Properties

Label 624.6.a.m.1.1
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{209}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(7.72842\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -28.9137 q^{5} -71.6547 q^{7} +81.0000 q^{9} +272.050 q^{11} +169.000 q^{13} -260.223 q^{15} +71.9280 q^{17} +93.2373 q^{19} -644.892 q^{21} -3826.37 q^{23} -2289.00 q^{25} +729.000 q^{27} +5613.12 q^{29} +2364.01 q^{31} +2448.45 q^{33} +2071.80 q^{35} +4336.98 q^{37} +1521.00 q^{39} +1938.57 q^{41} +9140.53 q^{43} -2342.01 q^{45} -5464.05 q^{47} -11672.6 q^{49} +647.352 q^{51} -33206.9 q^{53} -7865.97 q^{55} +839.135 q^{57} +27394.4 q^{59} -28746.5 q^{61} -5804.03 q^{63} -4886.41 q^{65} +25822.3 q^{67} -34437.4 q^{69} -32750.7 q^{71} -27763.9 q^{73} -20601.0 q^{75} -19493.7 q^{77} +32269.8 q^{79} +6561.00 q^{81} -51837.1 q^{83} -2079.70 q^{85} +50518.1 q^{87} -70891.9 q^{89} -12109.6 q^{91} +21276.1 q^{93} -2695.83 q^{95} -126615. q^{97} +22036.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 88 q^{7} + 162 q^{9} - 92 q^{11} + 338 q^{13} - 1244 q^{17} - 1664 q^{19} + 792 q^{21} - 5224 q^{23} - 4578 q^{25} + 1458 q^{27} + 3940 q^{29} - 4640 q^{31} - 828 q^{33} + 6688 q^{35} - 1388 q^{37}+ \cdots - 7452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −28.9137 −0.517223 −0.258612 0.965981i \(-0.583265\pi\)
−0.258612 + 0.965981i \(0.583265\pi\)
\(6\) 0 0
\(7\) −71.6547 −0.552713 −0.276356 0.961055i \(-0.589127\pi\)
−0.276356 + 0.961055i \(0.589127\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 272.050 0.677903 0.338951 0.940804i \(-0.389928\pi\)
0.338951 + 0.940804i \(0.389928\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −260.223 −0.298619
\(16\) 0 0
\(17\) 71.9280 0.0603636 0.0301818 0.999544i \(-0.490391\pi\)
0.0301818 + 0.999544i \(0.490391\pi\)
\(18\) 0 0
\(19\) 93.2373 0.0592523 0.0296262 0.999561i \(-0.490568\pi\)
0.0296262 + 0.999561i \(0.490568\pi\)
\(20\) 0 0
\(21\) −644.892 −0.319109
\(22\) 0 0
\(23\) −3826.37 −1.50823 −0.754115 0.656742i \(-0.771934\pi\)
−0.754115 + 0.656742i \(0.771934\pi\)
\(24\) 0 0
\(25\) −2289.00 −0.732480
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 5613.12 1.23939 0.619697 0.784841i \(-0.287255\pi\)
0.619697 + 0.784841i \(0.287255\pi\)
\(30\) 0 0
\(31\) 2364.01 0.441820 0.220910 0.975294i \(-0.429097\pi\)
0.220910 + 0.975294i \(0.429097\pi\)
\(32\) 0 0
\(33\) 2448.45 0.391387
\(34\) 0 0
\(35\) 2071.80 0.285876
\(36\) 0 0
\(37\) 4336.98 0.520814 0.260407 0.965499i \(-0.416143\pi\)
0.260407 + 0.965499i \(0.416143\pi\)
\(38\) 0 0
\(39\) 1521.00 0.160128
\(40\) 0 0
\(41\) 1938.57 0.180103 0.0900516 0.995937i \(-0.471297\pi\)
0.0900516 + 0.995937i \(0.471297\pi\)
\(42\) 0 0
\(43\) 9140.53 0.753877 0.376938 0.926238i \(-0.376977\pi\)
0.376938 + 0.926238i \(0.376977\pi\)
\(44\) 0 0
\(45\) −2342.01 −0.172408
\(46\) 0 0
\(47\) −5464.05 −0.360803 −0.180401 0.983593i \(-0.557740\pi\)
−0.180401 + 0.983593i \(0.557740\pi\)
\(48\) 0 0
\(49\) −11672.6 −0.694509
\(50\) 0 0
\(51\) 647.352 0.0348510
\(52\) 0 0
\(53\) −33206.9 −1.62382 −0.811912 0.583780i \(-0.801573\pi\)
−0.811912 + 0.583780i \(0.801573\pi\)
\(54\) 0 0
\(55\) −7865.97 −0.350627
\(56\) 0 0
\(57\) 839.135 0.0342094
\(58\) 0 0
\(59\) 27394.4 1.02455 0.512274 0.858822i \(-0.328803\pi\)
0.512274 + 0.858822i \(0.328803\pi\)
\(60\) 0 0
\(61\) −28746.5 −0.989147 −0.494573 0.869136i \(-0.664676\pi\)
−0.494573 + 0.869136i \(0.664676\pi\)
\(62\) 0 0
\(63\) −5804.03 −0.184238
\(64\) 0 0
\(65\) −4886.41 −0.143452
\(66\) 0 0
\(67\) 25822.3 0.702762 0.351381 0.936233i \(-0.385712\pi\)
0.351381 + 0.936233i \(0.385712\pi\)
\(68\) 0 0
\(69\) −34437.4 −0.870777
\(70\) 0 0
\(71\) −32750.7 −0.771036 −0.385518 0.922700i \(-0.625977\pi\)
−0.385518 + 0.922700i \(0.625977\pi\)
\(72\) 0 0
\(73\) −27763.9 −0.609779 −0.304890 0.952388i \(-0.598620\pi\)
−0.304890 + 0.952388i \(0.598620\pi\)
\(74\) 0 0
\(75\) −20601.0 −0.422898
\(76\) 0 0
\(77\) −19493.7 −0.374685
\(78\) 0 0
\(79\) 32269.8 0.581740 0.290870 0.956763i \(-0.406055\pi\)
0.290870 + 0.956763i \(0.406055\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −51837.1 −0.825934 −0.412967 0.910746i \(-0.635508\pi\)
−0.412967 + 0.910746i \(0.635508\pi\)
\(84\) 0 0
\(85\) −2079.70 −0.0312215
\(86\) 0 0
\(87\) 50518.1 0.715565
\(88\) 0 0
\(89\) −70891.9 −0.948685 −0.474342 0.880340i \(-0.657314\pi\)
−0.474342 + 0.880340i \(0.657314\pi\)
\(90\) 0 0
\(91\) −12109.6 −0.153295
\(92\) 0 0
\(93\) 21276.1 0.255085
\(94\) 0 0
\(95\) −2695.83 −0.0306467
\(96\) 0 0
\(97\) −126615. −1.36633 −0.683167 0.730262i \(-0.739398\pi\)
−0.683167 + 0.730262i \(0.739398\pi\)
\(98\) 0 0
\(99\) 22036.1 0.225968
\(100\) 0 0
\(101\) −188761. −1.84124 −0.920619 0.390463i \(-0.872315\pi\)
−0.920619 + 0.390463i \(0.872315\pi\)
\(102\) 0 0
\(103\) −127344. −1.18273 −0.591367 0.806403i \(-0.701412\pi\)
−0.591367 + 0.806403i \(0.701412\pi\)
\(104\) 0 0
\(105\) 18646.2 0.165050
\(106\) 0 0
\(107\) 141201. 1.19228 0.596140 0.802881i \(-0.296700\pi\)
0.596140 + 0.802881i \(0.296700\pi\)
\(108\) 0 0
\(109\) −136367. −1.09937 −0.549684 0.835372i \(-0.685252\pi\)
−0.549684 + 0.835372i \(0.685252\pi\)
\(110\) 0 0
\(111\) 39032.8 0.300692
\(112\) 0 0
\(113\) 108128. 0.796603 0.398301 0.917255i \(-0.369600\pi\)
0.398301 + 0.917255i \(0.369600\pi\)
\(114\) 0 0
\(115\) 110634. 0.780092
\(116\) 0 0
\(117\) 13689.0 0.0924500
\(118\) 0 0
\(119\) −5153.97 −0.0333637
\(120\) 0 0
\(121\) −87039.6 −0.540448
\(122\) 0 0
\(123\) 17447.1 0.103983
\(124\) 0 0
\(125\) 156539. 0.896079
\(126\) 0 0
\(127\) 53050.0 0.291861 0.145930 0.989295i \(-0.453382\pi\)
0.145930 + 0.989295i \(0.453382\pi\)
\(128\) 0 0
\(129\) 82264.8 0.435251
\(130\) 0 0
\(131\) 32842.9 0.167210 0.0836051 0.996499i \(-0.473357\pi\)
0.0836051 + 0.996499i \(0.473357\pi\)
\(132\) 0 0
\(133\) −6680.88 −0.0327495
\(134\) 0 0
\(135\) −21078.1 −0.0995397
\(136\) 0 0
\(137\) −55848.9 −0.254222 −0.127111 0.991888i \(-0.540570\pi\)
−0.127111 + 0.991888i \(0.540570\pi\)
\(138\) 0 0
\(139\) −30745.8 −0.134974 −0.0674869 0.997720i \(-0.521498\pi\)
−0.0674869 + 0.997720i \(0.521498\pi\)
\(140\) 0 0
\(141\) −49176.4 −0.208310
\(142\) 0 0
\(143\) 45976.5 0.188016
\(144\) 0 0
\(145\) −162296. −0.641044
\(146\) 0 0
\(147\) −105053. −0.400975
\(148\) 0 0
\(149\) −273442. −1.00902 −0.504510 0.863406i \(-0.668327\pi\)
−0.504510 + 0.863406i \(0.668327\pi\)
\(150\) 0 0
\(151\) −200195. −0.714515 −0.357258 0.934006i \(-0.616288\pi\)
−0.357258 + 0.934006i \(0.616288\pi\)
\(152\) 0 0
\(153\) 5826.16 0.0201212
\(154\) 0 0
\(155\) −68352.3 −0.228520
\(156\) 0 0
\(157\) −82074.0 −0.265740 −0.132870 0.991133i \(-0.542419\pi\)
−0.132870 + 0.991133i \(0.542419\pi\)
\(158\) 0 0
\(159\) −298862. −0.937515
\(160\) 0 0
\(161\) 274178. 0.833618
\(162\) 0 0
\(163\) −38858.0 −0.114554 −0.0572771 0.998358i \(-0.518242\pi\)
−0.0572771 + 0.998358i \(0.518242\pi\)
\(164\) 0 0
\(165\) −70793.7 −0.202435
\(166\) 0 0
\(167\) −374616. −1.03943 −0.519716 0.854339i \(-0.673962\pi\)
−0.519716 + 0.854339i \(0.673962\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 7552.22 0.0197508
\(172\) 0 0
\(173\) −15493.7 −0.0393586 −0.0196793 0.999806i \(-0.506265\pi\)
−0.0196793 + 0.999806i \(0.506265\pi\)
\(174\) 0 0
\(175\) 164018. 0.404851
\(176\) 0 0
\(177\) 246550. 0.591523
\(178\) 0 0
\(179\) 97528.5 0.227509 0.113755 0.993509i \(-0.463712\pi\)
0.113755 + 0.993509i \(0.463712\pi\)
\(180\) 0 0
\(181\) −461470. −1.04700 −0.523501 0.852025i \(-0.675374\pi\)
−0.523501 + 0.852025i \(0.675374\pi\)
\(182\) 0 0
\(183\) −258719. −0.571084
\(184\) 0 0
\(185\) −125398. −0.269377
\(186\) 0 0
\(187\) 19568.0 0.0409207
\(188\) 0 0
\(189\) −52236.2 −0.106370
\(190\) 0 0
\(191\) −78150.2 −0.155005 −0.0775026 0.996992i \(-0.524695\pi\)
−0.0775026 + 0.996992i \(0.524695\pi\)
\(192\) 0 0
\(193\) −103100. −0.199236 −0.0996179 0.995026i \(-0.531762\pi\)
−0.0996179 + 0.995026i \(0.531762\pi\)
\(194\) 0 0
\(195\) −43977.7 −0.0828220
\(196\) 0 0
\(197\) 578483. 1.06200 0.531000 0.847372i \(-0.321816\pi\)
0.531000 + 0.847372i \(0.321816\pi\)
\(198\) 0 0
\(199\) 414351. 0.741713 0.370857 0.928690i \(-0.379064\pi\)
0.370857 + 0.928690i \(0.379064\pi\)
\(200\) 0 0
\(201\) 232401. 0.405740
\(202\) 0 0
\(203\) −402206. −0.685029
\(204\) 0 0
\(205\) −56051.1 −0.0931535
\(206\) 0 0
\(207\) −309936. −0.502744
\(208\) 0 0
\(209\) 25365.2 0.0401673
\(210\) 0 0
\(211\) −941613. −1.45602 −0.728009 0.685568i \(-0.759554\pi\)
−0.728009 + 0.685568i \(0.759554\pi\)
\(212\) 0 0
\(213\) −294756. −0.445158
\(214\) 0 0
\(215\) −264286. −0.389923
\(216\) 0 0
\(217\) −169393. −0.244200
\(218\) 0 0
\(219\) −249875. −0.352056
\(220\) 0 0
\(221\) 12155.8 0.0167419
\(222\) 0 0
\(223\) 369966. 0.498195 0.249097 0.968478i \(-0.419866\pi\)
0.249097 + 0.968478i \(0.419866\pi\)
\(224\) 0 0
\(225\) −185409. −0.244160
\(226\) 0 0
\(227\) −362430. −0.466831 −0.233416 0.972377i \(-0.574990\pi\)
−0.233416 + 0.972377i \(0.574990\pi\)
\(228\) 0 0
\(229\) −939778. −1.18423 −0.592115 0.805853i \(-0.701707\pi\)
−0.592115 + 0.805853i \(0.701707\pi\)
\(230\) 0 0
\(231\) −175443. −0.216325
\(232\) 0 0
\(233\) 256173. 0.309132 0.154566 0.987982i \(-0.450602\pi\)
0.154566 + 0.987982i \(0.450602\pi\)
\(234\) 0 0
\(235\) 157986. 0.186616
\(236\) 0 0
\(237\) 290429. 0.335868
\(238\) 0 0
\(239\) −1.05916e6 −1.19941 −0.599705 0.800221i \(-0.704715\pi\)
−0.599705 + 0.800221i \(0.704715\pi\)
\(240\) 0 0
\(241\) −753699. −0.835902 −0.417951 0.908469i \(-0.637252\pi\)
−0.417951 + 0.908469i \(0.637252\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 337498. 0.359216
\(246\) 0 0
\(247\) 15757.1 0.0164336
\(248\) 0 0
\(249\) −466534. −0.476853
\(250\) 0 0
\(251\) 94598.6 0.0947765 0.0473882 0.998877i \(-0.484910\pi\)
0.0473882 + 0.998877i \(0.484910\pi\)
\(252\) 0 0
\(253\) −1.04097e6 −1.02243
\(254\) 0 0
\(255\) −18717.3 −0.0180257
\(256\) 0 0
\(257\) −26297.2 −0.0248357 −0.0124178 0.999923i \(-0.503953\pi\)
−0.0124178 + 0.999923i \(0.503953\pi\)
\(258\) 0 0
\(259\) −310765. −0.287861
\(260\) 0 0
\(261\) 454663. 0.413131
\(262\) 0 0
\(263\) −1.05604e6 −0.941433 −0.470717 0.882284i \(-0.656005\pi\)
−0.470717 + 0.882284i \(0.656005\pi\)
\(264\) 0 0
\(265\) 960134. 0.839880
\(266\) 0 0
\(267\) −638027. −0.547723
\(268\) 0 0
\(269\) 2.02103e6 1.70291 0.851455 0.524428i \(-0.175721\pi\)
0.851455 + 0.524428i \(0.175721\pi\)
\(270\) 0 0
\(271\) −2.19354e6 −1.81436 −0.907178 0.420748i \(-0.861768\pi\)
−0.907178 + 0.420748i \(0.861768\pi\)
\(272\) 0 0
\(273\) −108987. −0.0885048
\(274\) 0 0
\(275\) −622723. −0.496550
\(276\) 0 0
\(277\) 1.35211e6 1.05880 0.529399 0.848373i \(-0.322418\pi\)
0.529399 + 0.848373i \(0.322418\pi\)
\(278\) 0 0
\(279\) 191485. 0.147273
\(280\) 0 0
\(281\) 111733. 0.0844145 0.0422073 0.999109i \(-0.486561\pi\)
0.0422073 + 0.999109i \(0.486561\pi\)
\(282\) 0 0
\(283\) 1.94906e6 1.44663 0.723316 0.690517i \(-0.242617\pi\)
0.723316 + 0.690517i \(0.242617\pi\)
\(284\) 0 0
\(285\) −24262.5 −0.0176939
\(286\) 0 0
\(287\) −138907. −0.0995452
\(288\) 0 0
\(289\) −1.41468e6 −0.996356
\(290\) 0 0
\(291\) −1.13954e6 −0.788854
\(292\) 0 0
\(293\) −1.05039e6 −0.714798 −0.357399 0.933952i \(-0.616336\pi\)
−0.357399 + 0.933952i \(0.616336\pi\)
\(294\) 0 0
\(295\) −792073. −0.529920
\(296\) 0 0
\(297\) 198325. 0.130462
\(298\) 0 0
\(299\) −646657. −0.418308
\(300\) 0 0
\(301\) −654962. −0.416677
\(302\) 0 0
\(303\) −1.69885e6 −1.06304
\(304\) 0 0
\(305\) 831167. 0.511610
\(306\) 0 0
\(307\) 567029. 0.343367 0.171684 0.985152i \(-0.445079\pi\)
0.171684 + 0.985152i \(0.445079\pi\)
\(308\) 0 0
\(309\) −1.14610e6 −0.682852
\(310\) 0 0
\(311\) 655377. 0.384229 0.192115 0.981372i \(-0.438465\pi\)
0.192115 + 0.981372i \(0.438465\pi\)
\(312\) 0 0
\(313\) 1.86421e6 1.07556 0.537778 0.843086i \(-0.319264\pi\)
0.537778 + 0.843086i \(0.319264\pi\)
\(314\) 0 0
\(315\) 167816. 0.0952919
\(316\) 0 0
\(317\) −1.49838e6 −0.837478 −0.418739 0.908107i \(-0.637528\pi\)
−0.418739 + 0.908107i \(0.637528\pi\)
\(318\) 0 0
\(319\) 1.52705e6 0.840189
\(320\) 0 0
\(321\) 1.27081e6 0.688363
\(322\) 0 0
\(323\) 6706.37 0.00357669
\(324\) 0 0
\(325\) −386841. −0.203153
\(326\) 0 0
\(327\) −1.22730e6 −0.634721
\(328\) 0 0
\(329\) 391524. 0.199420
\(330\) 0 0
\(331\) 622230. 0.312163 0.156081 0.987744i \(-0.450114\pi\)
0.156081 + 0.987744i \(0.450114\pi\)
\(332\) 0 0
\(333\) 351295. 0.173605
\(334\) 0 0
\(335\) −746618. −0.363485
\(336\) 0 0
\(337\) −1.68061e6 −0.806106 −0.403053 0.915177i \(-0.632051\pi\)
−0.403053 + 0.915177i \(0.632051\pi\)
\(338\) 0 0
\(339\) 973152. 0.459919
\(340\) 0 0
\(341\) 643131. 0.299511
\(342\) 0 0
\(343\) 2.04070e6 0.936576
\(344\) 0 0
\(345\) 995710. 0.450386
\(346\) 0 0
\(347\) 2.17232e6 0.968502 0.484251 0.874929i \(-0.339092\pi\)
0.484251 + 0.874929i \(0.339092\pi\)
\(348\) 0 0
\(349\) −2.90123e6 −1.27503 −0.637513 0.770440i \(-0.720037\pi\)
−0.637513 + 0.770440i \(0.720037\pi\)
\(350\) 0 0
\(351\) 123201. 0.0533761
\(352\) 0 0
\(353\) 355946. 0.152036 0.0760182 0.997106i \(-0.475779\pi\)
0.0760182 + 0.997106i \(0.475779\pi\)
\(354\) 0 0
\(355\) 946942. 0.398798
\(356\) 0 0
\(357\) −46385.8 −0.0192626
\(358\) 0 0
\(359\) 1.56214e6 0.639710 0.319855 0.947467i \(-0.396366\pi\)
0.319855 + 0.947467i \(0.396366\pi\)
\(360\) 0 0
\(361\) −2.46741e6 −0.996489
\(362\) 0 0
\(363\) −783357. −0.312028
\(364\) 0 0
\(365\) 802755. 0.315392
\(366\) 0 0
\(367\) 2.22068e6 0.860640 0.430320 0.902676i \(-0.358401\pi\)
0.430320 + 0.902676i \(0.358401\pi\)
\(368\) 0 0
\(369\) 157024. 0.0600344
\(370\) 0 0
\(371\) 2.37943e6 0.897508
\(372\) 0 0
\(373\) −2.20109e6 −0.819155 −0.409577 0.912275i \(-0.634324\pi\)
−0.409577 + 0.912275i \(0.634324\pi\)
\(374\) 0 0
\(375\) 1.40885e6 0.517352
\(376\) 0 0
\(377\) 948618. 0.343746
\(378\) 0 0
\(379\) −71429.7 −0.0255435 −0.0127718 0.999918i \(-0.504065\pi\)
−0.0127718 + 0.999918i \(0.504065\pi\)
\(380\) 0 0
\(381\) 477450. 0.168506
\(382\) 0 0
\(383\) 2.57371e6 0.896525 0.448262 0.893902i \(-0.352043\pi\)
0.448262 + 0.893902i \(0.352043\pi\)
\(384\) 0 0
\(385\) 563633. 0.193796
\(386\) 0 0
\(387\) 740383. 0.251292
\(388\) 0 0
\(389\) 2.26737e6 0.759710 0.379855 0.925046i \(-0.375974\pi\)
0.379855 + 0.925046i \(0.375974\pi\)
\(390\) 0 0
\(391\) −275223. −0.0910423
\(392\) 0 0
\(393\) 295586. 0.0965389
\(394\) 0 0
\(395\) −933040. −0.300890
\(396\) 0 0
\(397\) 611054. 0.194582 0.0972911 0.995256i \(-0.468982\pi\)
0.0972911 + 0.995256i \(0.468982\pi\)
\(398\) 0 0
\(399\) −60128.0 −0.0189079
\(400\) 0 0
\(401\) 3.38562e6 1.05142 0.525711 0.850663i \(-0.323799\pi\)
0.525711 + 0.850663i \(0.323799\pi\)
\(402\) 0 0
\(403\) 399518. 0.122539
\(404\) 0 0
\(405\) −189703. −0.0574693
\(406\) 0 0
\(407\) 1.17988e6 0.353062
\(408\) 0 0
\(409\) −2.20943e6 −0.653087 −0.326544 0.945182i \(-0.605884\pi\)
−0.326544 + 0.945182i \(0.605884\pi\)
\(410\) 0 0
\(411\) −502640. −0.146775
\(412\) 0 0
\(413\) −1.96294e6 −0.566280
\(414\) 0 0
\(415\) 1.49880e6 0.427192
\(416\) 0 0
\(417\) −276713. −0.0779272
\(418\) 0 0
\(419\) 4.01767e6 1.11799 0.558997 0.829170i \(-0.311186\pi\)
0.558997 + 0.829170i \(0.311186\pi\)
\(420\) 0 0
\(421\) −2.54149e6 −0.698849 −0.349424 0.936965i \(-0.613623\pi\)
−0.349424 + 0.936965i \(0.613623\pi\)
\(422\) 0 0
\(423\) −442588. −0.120268
\(424\) 0 0
\(425\) −164643. −0.0442152
\(426\) 0 0
\(427\) 2.05982e6 0.546714
\(428\) 0 0
\(429\) 413789. 0.108551
\(430\) 0 0
\(431\) 5.33002e6 1.38209 0.691044 0.722813i \(-0.257151\pi\)
0.691044 + 0.722813i \(0.257151\pi\)
\(432\) 0 0
\(433\) 4.82254e6 1.23611 0.618053 0.786136i \(-0.287922\pi\)
0.618053 + 0.786136i \(0.287922\pi\)
\(434\) 0 0
\(435\) −1.46066e6 −0.370107
\(436\) 0 0
\(437\) −356761. −0.0893662
\(438\) 0 0
\(439\) 1.88724e6 0.467375 0.233688 0.972312i \(-0.424921\pi\)
0.233688 + 0.972312i \(0.424921\pi\)
\(440\) 0 0
\(441\) −945481. −0.231503
\(442\) 0 0
\(443\) 6.73150e6 1.62968 0.814840 0.579686i \(-0.196825\pi\)
0.814840 + 0.579686i \(0.196825\pi\)
\(444\) 0 0
\(445\) 2.04975e6 0.490682
\(446\) 0 0
\(447\) −2.46098e6 −0.582558
\(448\) 0 0
\(449\) 999884. 0.234063 0.117032 0.993128i \(-0.462662\pi\)
0.117032 + 0.993128i \(0.462662\pi\)
\(450\) 0 0
\(451\) 527388. 0.122092
\(452\) 0 0
\(453\) −1.80176e6 −0.412526
\(454\) 0 0
\(455\) 350134. 0.0792877
\(456\) 0 0
\(457\) −2.70696e6 −0.606305 −0.303153 0.952942i \(-0.598039\pi\)
−0.303153 + 0.952942i \(0.598039\pi\)
\(458\) 0 0
\(459\) 52435.5 0.0116170
\(460\) 0 0
\(461\) 6.23493e6 1.36640 0.683202 0.730229i \(-0.260587\pi\)
0.683202 + 0.730229i \(0.260587\pi\)
\(462\) 0 0
\(463\) 7.11687e6 1.54290 0.771448 0.636293i \(-0.219533\pi\)
0.771448 + 0.636293i \(0.219533\pi\)
\(464\) 0 0
\(465\) −615171. −0.131936
\(466\) 0 0
\(467\) −4.15699e6 −0.882037 −0.441018 0.897498i \(-0.645383\pi\)
−0.441018 + 0.897498i \(0.645383\pi\)
\(468\) 0 0
\(469\) −1.85029e6 −0.388425
\(470\) 0 0
\(471\) −738666. −0.153425
\(472\) 0 0
\(473\) 2.48668e6 0.511055
\(474\) 0 0
\(475\) −213420. −0.0434012
\(476\) 0 0
\(477\) −2.68976e6 −0.541275
\(478\) 0 0
\(479\) −4.27365e6 −0.851060 −0.425530 0.904944i \(-0.639912\pi\)
−0.425530 + 0.904944i \(0.639912\pi\)
\(480\) 0 0
\(481\) 732949. 0.144448
\(482\) 0 0
\(483\) 2.46760e6 0.481290
\(484\) 0 0
\(485\) 3.66092e6 0.706700
\(486\) 0 0
\(487\) −7.00352e6 −1.33812 −0.669059 0.743210i \(-0.733303\pi\)
−0.669059 + 0.743210i \(0.733303\pi\)
\(488\) 0 0
\(489\) −349722. −0.0661379
\(490\) 0 0
\(491\) 5.13989e6 0.962167 0.481083 0.876675i \(-0.340243\pi\)
0.481083 + 0.876675i \(0.340243\pi\)
\(492\) 0 0
\(493\) 403740. 0.0748143
\(494\) 0 0
\(495\) −637144. −0.116876
\(496\) 0 0
\(497\) 2.34674e6 0.426161
\(498\) 0 0
\(499\) −9.42361e6 −1.69421 −0.847103 0.531429i \(-0.821655\pi\)
−0.847103 + 0.531429i \(0.821655\pi\)
\(500\) 0 0
\(501\) −3.37155e6 −0.600116
\(502\) 0 0
\(503\) 3.77027e6 0.664434 0.332217 0.943203i \(-0.392203\pi\)
0.332217 + 0.943203i \(0.392203\pi\)
\(504\) 0 0
\(505\) 5.45778e6 0.952331
\(506\) 0 0
\(507\) 257049. 0.0444116
\(508\) 0 0
\(509\) −1.03784e6 −0.177557 −0.0887783 0.996051i \(-0.528296\pi\)
−0.0887783 + 0.996051i \(0.528296\pi\)
\(510\) 0 0
\(511\) 1.98941e6 0.337033
\(512\) 0 0
\(513\) 67970.0 0.0114031
\(514\) 0 0
\(515\) 3.68200e6 0.611738
\(516\) 0 0
\(517\) −1.48650e6 −0.244589
\(518\) 0 0
\(519\) −139443. −0.0227237
\(520\) 0 0
\(521\) 1.82521e6 0.294590 0.147295 0.989093i \(-0.452943\pi\)
0.147295 + 0.989093i \(0.452943\pi\)
\(522\) 0 0
\(523\) 3.56769e6 0.570339 0.285170 0.958477i \(-0.407950\pi\)
0.285170 + 0.958477i \(0.407950\pi\)
\(524\) 0 0
\(525\) 1.47616e6 0.233741
\(526\) 0 0
\(527\) 170039. 0.0266699
\(528\) 0 0
\(529\) 8.20479e6 1.27476
\(530\) 0 0
\(531\) 2.21895e6 0.341516
\(532\) 0 0
\(533\) 327618. 0.0499516
\(534\) 0 0
\(535\) −4.08264e6 −0.616675
\(536\) 0 0
\(537\) 877756. 0.131352
\(538\) 0 0
\(539\) −3.17554e6 −0.470810
\(540\) 0 0
\(541\) −2.85109e6 −0.418811 −0.209405 0.977829i \(-0.567153\pi\)
−0.209405 + 0.977829i \(0.567153\pi\)
\(542\) 0 0
\(543\) −4.15323e6 −0.604486
\(544\) 0 0
\(545\) 3.94287e6 0.568619
\(546\) 0 0
\(547\) −5.09692e6 −0.728349 −0.364174 0.931331i \(-0.618649\pi\)
−0.364174 + 0.931331i \(0.618649\pi\)
\(548\) 0 0
\(549\) −2.32847e6 −0.329716
\(550\) 0 0
\(551\) 523352. 0.0734370
\(552\) 0 0
\(553\) −2.31228e6 −0.321535
\(554\) 0 0
\(555\) −1.12858e6 −0.155525
\(556\) 0 0
\(557\) −2.31522e6 −0.316194 −0.158097 0.987424i \(-0.550536\pi\)
−0.158097 + 0.987424i \(0.550536\pi\)
\(558\) 0 0
\(559\) 1.54475e6 0.209088
\(560\) 0 0
\(561\) 176112. 0.0236256
\(562\) 0 0
\(563\) 304153. 0.0404409 0.0202205 0.999796i \(-0.493563\pi\)
0.0202205 + 0.999796i \(0.493563\pi\)
\(564\) 0 0
\(565\) −3.12638e6 −0.412022
\(566\) 0 0
\(567\) −470126. −0.0614125
\(568\) 0 0
\(569\) −3.22725e6 −0.417881 −0.208940 0.977928i \(-0.567001\pi\)
−0.208940 + 0.977928i \(0.567001\pi\)
\(570\) 0 0
\(571\) −4.88990e6 −0.627639 −0.313819 0.949483i \(-0.601609\pi\)
−0.313819 + 0.949483i \(0.601609\pi\)
\(572\) 0 0
\(573\) −703351. −0.0894923
\(574\) 0 0
\(575\) 8.75857e6 1.10475
\(576\) 0 0
\(577\) 3.58483e6 0.448259 0.224130 0.974559i \(-0.428046\pi\)
0.224130 + 0.974559i \(0.428046\pi\)
\(578\) 0 0
\(579\) −927904. −0.115029
\(580\) 0 0
\(581\) 3.71437e6 0.456504
\(582\) 0 0
\(583\) −9.03395e6 −1.10079
\(584\) 0 0
\(585\) −395799. −0.0478173
\(586\) 0 0
\(587\) 3.46214e6 0.414715 0.207358 0.978265i \(-0.433514\pi\)
0.207358 + 0.978265i \(0.433514\pi\)
\(588\) 0 0
\(589\) 220414. 0.0261789
\(590\) 0 0
\(591\) 5.20634e6 0.613146
\(592\) 0 0
\(593\) 1.56077e7 1.82265 0.911324 0.411689i \(-0.135061\pi\)
0.911324 + 0.411689i \(0.135061\pi\)
\(594\) 0 0
\(595\) 149020. 0.0172565
\(596\) 0 0
\(597\) 3.72916e6 0.428228
\(598\) 0 0
\(599\) 4.38283e6 0.499100 0.249550 0.968362i \(-0.419717\pi\)
0.249550 + 0.968362i \(0.419717\pi\)
\(600\) 0 0
\(601\) 3.77116e6 0.425882 0.212941 0.977065i \(-0.431696\pi\)
0.212941 + 0.977065i \(0.431696\pi\)
\(602\) 0 0
\(603\) 2.09161e6 0.234254
\(604\) 0 0
\(605\) 2.51663e6 0.279532
\(606\) 0 0
\(607\) −3.16199e6 −0.348329 −0.174164 0.984717i \(-0.555722\pi\)
−0.174164 + 0.984717i \(0.555722\pi\)
\(608\) 0 0
\(609\) −3.61986e6 −0.395502
\(610\) 0 0
\(611\) −923424. −0.100069
\(612\) 0 0
\(613\) −1.35843e7 −1.46011 −0.730057 0.683386i \(-0.760507\pi\)
−0.730057 + 0.683386i \(0.760507\pi\)
\(614\) 0 0
\(615\) −504460. −0.0537822
\(616\) 0 0
\(617\) 1.11980e7 1.18421 0.592104 0.805861i \(-0.298297\pi\)
0.592104 + 0.805861i \(0.298297\pi\)
\(618\) 0 0
\(619\) −1.13447e7 −1.19006 −0.595028 0.803705i \(-0.702859\pi\)
−0.595028 + 0.803705i \(0.702859\pi\)
\(620\) 0 0
\(621\) −2.78943e6 −0.290259
\(622\) 0 0
\(623\) 5.07974e6 0.524350
\(624\) 0 0
\(625\) 2.62702e6 0.269007
\(626\) 0 0
\(627\) 228287. 0.0231906
\(628\) 0 0
\(629\) 311950. 0.0314382
\(630\) 0 0
\(631\) −6.93729e6 −0.693611 −0.346806 0.937937i \(-0.612734\pi\)
−0.346806 + 0.937937i \(0.612734\pi\)
\(632\) 0 0
\(633\) −8.47452e6 −0.840632
\(634\) 0 0
\(635\) −1.53387e6 −0.150957
\(636\) 0 0
\(637\) −1.97267e6 −0.192622
\(638\) 0 0
\(639\) −2.65281e6 −0.257012
\(640\) 0 0
\(641\) 1.12159e7 1.07818 0.539089 0.842249i \(-0.318768\pi\)
0.539089 + 0.842249i \(0.318768\pi\)
\(642\) 0 0
\(643\) 5.50189e6 0.524788 0.262394 0.964961i \(-0.415488\pi\)
0.262394 + 0.964961i \(0.415488\pi\)
\(644\) 0 0
\(645\) −2.37858e6 −0.225122
\(646\) 0 0
\(647\) 1.22447e7 1.14998 0.574988 0.818162i \(-0.305007\pi\)
0.574988 + 0.818162i \(0.305007\pi\)
\(648\) 0 0
\(649\) 7.45266e6 0.694544
\(650\) 0 0
\(651\) −1.52453e6 −0.140989
\(652\) 0 0
\(653\) −9.57856e6 −0.879058 −0.439529 0.898228i \(-0.644855\pi\)
−0.439529 + 0.898228i \(0.644855\pi\)
\(654\) 0 0
\(655\) −949608. −0.0864850
\(656\) 0 0
\(657\) −2.24887e6 −0.203260
\(658\) 0 0
\(659\) −1.61762e7 −1.45098 −0.725490 0.688232i \(-0.758387\pi\)
−0.725490 + 0.688232i \(0.758387\pi\)
\(660\) 0 0
\(661\) 6.90601e6 0.614785 0.307393 0.951583i \(-0.400544\pi\)
0.307393 + 0.951583i \(0.400544\pi\)
\(662\) 0 0
\(663\) 109402. 0.00966592
\(664\) 0 0
\(665\) 193169. 0.0169388
\(666\) 0 0
\(667\) −2.14779e7 −1.86929
\(668\) 0 0
\(669\) 3.32969e6 0.287633
\(670\) 0 0
\(671\) −7.82050e6 −0.670545
\(672\) 0 0
\(673\) 1.94177e7 1.65257 0.826287 0.563250i \(-0.190449\pi\)
0.826287 + 0.563250i \(0.190449\pi\)
\(674\) 0 0
\(675\) −1.66868e6 −0.140966
\(676\) 0 0
\(677\) 767961. 0.0643973 0.0321986 0.999481i \(-0.489749\pi\)
0.0321986 + 0.999481i \(0.489749\pi\)
\(678\) 0 0
\(679\) 9.07258e6 0.755190
\(680\) 0 0
\(681\) −3.26187e6 −0.269525
\(682\) 0 0
\(683\) 2.18810e6 0.179480 0.0897399 0.995965i \(-0.471396\pi\)
0.0897399 + 0.995965i \(0.471396\pi\)
\(684\) 0 0
\(685\) 1.61480e6 0.131490
\(686\) 0 0
\(687\) −8.45800e6 −0.683716
\(688\) 0 0
\(689\) −5.61197e6 −0.450368
\(690\) 0 0
\(691\) −223392. −0.0177980 −0.00889902 0.999960i \(-0.502833\pi\)
−0.00889902 + 0.999960i \(0.502833\pi\)
\(692\) 0 0
\(693\) −1.57899e6 −0.124895
\(694\) 0 0
\(695\) 888975. 0.0698116
\(696\) 0 0
\(697\) 139437. 0.0108717
\(698\) 0 0
\(699\) 2.30556e6 0.178477
\(700\) 0 0
\(701\) −1.07733e7 −0.828041 −0.414021 0.910268i \(-0.635876\pi\)
−0.414021 + 0.910268i \(0.635876\pi\)
\(702\) 0 0
\(703\) 404368. 0.0308595
\(704\) 0 0
\(705\) 1.42187e6 0.107743
\(706\) 0 0
\(707\) 1.35256e7 1.01767
\(708\) 0 0
\(709\) 5.30994e6 0.396711 0.198355 0.980130i \(-0.436440\pi\)
0.198355 + 0.980130i \(0.436440\pi\)
\(710\) 0 0
\(711\) 2.61386e6 0.193913
\(712\) 0 0
\(713\) −9.04560e6 −0.666367
\(714\) 0 0
\(715\) −1.32935e6 −0.0972465
\(716\) 0 0
\(717\) −9.53246e6 −0.692480
\(718\) 0 0
\(719\) 3.79956e6 0.274101 0.137050 0.990564i \(-0.456238\pi\)
0.137050 + 0.990564i \(0.456238\pi\)
\(720\) 0 0
\(721\) 9.12483e6 0.653712
\(722\) 0 0
\(723\) −6.78330e6 −0.482609
\(724\) 0 0
\(725\) −1.28484e7 −0.907831
\(726\) 0 0
\(727\) −6.78114e6 −0.475846 −0.237923 0.971284i \(-0.576467\pi\)
−0.237923 + 0.971284i \(0.576467\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 657460. 0.0455067
\(732\) 0 0
\(733\) −1.62233e7 −1.11527 −0.557633 0.830088i \(-0.688290\pi\)
−0.557633 + 0.830088i \(0.688290\pi\)
\(734\) 0 0
\(735\) 3.03748e6 0.207394
\(736\) 0 0
\(737\) 7.02497e6 0.476404
\(738\) 0 0
\(739\) −2.78852e7 −1.87829 −0.939143 0.343525i \(-0.888379\pi\)
−0.939143 + 0.343525i \(0.888379\pi\)
\(740\) 0 0
\(741\) 141814. 0.00948797
\(742\) 0 0
\(743\) −1.27984e6 −0.0850516 −0.0425258 0.999095i \(-0.513540\pi\)
−0.0425258 + 0.999095i \(0.513540\pi\)
\(744\) 0 0
\(745\) 7.90621e6 0.521889
\(746\) 0 0
\(747\) −4.19880e6 −0.275311
\(748\) 0 0
\(749\) −1.01177e7 −0.658988
\(750\) 0 0
\(751\) −1.56219e7 −1.01073 −0.505364 0.862906i \(-0.668642\pi\)
−0.505364 + 0.862906i \(0.668642\pi\)
\(752\) 0 0
\(753\) 851388. 0.0547192
\(754\) 0 0
\(755\) 5.78838e6 0.369564
\(756\) 0 0
\(757\) 1.09700e7 0.695771 0.347885 0.937537i \(-0.386900\pi\)
0.347885 + 0.937537i \(0.386900\pi\)
\(758\) 0 0
\(759\) −9.36870e6 −0.590303
\(760\) 0 0
\(761\) 9.61776e6 0.602022 0.301011 0.953621i \(-0.402676\pi\)
0.301011 + 0.953621i \(0.402676\pi\)
\(762\) 0 0
\(763\) 9.77134e6 0.607635
\(764\) 0 0
\(765\) −168456. −0.0104072
\(766\) 0 0
\(767\) 4.62966e6 0.284158
\(768\) 0 0
\(769\) −8.40921e6 −0.512790 −0.256395 0.966572i \(-0.582535\pi\)
−0.256395 + 0.966572i \(0.582535\pi\)
\(770\) 0 0
\(771\) −236674. −0.0143389
\(772\) 0 0
\(773\) −1.03787e7 −0.624732 −0.312366 0.949962i \(-0.601122\pi\)
−0.312366 + 0.949962i \(0.601122\pi\)
\(774\) 0 0
\(775\) −5.41123e6 −0.323625
\(776\) 0 0
\(777\) −2.79688e6 −0.166196
\(778\) 0 0
\(779\) 180747. 0.0106715
\(780\) 0 0
\(781\) −8.90984e6 −0.522687
\(782\) 0 0
\(783\) 4.09197e6 0.238522
\(784\) 0 0
\(785\) 2.37306e6 0.137447
\(786\) 0 0
\(787\) 2.65654e7 1.52890 0.764451 0.644682i \(-0.223010\pi\)
0.764451 + 0.644682i \(0.223010\pi\)
\(788\) 0 0
\(789\) −9.50433e6 −0.543537
\(790\) 0 0
\(791\) −7.74787e6 −0.440292
\(792\) 0 0
\(793\) −4.85816e6 −0.274340
\(794\) 0 0
\(795\) 8.64120e6 0.484905
\(796\) 0 0
\(797\) −1.92434e7 −1.07309 −0.536545 0.843872i \(-0.680271\pi\)
−0.536545 + 0.843872i \(0.680271\pi\)
\(798\) 0 0
\(799\) −393018. −0.0217794
\(800\) 0 0
\(801\) −5.74225e6 −0.316228
\(802\) 0 0
\(803\) −7.55317e6 −0.413371
\(804\) 0 0
\(805\) −7.92748e6 −0.431167
\(806\) 0 0
\(807\) 1.81892e7 0.983175
\(808\) 0 0
\(809\) 1.43425e7 0.770467 0.385233 0.922819i \(-0.374121\pi\)
0.385233 + 0.922819i \(0.374121\pi\)
\(810\) 0 0
\(811\) −2.56772e7 −1.37087 −0.685434 0.728135i \(-0.740388\pi\)
−0.685434 + 0.728135i \(0.740388\pi\)
\(812\) 0 0
\(813\) −1.97419e7 −1.04752
\(814\) 0 0
\(815\) 1.12353e6 0.0592501
\(816\) 0 0
\(817\) 852238. 0.0446690
\(818\) 0 0
\(819\) −980881. −0.0510983
\(820\) 0 0
\(821\) −2.36193e7 −1.22295 −0.611476 0.791263i \(-0.709424\pi\)
−0.611476 + 0.791263i \(0.709424\pi\)
\(822\) 0 0
\(823\) −1.69943e7 −0.874591 −0.437295 0.899318i \(-0.644064\pi\)
−0.437295 + 0.899318i \(0.644064\pi\)
\(824\) 0 0
\(825\) −5.60451e6 −0.286683
\(826\) 0 0
\(827\) 9.50945e6 0.483495 0.241747 0.970339i \(-0.422279\pi\)
0.241747 + 0.970339i \(0.422279\pi\)
\(828\) 0 0
\(829\) −3.50009e7 −1.76886 −0.884428 0.466676i \(-0.845451\pi\)
−0.884428 + 0.466676i \(0.845451\pi\)
\(830\) 0 0
\(831\) 1.21690e7 0.611297
\(832\) 0 0
\(833\) −839587. −0.0419231
\(834\) 0 0
\(835\) 1.08315e7 0.537618
\(836\) 0 0
\(837\) 1.72337e6 0.0850284
\(838\) 0 0
\(839\) −2.59134e6 −0.127092 −0.0635462 0.997979i \(-0.520241\pi\)
−0.0635462 + 0.997979i \(0.520241\pi\)
\(840\) 0 0
\(841\) 1.09960e7 0.536098
\(842\) 0 0
\(843\) 1.00560e6 0.0487368
\(844\) 0 0
\(845\) −825803. −0.0397864
\(846\) 0 0
\(847\) 6.23679e6 0.298712
\(848\) 0 0
\(849\) 1.75415e7 0.835214
\(850\) 0 0
\(851\) −1.65949e7 −0.785508
\(852\) 0 0
\(853\) 3.31365e7 1.55932 0.779658 0.626206i \(-0.215393\pi\)
0.779658 + 0.626206i \(0.215393\pi\)
\(854\) 0 0
\(855\) −218362. −0.0102156
\(856\) 0 0
\(857\) 2.10642e6 0.0979697 0.0489849 0.998800i \(-0.484401\pi\)
0.0489849 + 0.998800i \(0.484401\pi\)
\(858\) 0 0
\(859\) −1.55967e7 −0.721191 −0.360595 0.932722i \(-0.617426\pi\)
−0.360595 + 0.932722i \(0.617426\pi\)
\(860\) 0 0
\(861\) −1.25017e6 −0.0574725
\(862\) 0 0
\(863\) 2.74535e7 1.25479 0.627395 0.778701i \(-0.284121\pi\)
0.627395 + 0.778701i \(0.284121\pi\)
\(864\) 0 0
\(865\) 447980. 0.0203572
\(866\) 0 0
\(867\) −1.27322e7 −0.575247
\(868\) 0 0
\(869\) 8.77902e6 0.394363
\(870\) 0 0
\(871\) 4.36397e6 0.194911
\(872\) 0 0
\(873\) −1.02558e7 −0.455445
\(874\) 0 0
\(875\) −1.12167e7 −0.495274
\(876\) 0 0
\(877\) 891772. 0.0391521 0.0195760 0.999808i \(-0.493768\pi\)
0.0195760 + 0.999808i \(0.493768\pi\)
\(878\) 0 0
\(879\) −9.45355e6 −0.412689
\(880\) 0 0
\(881\) −3.19746e7 −1.38792 −0.693960 0.720013i \(-0.744136\pi\)
−0.693960 + 0.720013i \(0.744136\pi\)
\(882\) 0 0
\(883\) 2.95484e7 1.27536 0.637679 0.770302i \(-0.279894\pi\)
0.637679 + 0.770302i \(0.279894\pi\)
\(884\) 0 0
\(885\) −7.12866e6 −0.305949
\(886\) 0 0
\(887\) 5.15586e6 0.220035 0.110018 0.993930i \(-0.464909\pi\)
0.110018 + 0.993930i \(0.464909\pi\)
\(888\) 0 0
\(889\) −3.80128e6 −0.161315
\(890\) 0 0
\(891\) 1.78492e6 0.0753225
\(892\) 0 0
\(893\) −509453. −0.0213784
\(894\) 0 0
\(895\) −2.81991e6 −0.117673
\(896\) 0 0
\(897\) −5.81991e6 −0.241510
\(898\) 0 0
\(899\) 1.32695e7 0.547590
\(900\) 0 0
\(901\) −2.38851e6 −0.0980199
\(902\) 0 0
\(903\) −5.89465e6 −0.240569
\(904\) 0 0
\(905\) 1.33428e7 0.541533
\(906\) 0 0
\(907\) 1.85404e7 0.748342 0.374171 0.927360i \(-0.377927\pi\)
0.374171 + 0.927360i \(0.377927\pi\)
\(908\) 0 0
\(909\) −1.52897e7 −0.613746
\(910\) 0 0
\(911\) 3.33448e7 1.33117 0.665583 0.746324i \(-0.268183\pi\)
0.665583 + 0.746324i \(0.268183\pi\)
\(912\) 0 0
\(913\) −1.41023e7 −0.559903
\(914\) 0 0
\(915\) 7.48050e6 0.295378
\(916\) 0 0
\(917\) −2.35334e6 −0.0924192
\(918\) 0 0
\(919\) 1.57476e7 0.615071 0.307535 0.951537i \(-0.400496\pi\)
0.307535 + 0.951537i \(0.400496\pi\)
\(920\) 0 0
\(921\) 5.10326e6 0.198243
\(922\) 0 0
\(923\) −5.53487e6 −0.213847
\(924\) 0 0
\(925\) −9.92734e6 −0.381486
\(926\) 0 0
\(927\) −1.03149e7 −0.394245
\(928\) 0 0
\(929\) 1.19196e7 0.453128 0.226564 0.973996i \(-0.427251\pi\)
0.226564 + 0.973996i \(0.427251\pi\)
\(930\) 0 0
\(931\) −1.08832e6 −0.0411513
\(932\) 0 0
\(933\) 5.89840e6 0.221835
\(934\) 0 0
\(935\) −565783. −0.0211651
\(936\) 0 0
\(937\) −5.03173e7 −1.87227 −0.936134 0.351644i \(-0.885623\pi\)
−0.936134 + 0.351644i \(0.885623\pi\)
\(938\) 0 0
\(939\) 1.67779e7 0.620973
\(940\) 0 0
\(941\) −6.57081e6 −0.241905 −0.120953 0.992658i \(-0.538595\pi\)
−0.120953 + 0.992658i \(0.538595\pi\)
\(942\) 0 0
\(943\) −7.41768e6 −0.271637
\(944\) 0 0
\(945\) 1.51034e6 0.0550168
\(946\) 0 0
\(947\) −2.79943e7 −1.01437 −0.507183 0.861838i \(-0.669313\pi\)
−0.507183 + 0.861838i \(0.669313\pi\)
\(948\) 0 0
\(949\) −4.69209e6 −0.169122
\(950\) 0 0
\(951\) −1.34854e7 −0.483518
\(952\) 0 0
\(953\) 1.67553e7 0.597614 0.298807 0.954314i \(-0.403411\pi\)
0.298807 + 0.954314i \(0.403411\pi\)
\(954\) 0 0
\(955\) 2.25961e6 0.0801723
\(956\) 0 0
\(957\) 1.37435e7 0.485083
\(958\) 0 0
\(959\) 4.00184e6 0.140512
\(960\) 0 0
\(961\) −2.30406e7 −0.804795
\(962\) 0 0
\(963\) 1.14373e7 0.397427
\(964\) 0 0
\(965\) 2.98101e6 0.103049
\(966\) 0 0
\(967\) −1.60885e7 −0.553287 −0.276644 0.960973i \(-0.589222\pi\)
−0.276644 + 0.960973i \(0.589222\pi\)
\(968\) 0 0
\(969\) 60357.3 0.00206500
\(970\) 0 0
\(971\) 4.59929e7 1.56546 0.782731 0.622361i \(-0.213826\pi\)
0.782731 + 0.622361i \(0.213826\pi\)
\(972\) 0 0
\(973\) 2.20308e6 0.0746017
\(974\) 0 0
\(975\) −3.48157e6 −0.117291
\(976\) 0 0
\(977\) 6.62641e6 0.222096 0.111048 0.993815i \(-0.464579\pi\)
0.111048 + 0.993815i \(0.464579\pi\)
\(978\) 0 0
\(979\) −1.92862e7 −0.643116
\(980\) 0 0
\(981\) −1.10457e7 −0.366456
\(982\) 0 0
\(983\) −5.08829e7 −1.67953 −0.839766 0.542948i \(-0.817308\pi\)
−0.839766 + 0.542948i \(0.817308\pi\)
\(984\) 0 0
\(985\) −1.67261e7 −0.549292
\(986\) 0 0
\(987\) 3.52372e6 0.115135
\(988\) 0 0
\(989\) −3.49751e7 −1.13702
\(990\) 0 0
\(991\) 1.70488e7 0.551454 0.275727 0.961236i \(-0.411081\pi\)
0.275727 + 0.961236i \(0.411081\pi\)
\(992\) 0 0
\(993\) 5.60007e6 0.180227
\(994\) 0 0
\(995\) −1.19804e7 −0.383631
\(996\) 0 0
\(997\) −3.01764e7 −0.961455 −0.480728 0.876870i \(-0.659627\pi\)
−0.480728 + 0.876870i \(0.659627\pi\)
\(998\) 0 0
\(999\) 3.16166e6 0.100231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.m.1.1 2
4.3 odd 2 312.6.a.c.1.1 2
12.11 even 2 936.6.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.a.c.1.1 2 4.3 odd 2
624.6.a.m.1.1 2 1.1 even 1 trivial
936.6.a.d.1.2 2 12.11 even 2