0 0
541541 1.16109e7 1.70558 0.852791 0.522252i 0.174908π-0.174908\pi
0.852791 + 0.522252i 0.174908π0.174908\pi
542542 0 0
543543 −1.29378e6 −0.188304
544544 0 0
545545 −1.37926e6 −0.198909
546546 0 0
547547 −8.74492e6 −1.24965 −0.624824 0.780766i 0.714829π-0.714829\pi
−0.624824 + 0.780766i 0.714829π0.714829\pi
548548 0 0
549549 −2.48161e6 −0.351400
550550 0 0
551551 4.92365e6 0.690890
552552 0 0
553553 −6.07412e6 −0.844638
554554 0 0
555555 384149. 0.0529380
556556 0 0
557557 1.26430e7 1.72669 0.863343 0.504617i 0.168366π-0.168366\pi
0.863343 + 0.504617i 0.168366π0.168366\pi
558558 0 0
559559 −3.51010e6 −0.475105
560560 0 0
561561 −5.10969e6 −0.685468
562562 0 0
563563 1.00809e7 1.34038 0.670190 0.742189i 0.266213π-0.266213\pi
0.670190 + 0.742189i 0.266213π0.266213\pi
564564 0 0
565565 −782085. −0.103070
566566 0 0
567567 −776274. −0.101405
568568 0 0
569569 −9.17539e6 −1.18808 −0.594038 0.804437i 0.702467π-0.702467\pi
−0.594038 + 0.804437i 0.702467π0.702467\pi
570570 0 0
571571 −7.99125e6 −1.02571 −0.512855 0.858475i 0.671412π-0.671412\pi
−0.512855 + 0.858475i 0.671412π0.671412\pi
572572 0 0
573573 −6.05827e6 −0.770836
574574 0 0
575575 1.09906e6 0.138629
576576 0 0
577577 −1.21730e7 −1.52215 −0.761077 0.648661i 0.775329π-0.775329\pi
−0.761077 + 0.648661i 0.775329π0.775329\pi
578578 0 0
579579 6.47154e6 0.802253
580580 0 0
581581 1.26674e7 1.55686
582582 0 0
583583 4.11868e6 0.501865
584584 0 0
585585 −183659. −0.0221883
586586 0 0
587587 7.54508e6 0.903792 0.451896 0.892071i 0.350748π-0.350748\pi
0.451896 + 0.892071i 0.350748π0.350748\pi
588588 0 0
589589 −9.09750e6 −1.08052
590590 0 0
591591 −7.76110e6 −0.914018
592592 0 0
593593 −2.02354e6 −0.236307 −0.118153 0.992995i 0.537697π-0.537697\pi
−0.118153 + 0.992995i 0.537697π0.537697\pi
594594 0 0
595595 1.47189e6 0.170444
596596 0 0
597597 −6.38363e6 −0.733047
598598 0 0
599599 −5.94968e6 −0.677527 −0.338763 0.940872i 0.610009π-0.610009\pi
−0.338763 + 0.940872i 0.610009π0.610009\pi
600600 0 0
601601 −7.08696e6 −0.800339 −0.400169 0.916441i 0.631049π-0.631049\pi
−0.400169 + 0.916441i 0.631049π0.631049\pi
602602 0 0
603603 −5.26434e6 −0.589591
604604 0 0
605605 2.86926e6 0.318700
606606 0 0
607607 3.40921e6 0.375562 0.187781 0.982211i 0.439870π-0.439870\pi
0.187781 + 0.982211i 0.439870π0.439870\pi
608608 0 0
609609 4.72217e6 0.515939
610610 0 0
611611 1.20664e6 0.130760
612612 0 0
613613 1.62737e7 1.74918 0.874589 0.484865i 0.161131π-0.161131\pi
0.874589 + 0.484865i 0.161131π0.161131\pi
614614 0 0
615615 −1.21971e6 −0.130038
616616 0 0
617617 1.29932e7 1.37405 0.687027 0.726632i 0.258915π-0.258915\pi
0.687027 + 0.726632i 0.258915π0.258915\pi
618618 0 0
619619 −724313. −0.0759801 −0.0379900 0.999278i 0.512096π-0.512096\pi
−0.0379900 + 0.999278i 0.512096π0.512096\pi
620620 0 0
621621 −272061. −0.0283098
622622 0 0
623623 1.43669e7 1.48300
624624 0 0
625625 8.11048e6 0.830514
626626 0 0
627627 −6.11842e6 −0.621542
628628 0 0
629629 −2.94988e6 −0.297288
630630 0 0
631631 −1.68295e7 −1.68267 −0.841333 0.540518i 0.818228π-0.818228\pi
−0.841333 + 0.540518i 0.818228π0.818228\pi
632632 0 0
633633 5.50143e6 0.545715
634634 0 0
635635 −1.13770e6 −0.111968
636636 0 0
637637 474588. 0.0463413
638638 0 0
639639 4.16133e6 0.403162
640640 0 0
641641 −3.52575e6 −0.338927 −0.169464 0.985536i 0.554204π-0.554204\pi
−0.169464 + 0.985536i 0.554204π0.554204\pi
642642 0 0
643643 −8.25422e6 −0.787315 −0.393657 0.919257i 0.628790π-0.628790\pi
−0.393657 + 0.919257i 0.628790π0.628790\pi
644644 0 0
645645 2.50794e6 0.237365
646646 0 0
647647 1.55380e6 0.145926 0.0729631 0.997335i 0.476754π-0.476754\pi
0.0729631 + 0.997335i 0.476754π0.476754\pi
648648 0 0
649649 −2.65278e7 −2.47224
650650 0 0
651651 −8.72523e6 −0.806908
652652 0 0
653653 1.52484e6 0.139940 0.0699699 0.997549i 0.477710π-0.477710\pi
0.0699699 + 0.997549i 0.477710π0.477710\pi
654654 0 0
655655 −1.74715e6 −0.159121
656656 0 0
657657 2.71094e6 0.245023
658658 0 0
659659 1.70633e7 1.53056 0.765279 0.643699i 0.222601π-0.222601\pi
0.765279 + 0.643699i 0.222601π0.222601\pi
660660 0 0
661661 −9.27424e6 −0.825610 −0.412805 0.910819i 0.635451π-0.635451\pi
−0.412805 + 0.910819i 0.635451π0.635451\pi
662662 0 0
663663 1.41032e6 0.124604
664664 0 0
665665 1.76246e6 0.154549
666666 0 0
667667 1.65498e6 0.144038
668668 0 0
669669 1.11985e7 0.967377
670670 0 0
671671 −1.87591e7 −1.60844
672672 0 0
673673 1.49675e7 1.27383 0.636916 0.770933i 0.280210π-0.280210\pi
0.636916 + 0.770933i 0.280210π0.280210\pi
674674 0 0
675675 −2.14690e6 −0.181365
676676 0 0
677677 3.65749e6 0.306698 0.153349 0.988172i 0.450994π-0.450994\pi
0.153349 + 0.988172i 0.450994π0.450994\pi
678678 0 0
679679 9.63410e6 0.801930
680680 0 0
681681 6.04056e6 0.499125
682682 0 0
683683 1.46597e7 1.20247 0.601233 0.799074i 0.294676π-0.294676\pi
0.601233 + 0.799074i 0.294676π0.294676\pi
684684 0 0
685685 −1.35101e6 −0.110010
686686 0 0
687687 −1.81149e6 −0.146435
688688 0 0
689689 −1.13679e6 −0.0912291
690690 0 0
691691 2.45762e7 1.95803 0.979015 0.203789i 0.0653256π-0.0653256\pi
0.979015 + 0.203789i 0.0653256π0.0653256\pi
692692 0 0
693693 −5.86805e6 −0.464153
694694 0 0
695695 −4.51690e6 −0.354714
696696 0 0
697697 9.36614e6 0.730262
698698 0 0
699699 3.34138e6 0.258662
700700 0 0
701701 1.83004e7 1.40658 0.703292 0.710901i 0.251713π-0.251713\pi
0.703292 + 0.710901i 0.251713π0.251713\pi
702702 0 0
703703 −3.53223e6 −0.269563
704704 0 0
705705 −862136. −0.0653286
706706 0 0
707707 −1.97572e7 −1.48654
708708 0 0
709709 −1.28635e7 −0.961047 −0.480523 0.876982i 0.659553π-0.659553\pi
−0.480523 + 0.876982i 0.659553π0.659553\pi
710710 0 0
711711 4.15837e6 0.308496
712712 0 0
713713 −3.05793e6 −0.225270
714714 0 0
715715 −1.38833e6 −0.101561
716716 0 0
717717 −1.25880e6 −0.0914446
718718 0 0
719719 1.15140e7 0.830626 0.415313 0.909679i 0.363672π-0.363672\pi
0.415313 + 0.909679i 0.363672π0.363672\pi
720720 0 0
721721 −4.56763e6 −0.327230
722722 0 0
723723 −1.88061e6 −0.133799
724724 0 0
725725 1.30599e7 0.922771
726726 0 0
727727 8.18615e6 0.574439 0.287219 0.957865i 0.407269π-0.407269\pi
0.287219 + 0.957865i 0.407269π0.407269\pi
728728 0 0
729729 531441. 0.0370370
730730 0 0
731731 −1.92584e7 −1.33299
732732 0 0
733733 −5.14729e6 −0.353849 −0.176925 0.984224i 0.556615π-0.556615\pi
−0.176925 + 0.984224i 0.556615π0.556615\pi
734734 0 0
735735 −339090. −0.0231524
736736 0 0
737737 −3.97945e7 −2.69870
738738 0 0
739739 −8.80802e6 −0.593290 −0.296645 0.954988i 0.595868π-0.595868\pi
−0.296645 + 0.954988i 0.595868π0.595868\pi
740740 0 0
741741 1.68874e6 0.112984
742742 0 0
743743 −1.29105e7 −0.857971 −0.428985 0.903311i 0.641129π-0.641129\pi
−0.428985 + 0.903311i 0.641129π0.641129\pi
744744 0 0
745745 1.47808e6 0.0975680
746746 0 0
747747 −8.67219e6 −0.568627
748748 0 0
749749 −8.69047e6 −0.566029
750750 0 0
751751 −2.07147e7 −1.34023 −0.670116 0.742257i 0.733756π-0.733756\pi
−0.670116 + 0.742257i 0.733756π0.733756\pi
752752 0 0
753753 −1.42154e7 −0.913632
754754 0 0
755755 −5.39486e6 −0.344439
756756 0 0
757757 −2.41483e7 −1.53161 −0.765804 0.643074i 0.777659π-0.777659\pi
−0.765804 + 0.643074i 0.777659π0.777659\pi
758758 0 0
759759 −2.05657e6 −0.129581
760760 0 0
761761 −1.83678e7 −1.14973 −0.574864 0.818249i 0.694945π-0.694945\pi
−0.574864 + 0.818249i 0.694945π0.694945\pi
762762 0 0
763763 1.21632e7 0.756375
764764 0 0
765765 −1.00766e6 −0.0622531
766766 0 0
767767 7.32192e6 0.449404
768768 0 0
769769 −7.53946e6 −0.459753 −0.229876 0.973220i 0.573832π-0.573832\pi
−0.229876 + 0.973220i 0.573832π0.573832\pi
770770 0 0
771771 1.28087e7 0.776011
772772 0 0
773773 −2.00447e7 −1.20656 −0.603282 0.797528i 0.706141π-0.706141\pi
−0.603282 + 0.797528i 0.706141π0.706141\pi
774774 0 0
775775 −2.41309e7 −1.44318
776776 0 0
777777 −3.38769e6 −0.201303
778778 0 0
779779 1.12152e7 0.662159
780780 0 0
781781 3.14565e7 1.84537
782782 0 0
783783 −3.23282e6 −0.188442
784784 0 0
785785 −4.52451e6 −0.262058
786786 0 0
787787 −5.74414e6 −0.330589 −0.165294 0.986244i 0.552857π-0.552857\pi
−0.165294 + 0.986244i 0.552857π0.552857\pi
788788 0 0
789789 −3.39702e6 −0.194270
790790 0 0
791791 6.89696e6 0.391937
792792 0 0
793793 5.17767e6 0.292383
794794 0 0
795795 812230. 0.0455786
796796 0 0
797797 1.41069e7 0.786656 0.393328 0.919398i 0.371324π-0.371324\pi
0.393328 + 0.919398i 0.371324π0.371324\pi
798798 0 0
799799 6.62033e6 0.366871
800800 0 0
801801 −9.83562e6 −0.541652
802802 0 0
803803 2.04927e7 1.12153
804804 0 0
805805 592413. 0.0322207
806806 0 0
807807 −1.67419e6 −0.0904944
808808 0 0
809809 1.08102e7 0.580716 0.290358 0.956918i 0.406226π-0.406226\pi
0.290358 + 0.956918i 0.406226π0.406226\pi
810810 0 0
811811 1.38874e7 0.741430 0.370715 0.928747i 0.379113π-0.379113\pi
0.370715 + 0.928747i 0.379113π0.379113\pi
812812 0 0
813813 −3.55051e6 −0.188393
814814 0 0
815815 −5.59223e6 −0.294911
816816 0 0
817817 −2.30603e7 −1.20868
818818 0 0
819819 1.61963e6 0.0843737
820820 0 0
821821 3.41545e6 0.176844 0.0884218 0.996083i 0.471818π-0.471818\pi
0.0884218 + 0.996083i 0.471818π0.471818\pi
822822 0 0
823823 1.17308e7 0.603712 0.301856 0.953354i 0.402394π-0.402394\pi
0.301856 + 0.953354i 0.402394π0.402394\pi
824824 0 0
825825 −1.62290e7 −0.830149
826826 0 0
827827 2.06476e7 1.04980 0.524899 0.851164i 0.324103π-0.324103\pi
0.524899 + 0.851164i 0.324103π0.324103\pi
828828 0 0
829829 −1.82141e7 −0.920496 −0.460248 0.887790i 0.652239π-0.652239\pi
−0.460248 + 0.887790i 0.652239π0.652239\pi
830830 0 0
831831 7.21513e6 0.362445
832832 0 0
833833 2.60386e6 0.130019
834834 0 0
835835 2.94800e6 0.146322
836836 0 0
837837 5.97333e6 0.294715
838838 0 0
839839 −1.01638e7 −0.498483 −0.249242 0.968441i 0.580181π-0.580181\pi
−0.249242 + 0.968441i 0.580181π0.580181\pi
840840 0 0
841841 −845486. −0.0412208
842842 0 0
843843 −2.33029e6 −0.112938
844844 0 0
845845 383191. 0.0184618
846846 0 0
847847 −2.53031e7 −1.21189
848848 0 0
849849 −1.25576e7 −0.597914
850850 0 0
851851 −1.18728e6 −0.0561991
852852 0 0
853853 2.04589e7 0.962740 0.481370 0.876518i 0.340139π-0.340139\pi
0.481370 + 0.876518i 0.340139π0.340139\pi
854854 0 0
855855 −1.20659e6 −0.0564475
856856 0 0
857857 −7.05028e6 −0.327910 −0.163955 0.986468i 0.552425π-0.552425\pi
−0.163955 + 0.986468i 0.552425π0.552425\pi
858858 0 0
859859 −2.38609e7 −1.10332 −0.551662 0.834068i 0.686006π-0.686006\pi
−0.551662 + 0.834068i 0.686006π0.686006\pi
860860 0 0
861861 1.07562e7 0.494484
862862 0 0
863863 −2.60533e7 −1.19079 −0.595396 0.803432i 0.703005π-0.703005\pi
−0.595396 + 0.803432i 0.703005π0.703005\pi
864864 0 0
865865 −5.88467e6 −0.267413
866866 0 0
867867 −5.04089e6 −0.227751
868868 0 0
869869 3.14342e7 1.41206
870870 0 0
871871 1.09836e7 0.490569
872872 0 0
873873 −6.59555e6 −0.292897
874874 0 0
875875 9.63552e6 0.425456
876876 0 0
877877 3.93550e7 1.72783 0.863914 0.503639i 0.168006π-0.168006\pi
0.863914 + 0.503639i 0.168006π0.168006\pi
878878 0 0
879879 1.50975e7 0.659074
880880 0 0
881881 −8.81546e6 −0.382653 −0.191326 0.981526i 0.561279π-0.561279\pi
−0.191326 + 0.981526i 0.561279π0.561279\pi
882882 0 0
883883 −3.32092e7 −1.43336 −0.716681 0.697401i 0.754340π-0.754340\pi
−0.716681 + 0.697401i 0.754340π0.754340\pi
884884 0 0
885885 −5.23145e6 −0.224525
886886 0 0
887887 −3.09033e6 −0.131885 −0.0659426 0.997823i 0.521005π-0.521005\pi
−0.0659426 + 0.997823i 0.521005π0.521005\pi
888888 0 0
889889 1.00330e7 0.425772
890890 0 0
891891 4.01730e6 0.169527
892892 0 0
893893 7.92729e6 0.332657
894894 0 0
895895 6.56598e6 0.273994
896896 0 0
897897 567632. 0.0235552
898898 0 0
899899 −3.63365e7 −1.49949
900900 0 0
901901 −6.23710e6 −0.255959
902902 0 0
903903 −2.21167e7 −0.902612
904904 0 0
905905 −1.92867e6 −0.0782774
906906 0 0
907907 1.51978e7 0.613425 0.306712 0.951802i 0.400771π-0.400771\pi
0.306712 + 0.951802i 0.400771π0.400771\pi
908908 0 0
909909 1.35259e7 0.542945
910910 0 0
911911 8.92224e6 0.356187 0.178094 0.984014i 0.443007π-0.443007\pi
0.178094 + 0.984014i 0.443007π0.443007\pi
912912 0 0
913913 −6.55552e7 −2.60274
914914 0 0
915915 −3.69940e6 −0.146076
916916 0 0
917917 1.54075e7 0.605076
918918 0 0
919919 −2.94149e7 −1.14889 −0.574446 0.818542i 0.694783π-0.694783\pi
−0.574446 + 0.818542i 0.694783π0.694783\pi
920920 0 0
921921 −9.31706e6 −0.361934
922922 0 0
923923 −8.68228e6 −0.335451
924924 0 0
925925 −9.36915e6 −0.360036
926926 0 0
927927 3.12702e6 0.119518
928928 0 0
929929 1.64015e7 0.623510 0.311755 0.950163i 0.399083π-0.399083\pi
0.311755 + 0.950163i 0.399083π0.399083\pi
930930 0 0
931931 3.11791e6 0.117893
932932 0 0
933933 3.64521e6 0.137094
934934 0 0
935935 −7.61717e6 −0.284947
936936 0 0
937937 3.89038e7 1.44758 0.723791 0.690019i 0.242398π-0.242398\pi
0.723791 + 0.690019i 0.242398π0.242398\pi
938938 0 0
939939 −1.68376e7 −0.623184
940940 0 0
941941 2.82311e7 1.03933 0.519666 0.854369i 0.326056π-0.326056\pi
0.519666 + 0.854369i 0.326056π0.326056\pi
942942 0 0
943943 3.76973e6 0.138048
944944 0 0
945945 −1.15722e6 −0.0421536
946946 0 0
947947 3.19191e7 1.15658 0.578291 0.815831i 0.303720π-0.303720\pi
0.578291 + 0.815831i 0.303720π0.303720\pi
948948 0 0
949949 −5.65617e6 −0.203872
950950 0 0
951951 589474. 0.0211356
952952 0 0
953953 −2.27842e7 −0.812645 −0.406323 0.913730i 0.633189π-0.633189\pi
−0.406323 + 0.913730i 0.633189π0.633189\pi
954954 0 0
955955 −9.03124e6 −0.320434
956956 0 0
957957 −2.44377e7 −0.862543
958958 0 0
959959 1.19142e7 0.418328
960960 0 0
961961 3.85103e7 1.34514
962962 0 0
963963 5.94953e6 0.206737
964964 0 0
965965 9.64733e6 0.333494
966966 0 0
967967 1.68036e7 0.577878 0.288939 0.957347i 0.406697π-0.406697\pi
0.288939 + 0.957347i 0.406697π0.406697\pi
968968 0 0
969969 9.26539e6 0.316997
970970 0 0
971971 −5.22521e7 −1.77851 −0.889254 0.457413i 0.848776π-0.848776\pi
−0.889254 + 0.457413i 0.848776π0.848776\pi
972972 0 0
973973 3.98331e7 1.34884
974974 0 0
975975 4.47934e6 0.150905
976976 0 0
977977 −2.90452e7 −0.973503 −0.486752 0.873540i 0.661818π-0.661818\pi
−0.486752 + 0.873540i 0.661818π0.661818\pi
978978 0 0
979979 −7.43499e7 −2.47927
980980 0 0
981981 −8.32699e6 −0.276258
982982 0 0
983983 −2.88765e7 −0.953150 −0.476575 0.879134i 0.658122π-0.658122\pi
−0.476575 + 0.879134i 0.658122π0.658122\pi
984984 0 0
985985 −1.15697e7 −0.379955
986986 0 0
987987 7.60290e6 0.248420
988988 0 0
989989 −7.75123e6 −0.251988
990990 0 0
991991 −8.85182e6 −0.286318 −0.143159 0.989700i 0.545726π-0.545726\pi
−0.143159 + 0.989700i 0.545726π0.545726\pi
992992 0 0
993993 1.25707e7 0.404564
994994 0 0
995995 −9.51627e6 −0.304726
996996 0 0
997997 −4.58013e7 −1.45928 −0.729642 0.683829i 0.760313π-0.760313\pi
−0.729642 + 0.683829i 0.760313π0.760313\pi
998998 0 0
999999 2.31923e6 0.0735240
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.k.1.2 2
4.3 odd 2 39.6.a.b.1.1 2
12.11 even 2 117.6.a.b.1.2 2
20.19 odd 2 975.6.a.c.1.2 2
52.51 odd 2 507.6.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.b.1.1 2 4.3 odd 2
117.6.a.b.1.2 2 12.11 even 2
507.6.a.c.1.2 2 52.51 odd 2
624.6.a.k.1.2 2 1.1 even 1 trivial
975.6.a.c.1.2 2 20.19 odd 2