Properties

Label 624.6.c.a.337.2
Level $624$
Weight $6$
Character 624.337
Analytic conductor $100.080$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(337,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.337");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.31066572.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 53x^{2} + 300 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(-6.82321i\) of defining polynomial
Character \(\chi\) \(=\) 624.337
Dual form 624.6.c.a.337.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -33.0580i q^{5} +61.2631i q^{7} +81.0000 q^{9} +164.669i q^{11} +(-443.460 + 417.895i) q^{13} +297.522i q^{15} +336.674 q^{17} +69.6517i q^{19} -551.368i q^{21} -3734.76 q^{23} +2032.17 q^{25} -729.000 q^{27} +4304.83 q^{29} -1850.83i q^{31} -1482.02i q^{33} +2025.24 q^{35} -2739.27i q^{37} +(3991.14 - 3761.05i) q^{39} +12031.5i q^{41} +2161.44 q^{43} -2677.70i q^{45} -10338.2i q^{47} +13053.8 q^{49} -3030.07 q^{51} -696.674 q^{53} +5443.64 q^{55} -626.866i q^{57} +24274.8i q^{59} -26772.3 q^{61} +4962.31i q^{63} +(13814.8 + 14659.9i) q^{65} -68687.0i q^{67} +33612.9 q^{69} +16366.0i q^{71} +83795.1i q^{73} -18289.5 q^{75} -10088.2 q^{77} +16999.8 q^{79} +6561.00 q^{81} +38542.9i q^{83} -11129.8i q^{85} -38743.5 q^{87} -140248. i q^{89} +(-25601.5 - 27167.8i) q^{91} +16657.5i q^{93} +2302.55 q^{95} -87328.3i q^{97} +13338.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} + 324 q^{9} + 312 q^{13} + 384 q^{17} - 2424 q^{23} + 748 q^{25} - 2916 q^{27} - 3960 q^{29} + 20616 q^{35} - 2808 q^{39} - 4832 q^{43} + 31036 q^{49} - 3456 q^{51} - 1824 q^{53} + 10864 q^{55}+ \cdots - 322920 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 33.0580i 0.591360i −0.955287 0.295680i \(-0.904454\pi\)
0.955287 0.295680i \(-0.0955462\pi\)
\(6\) 0 0
\(7\) 61.2631i 0.472557i 0.971685 + 0.236278i \(0.0759277\pi\)
−0.971685 + 0.236278i \(0.924072\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 164.669i 0.410328i 0.978728 + 0.205164i \(0.0657727\pi\)
−0.978728 + 0.205164i \(0.934227\pi\)
\(12\) 0 0
\(13\) −443.460 + 417.895i −0.727774 + 0.685817i
\(14\) 0 0
\(15\) 297.522i 0.341422i
\(16\) 0 0
\(17\) 336.674 0.282545 0.141272 0.989971i \(-0.454881\pi\)
0.141272 + 0.989971i \(0.454881\pi\)
\(18\) 0 0
\(19\) 69.6517i 0.0442637i 0.999755 + 0.0221319i \(0.00704537\pi\)
−0.999755 + 0.0221319i \(0.992955\pi\)
\(20\) 0 0
\(21\) 551.368i 0.272831i
\(22\) 0 0
\(23\) −3734.76 −1.47212 −0.736060 0.676916i \(-0.763316\pi\)
−0.736060 + 0.676916i \(0.763316\pi\)
\(24\) 0 0
\(25\) 2032.17 0.650294
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 4304.83 0.950519 0.475260 0.879846i \(-0.342354\pi\)
0.475260 + 0.879846i \(0.342354\pi\)
\(30\) 0 0
\(31\) 1850.83i 0.345910i −0.984930 0.172955i \(-0.944668\pi\)
0.984930 0.172955i \(-0.0553315\pi\)
\(32\) 0 0
\(33\) 1482.02i 0.236903i
\(34\) 0 0
\(35\) 2025.24 0.279451
\(36\) 0 0
\(37\) 2739.27i 0.328950i −0.986381 0.164475i \(-0.947407\pi\)
0.986381 0.164475i \(-0.0525931\pi\)
\(38\) 0 0
\(39\) 3991.14 3761.05i 0.420180 0.395957i
\(40\) 0 0
\(41\) 12031.5i 1.11779i 0.829239 + 0.558894i \(0.188774\pi\)
−0.829239 + 0.558894i \(0.811226\pi\)
\(42\) 0 0
\(43\) 2161.44 0.178267 0.0891336 0.996020i \(-0.471590\pi\)
0.0891336 + 0.996020i \(0.471590\pi\)
\(44\) 0 0
\(45\) 2677.70i 0.197120i
\(46\) 0 0
\(47\) 10338.2i 0.682651i −0.939945 0.341325i \(-0.889124\pi\)
0.939945 0.341325i \(-0.110876\pi\)
\(48\) 0 0
\(49\) 13053.8 0.776690
\(50\) 0 0
\(51\) −3030.07 −0.163127
\(52\) 0 0
\(53\) −696.674 −0.0340675 −0.0170337 0.999855i \(-0.505422\pi\)
−0.0170337 + 0.999855i \(0.505422\pi\)
\(54\) 0 0
\(55\) 5443.64 0.242651
\(56\) 0 0
\(57\) 626.866i 0.0255557i
\(58\) 0 0
\(59\) 24274.8i 0.907876i 0.891033 + 0.453938i \(0.149981\pi\)
−0.891033 + 0.453938i \(0.850019\pi\)
\(60\) 0 0
\(61\) −26772.3 −0.921214 −0.460607 0.887604i \(-0.652368\pi\)
−0.460607 + 0.887604i \(0.652368\pi\)
\(62\) 0 0
\(63\) 4962.31i 0.157519i
\(64\) 0 0
\(65\) 13814.8 + 14659.9i 0.405565 + 0.430376i
\(66\) 0 0
\(67\) 68687.0i 1.86934i −0.355522 0.934668i \(-0.615697\pi\)
0.355522 0.934668i \(-0.384303\pi\)
\(68\) 0 0
\(69\) 33612.9 0.849929
\(70\) 0 0
\(71\) 16366.0i 0.385298i 0.981268 + 0.192649i \(0.0617079\pi\)
−0.981268 + 0.192649i \(0.938292\pi\)
\(72\) 0 0
\(73\) 83795.1i 1.84040i 0.391451 + 0.920199i \(0.371973\pi\)
−0.391451 + 0.920199i \(0.628027\pi\)
\(74\) 0 0
\(75\) −18289.5 −0.375447
\(76\) 0 0
\(77\) −10088.2 −0.193903
\(78\) 0 0
\(79\) 16999.8 0.306462 0.153231 0.988190i \(-0.451032\pi\)
0.153231 + 0.988190i \(0.451032\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 38542.9i 0.614114i 0.951691 + 0.307057i \(0.0993442\pi\)
−0.951691 + 0.307057i \(0.900656\pi\)
\(84\) 0 0
\(85\) 11129.8i 0.167086i
\(86\) 0 0
\(87\) −38743.5 −0.548783
\(88\) 0 0
\(89\) 140248.i 1.87681i −0.345531 0.938407i \(-0.612301\pi\)
0.345531 0.938407i \(-0.387699\pi\)
\(90\) 0 0
\(91\) −25601.5 27167.8i −0.324088 0.343915i
\(92\) 0 0
\(93\) 16657.5i 0.199711i
\(94\) 0 0
\(95\) 2302.55 0.0261758
\(96\) 0 0
\(97\) 87328.3i 0.942379i −0.882032 0.471189i \(-0.843825\pi\)
0.882032 0.471189i \(-0.156175\pi\)
\(98\) 0 0
\(99\) 13338.2i 0.136776i
\(100\) 0 0
\(101\) −128464. −1.25308 −0.626539 0.779390i \(-0.715529\pi\)
−0.626539 + 0.779390i \(0.715529\pi\)
\(102\) 0 0
\(103\) 63628.0 0.590956 0.295478 0.955350i \(-0.404521\pi\)
0.295478 + 0.955350i \(0.404521\pi\)
\(104\) 0 0
\(105\) −18227.1 −0.161341
\(106\) 0 0
\(107\) −125275. −1.05780 −0.528900 0.848684i \(-0.677395\pi\)
−0.528900 + 0.848684i \(0.677395\pi\)
\(108\) 0 0
\(109\) 56877.0i 0.458533i −0.973364 0.229267i \(-0.926367\pi\)
0.973364 0.229267i \(-0.0736327\pi\)
\(110\) 0 0
\(111\) 24653.4i 0.189920i
\(112\) 0 0
\(113\) −235161. −1.73249 −0.866243 0.499623i \(-0.833472\pi\)
−0.866243 + 0.499623i \(0.833472\pi\)
\(114\) 0 0
\(115\) 123464.i 0.870553i
\(116\) 0 0
\(117\) −35920.3 + 33849.5i −0.242591 + 0.228606i
\(118\) 0 0
\(119\) 20625.7i 0.133518i
\(120\) 0 0
\(121\) 133935. 0.831631
\(122\) 0 0
\(123\) 108283.i 0.645356i
\(124\) 0 0
\(125\) 170486.i 0.975917i
\(126\) 0 0
\(127\) −109597. −0.602961 −0.301481 0.953472i \(-0.597481\pi\)
−0.301481 + 0.953472i \(0.597481\pi\)
\(128\) 0 0
\(129\) −19452.9 −0.102923
\(130\) 0 0
\(131\) 219695. 1.11851 0.559257 0.828994i \(-0.311087\pi\)
0.559257 + 0.828994i \(0.311087\pi\)
\(132\) 0 0
\(133\) −4267.08 −0.0209171
\(134\) 0 0
\(135\) 24099.3i 0.113807i
\(136\) 0 0
\(137\) 9145.44i 0.0416297i −0.999783 0.0208148i \(-0.993374\pi\)
0.999783 0.0208148i \(-0.00662605\pi\)
\(138\) 0 0
\(139\) −146786. −0.644390 −0.322195 0.946673i \(-0.604421\pi\)
−0.322195 + 0.946673i \(0.604421\pi\)
\(140\) 0 0
\(141\) 93043.4i 0.394129i
\(142\) 0 0
\(143\) −68814.4 73024.3i −0.281410 0.298626i
\(144\) 0 0
\(145\) 142309.i 0.562099i
\(146\) 0 0
\(147\) −117484. −0.448422
\(148\) 0 0
\(149\) 205420.i 0.758012i 0.925394 + 0.379006i \(0.123734\pi\)
−0.925394 + 0.379006i \(0.876266\pi\)
\(150\) 0 0
\(151\) 325694.i 1.16243i −0.813749 0.581216i \(-0.802577\pi\)
0.813749 0.581216i \(-0.197423\pi\)
\(152\) 0 0
\(153\) 27270.6 0.0941816
\(154\) 0 0
\(155\) −61184.9 −0.204557
\(156\) 0 0
\(157\) −557622. −1.80547 −0.902735 0.430196i \(-0.858444\pi\)
−0.902735 + 0.430196i \(0.858444\pi\)
\(158\) 0 0
\(159\) 6270.07 0.0196689
\(160\) 0 0
\(161\) 228803.i 0.695661i
\(162\) 0 0
\(163\) 635012.i 1.87203i −0.351958 0.936016i \(-0.614484\pi\)
0.351958 0.936016i \(-0.385516\pi\)
\(164\) 0 0
\(165\) −48992.8 −0.140095
\(166\) 0 0
\(167\) 480228.i 1.33247i −0.745743 0.666234i \(-0.767905\pi\)
0.745743 0.666234i \(-0.232095\pi\)
\(168\) 0 0
\(169\) 22021.3 370639.i 0.0593099 0.998240i
\(170\) 0 0
\(171\) 5641.79i 0.0147546i
\(172\) 0 0
\(173\) −337273. −0.856774 −0.428387 0.903595i \(-0.640918\pi\)
−0.428387 + 0.903595i \(0.640918\pi\)
\(174\) 0 0
\(175\) 124497.i 0.307301i
\(176\) 0 0
\(177\) 218474.i 0.524162i
\(178\) 0 0
\(179\) −570180. −1.33009 −0.665043 0.746805i \(-0.731587\pi\)
−0.665043 + 0.746805i \(0.731587\pi\)
\(180\) 0 0
\(181\) 192663. 0.437121 0.218560 0.975823i \(-0.429864\pi\)
0.218560 + 0.975823i \(0.429864\pi\)
\(182\) 0 0
\(183\) 240950. 0.531863
\(184\) 0 0
\(185\) −90554.8 −0.194528
\(186\) 0 0
\(187\) 55439.9i 0.115936i
\(188\) 0 0
\(189\) 44660.8i 0.0909436i
\(190\) 0 0
\(191\) 320668. 0.636023 0.318011 0.948087i \(-0.396985\pi\)
0.318011 + 0.948087i \(0.396985\pi\)
\(192\) 0 0
\(193\) 386084.i 0.746086i −0.927814 0.373043i \(-0.878314\pi\)
0.927814 0.373043i \(-0.121686\pi\)
\(194\) 0 0
\(195\) −124333. 131939.i −0.234153 0.248478i
\(196\) 0 0
\(197\) 891618.i 1.63687i −0.574602 0.818433i \(-0.694843\pi\)
0.574602 0.818433i \(-0.305157\pi\)
\(198\) 0 0
\(199\) −700392. −1.25374 −0.626872 0.779123i \(-0.715665\pi\)
−0.626872 + 0.779123i \(0.715665\pi\)
\(200\) 0 0
\(201\) 618183.i 1.07926i
\(202\) 0 0
\(203\) 263727.i 0.449174i
\(204\) 0 0
\(205\) 397737. 0.661015
\(206\) 0 0
\(207\) −302516. −0.490707
\(208\) 0 0
\(209\) −11469.5 −0.0181626
\(210\) 0 0
\(211\) −598648. −0.925689 −0.462845 0.886439i \(-0.653171\pi\)
−0.462845 + 0.886439i \(0.653171\pi\)
\(212\) 0 0
\(213\) 147294.i 0.222452i
\(214\) 0 0
\(215\) 71452.8i 0.105420i
\(216\) 0 0
\(217\) 113388. 0.163462
\(218\) 0 0
\(219\) 754156.i 1.06255i
\(220\) 0 0
\(221\) −149302. + 140694.i −0.205629 + 0.193774i
\(222\) 0 0
\(223\) 694921.i 0.935778i 0.883787 + 0.467889i \(0.154985\pi\)
−0.883787 + 0.467889i \(0.845015\pi\)
\(224\) 0 0
\(225\) 164606. 0.216765
\(226\) 0 0
\(227\) 1.06606e6i 1.37315i −0.727059 0.686575i \(-0.759113\pi\)
0.727059 0.686575i \(-0.240887\pi\)
\(228\) 0 0
\(229\) 985635.i 1.24202i 0.783804 + 0.621008i \(0.213277\pi\)
−0.783804 + 0.621008i \(0.786723\pi\)
\(230\) 0 0
\(231\) 90793.4 0.111950
\(232\) 0 0
\(233\) −1.01282e6 −1.22220 −0.611098 0.791555i \(-0.709272\pi\)
−0.611098 + 0.791555i \(0.709272\pi\)
\(234\) 0 0
\(235\) −341759. −0.403692
\(236\) 0 0
\(237\) −152999. −0.176936
\(238\) 0 0
\(239\) 112715.i 0.127640i 0.997961 + 0.0638201i \(0.0203284\pi\)
−0.997961 + 0.0638201i \(0.979672\pi\)
\(240\) 0 0
\(241\) 940022.i 1.04255i 0.853390 + 0.521273i \(0.174543\pi\)
−0.853390 + 0.521273i \(0.825457\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 431534.i 0.459303i
\(246\) 0 0
\(247\) −29107.1 30887.8i −0.0303568 0.0322140i
\(248\) 0 0
\(249\) 346886.i 0.354559i
\(250\) 0 0
\(251\) −1.22654e6 −1.22885 −0.614423 0.788977i \(-0.710611\pi\)
−0.614423 + 0.788977i \(0.710611\pi\)
\(252\) 0 0
\(253\) 615001.i 0.604052i
\(254\) 0 0
\(255\) 100168.i 0.0964669i
\(256\) 0 0
\(257\) 810365. 0.765328 0.382664 0.923888i \(-0.375007\pi\)
0.382664 + 0.923888i \(0.375007\pi\)
\(258\) 0 0
\(259\) 167816. 0.155448
\(260\) 0 0
\(261\) 348691. 0.316840
\(262\) 0 0
\(263\) 25213.2 0.0224770 0.0112385 0.999937i \(-0.496423\pi\)
0.0112385 + 0.999937i \(0.496423\pi\)
\(264\) 0 0
\(265\) 23030.7i 0.0201461i
\(266\) 0 0
\(267\) 1.26223e6i 1.08358i
\(268\) 0 0
\(269\) −498829. −0.420311 −0.210156 0.977668i \(-0.567397\pi\)
−0.210156 + 0.977668i \(0.567397\pi\)
\(270\) 0 0
\(271\) 541761.i 0.448110i 0.974577 + 0.224055i \(0.0719295\pi\)
−0.974577 + 0.224055i \(0.928070\pi\)
\(272\) 0 0
\(273\) 230414. + 244510.i 0.187112 + 0.198559i
\(274\) 0 0
\(275\) 334636.i 0.266834i
\(276\) 0 0
\(277\) −1.42654e6 −1.11708 −0.558540 0.829478i \(-0.688638\pi\)
−0.558540 + 0.829478i \(0.688638\pi\)
\(278\) 0 0
\(279\) 149917.i 0.115303i
\(280\) 0 0
\(281\) 186175.i 0.140655i 0.997524 + 0.0703274i \(0.0224044\pi\)
−0.997524 + 0.0703274i \(0.977596\pi\)
\(282\) 0 0
\(283\) 1.64391e6 1.22015 0.610073 0.792345i \(-0.291140\pi\)
0.610073 + 0.792345i \(0.291140\pi\)
\(284\) 0 0
\(285\) −20722.9 −0.0151126
\(286\) 0 0
\(287\) −737086. −0.528219
\(288\) 0 0
\(289\) −1.30651e6 −0.920168
\(290\) 0 0
\(291\) 785954.i 0.544083i
\(292\) 0 0
\(293\) 2.04281e6i 1.39014i −0.718940 0.695072i \(-0.755373\pi\)
0.718940 0.695072i \(-0.244627\pi\)
\(294\) 0 0
\(295\) 802478. 0.536881
\(296\) 0 0
\(297\) 120044.i 0.0789676i
\(298\) 0 0
\(299\) 1.65622e6 1.56074e6i 1.07137 1.00961i
\(300\) 0 0
\(301\) 132416.i 0.0842414i
\(302\) 0 0
\(303\) 1.15618e6 0.723465
\(304\) 0 0
\(305\) 885038.i 0.544769i
\(306\) 0 0
\(307\) 3.15457e6i 1.91026i −0.296179 0.955132i \(-0.595713\pi\)
0.296179 0.955132i \(-0.404287\pi\)
\(308\) 0 0
\(309\) −572652. −0.341189
\(310\) 0 0
\(311\) 270180. 0.158399 0.0791994 0.996859i \(-0.474764\pi\)
0.0791994 + 0.996859i \(0.474764\pi\)
\(312\) 0 0
\(313\) −1.05582e6 −0.609157 −0.304578 0.952487i \(-0.598516\pi\)
−0.304578 + 0.952487i \(0.598516\pi\)
\(314\) 0 0
\(315\) 164044. 0.0931504
\(316\) 0 0
\(317\) 165844.i 0.0926938i 0.998925 + 0.0463469i \(0.0147580\pi\)
−0.998925 + 0.0463469i \(0.985242\pi\)
\(318\) 0 0
\(319\) 708873.i 0.390024i
\(320\) 0 0
\(321\) 1.12747e6 0.610722
\(322\) 0 0
\(323\) 23449.9i 0.0125065i
\(324\) 0 0
\(325\) −901186. + 849232.i −0.473267 + 0.445983i
\(326\) 0 0
\(327\) 511893.i 0.264734i
\(328\) 0 0
\(329\) 633348. 0.322591
\(330\) 0 0
\(331\) 2.29011e6i 1.14891i 0.818535 + 0.574456i \(0.194787\pi\)
−0.818535 + 0.574456i \(0.805213\pi\)
\(332\) 0 0
\(333\) 221881.i 0.109650i
\(334\) 0 0
\(335\) −2.27065e6 −1.10545
\(336\) 0 0
\(337\) 1.89805e6 0.910402 0.455201 0.890389i \(-0.349567\pi\)
0.455201 + 0.890389i \(0.349567\pi\)
\(338\) 0 0
\(339\) 2.11645e6 1.00025
\(340\) 0 0
\(341\) 304775. 0.141936
\(342\) 0 0
\(343\) 1.82937e6i 0.839587i
\(344\) 0 0
\(345\) 1.11117e6i 0.502614i
\(346\) 0 0
\(347\) −3.22565e6 −1.43812 −0.719058 0.694950i \(-0.755426\pi\)
−0.719058 + 0.694950i \(0.755426\pi\)
\(348\) 0 0
\(349\) 2.95721e6i 1.29963i −0.760094 0.649813i \(-0.774847\pi\)
0.760094 0.649813i \(-0.225153\pi\)
\(350\) 0 0
\(351\) 323283. 304645.i 0.140060 0.131986i
\(352\) 0 0
\(353\) 101605.i 0.0433987i −0.999765 0.0216993i \(-0.993092\pi\)
0.999765 0.0216993i \(-0.00690766\pi\)
\(354\) 0 0
\(355\) 541028. 0.227850
\(356\) 0 0
\(357\) 185631.i 0.0770869i
\(358\) 0 0
\(359\) 3.01953e6i 1.23653i −0.785971 0.618263i \(-0.787837\pi\)
0.785971 0.618263i \(-0.212163\pi\)
\(360\) 0 0
\(361\) 2.47125e6 0.998041
\(362\) 0 0
\(363\) −1.20542e6 −0.480142
\(364\) 0 0
\(365\) 2.77010e6 1.08834
\(366\) 0 0
\(367\) 3.66414e6 1.42006 0.710031 0.704170i \(-0.248681\pi\)
0.710031 + 0.704170i \(0.248681\pi\)
\(368\) 0 0
\(369\) 974550.i 0.372596i
\(370\) 0 0
\(371\) 42680.4i 0.0160988i
\(372\) 0 0
\(373\) 2.15700e6 0.802746 0.401373 0.915915i \(-0.368533\pi\)
0.401373 + 0.915915i \(0.368533\pi\)
\(374\) 0 0
\(375\) 1.53437e6i 0.563446i
\(376\) 0 0
\(377\) −1.90902e6 + 1.79896e6i −0.691763 + 0.651882i
\(378\) 0 0
\(379\) 474934.i 0.169838i 0.996388 + 0.0849191i \(0.0270632\pi\)
−0.996388 + 0.0849191i \(0.972937\pi\)
\(380\) 0 0
\(381\) 986373. 0.348120
\(382\) 0 0
\(383\) 1.52732e6i 0.532025i 0.963970 + 0.266012i \(0.0857062\pi\)
−0.963970 + 0.266012i \(0.914294\pi\)
\(384\) 0 0
\(385\) 333494.i 0.114667i
\(386\) 0 0
\(387\) 175076. 0.0594224
\(388\) 0 0
\(389\) −2.38936e6 −0.800585 −0.400293 0.916387i \(-0.631092\pi\)
−0.400293 + 0.916387i \(0.631092\pi\)
\(390\) 0 0
\(391\) −1.25740e6 −0.415940
\(392\) 0 0
\(393\) −1.97725e6 −0.645774
\(394\) 0 0
\(395\) 561981.i 0.181229i
\(396\) 0 0
\(397\) 2.68613e6i 0.855363i 0.903930 + 0.427681i \(0.140669\pi\)
−0.903930 + 0.427681i \(0.859331\pi\)
\(398\) 0 0
\(399\) 38403.8 0.0120765
\(400\) 0 0
\(401\) 2.14312e6i 0.665557i −0.943005 0.332779i \(-0.892014\pi\)
0.943005 0.332779i \(-0.107986\pi\)
\(402\) 0 0
\(403\) 773453. + 820771.i 0.237231 + 0.251744i
\(404\) 0 0
\(405\) 216894.i 0.0657066i
\(406\) 0 0
\(407\) 451074. 0.134977
\(408\) 0 0
\(409\) 3.97614e6i 1.17531i 0.809110 + 0.587657i \(0.199949\pi\)
−0.809110 + 0.587657i \(0.800051\pi\)
\(410\) 0 0
\(411\) 82309.0i 0.0240349i
\(412\) 0 0
\(413\) −1.48715e6 −0.429023
\(414\) 0 0
\(415\) 1.27415e6 0.363162
\(416\) 0 0
\(417\) 1.32108e6 0.372039
\(418\) 0 0
\(419\) −2.59228e6 −0.721352 −0.360676 0.932691i \(-0.617454\pi\)
−0.360676 + 0.932691i \(0.617454\pi\)
\(420\) 0 0
\(421\) 2.81076e6i 0.772890i −0.922312 0.386445i \(-0.873703\pi\)
0.922312 0.386445i \(-0.126297\pi\)
\(422\) 0 0
\(423\) 837391.i 0.227550i
\(424\) 0 0
\(425\) 684178. 0.183737
\(426\) 0 0
\(427\) 1.64015e6i 0.435326i
\(428\) 0 0
\(429\) 619330. + 657219.i 0.162472 + 0.172412i
\(430\) 0 0
\(431\) 1.22819e6i 0.318472i 0.987241 + 0.159236i \(0.0509030\pi\)
−0.987241 + 0.159236i \(0.949097\pi\)
\(432\) 0 0
\(433\) 5.44083e6 1.39459 0.697294 0.716785i \(-0.254387\pi\)
0.697294 + 0.716785i \(0.254387\pi\)
\(434\) 0 0
\(435\) 1.28078e6i 0.324528i
\(436\) 0 0
\(437\) 260133.i 0.0651616i
\(438\) 0 0
\(439\) −211253. −0.0523169 −0.0261585 0.999658i \(-0.508327\pi\)
−0.0261585 + 0.999658i \(0.508327\pi\)
\(440\) 0 0
\(441\) 1.05736e6 0.258897
\(442\) 0 0
\(443\) −2.23978e6 −0.542246 −0.271123 0.962545i \(-0.587395\pi\)
−0.271123 + 0.962545i \(0.587395\pi\)
\(444\) 0 0
\(445\) −4.63632e6 −1.10987
\(446\) 0 0
\(447\) 1.84878e6i 0.437639i
\(448\) 0 0
\(449\) 5.59942e6i 1.31077i 0.755294 + 0.655386i \(0.227494\pi\)
−0.755294 + 0.655386i \(0.772506\pi\)
\(450\) 0 0
\(451\) −1.98122e6 −0.458660
\(452\) 0 0
\(453\) 2.93125e6i 0.671131i
\(454\) 0 0
\(455\) −898113. + 846336.i −0.203377 + 0.191652i
\(456\) 0 0
\(457\) 2.28019e6i 0.510718i 0.966846 + 0.255359i \(0.0821937\pi\)
−0.966846 + 0.255359i \(0.917806\pi\)
\(458\) 0 0
\(459\) −245435. −0.0543758
\(460\) 0 0
\(461\) 1.16004e6i 0.254227i 0.991888 + 0.127114i \(0.0405713\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(462\) 0 0
\(463\) 5.43708e6i 1.17873i 0.807868 + 0.589364i \(0.200621\pi\)
−0.807868 + 0.589364i \(0.799379\pi\)
\(464\) 0 0
\(465\) 550664. 0.118101
\(466\) 0 0
\(467\) 6.30219e6 1.33721 0.668605 0.743618i \(-0.266892\pi\)
0.668605 + 0.743618i \(0.266892\pi\)
\(468\) 0 0
\(469\) 4.20798e6 0.883368
\(470\) 0 0
\(471\) 5.01859e6 1.04239
\(472\) 0 0
\(473\) 355922.i 0.0731480i
\(474\) 0 0
\(475\) 141544.i 0.0287844i
\(476\) 0 0
\(477\) −56430.6 −0.0113558
\(478\) 0 0
\(479\) 6.02572e6i 1.19997i −0.800011 0.599985i \(-0.795173\pi\)
0.800011 0.599985i \(-0.204827\pi\)
\(480\) 0 0
\(481\) 1.14473e6 + 1.21476e6i 0.225600 + 0.239402i
\(482\) 0 0
\(483\) 2.05923e6i 0.401640i
\(484\) 0 0
\(485\) −2.88690e6 −0.557285
\(486\) 0 0
\(487\) 6.09211e6i 1.16398i −0.813196 0.581990i \(-0.802274\pi\)
0.813196 0.581990i \(-0.197726\pi\)
\(488\) 0 0
\(489\) 5.71511e6i 1.08082i
\(490\) 0 0
\(491\) −1.65104e6 −0.309068 −0.154534 0.987987i \(-0.549388\pi\)
−0.154534 + 0.987987i \(0.549388\pi\)
\(492\) 0 0
\(493\) 1.44932e6 0.268564
\(494\) 0 0
\(495\) 440935. 0.0808838
\(496\) 0 0
\(497\) −1.00263e6 −0.182075
\(498\) 0 0
\(499\) 1.06216e7i 1.90958i 0.297279 + 0.954791i \(0.403921\pi\)
−0.297279 + 0.954791i \(0.596079\pi\)
\(500\) 0 0
\(501\) 4.32205e6i 0.769300i
\(502\) 0 0
\(503\) 4.17356e6 0.735506 0.367753 0.929923i \(-0.380127\pi\)
0.367753 + 0.929923i \(0.380127\pi\)
\(504\) 0 0
\(505\) 4.24677e6i 0.741020i
\(506\) 0 0
\(507\) −198192. + 3.33575e6i −0.0342426 + 0.576334i
\(508\) 0 0
\(509\) 6.50979e6i 1.11371i −0.830610 0.556855i \(-0.812008\pi\)
0.830610 0.556855i \(-0.187992\pi\)
\(510\) 0 0
\(511\) −5.13355e6 −0.869692
\(512\) 0 0
\(513\) 50776.1i 0.00851856i
\(514\) 0 0
\(515\) 2.10341e6i 0.349468i
\(516\) 0 0
\(517\) 1.70238e6 0.280111
\(518\) 0 0
\(519\) 3.03546e6 0.494659
\(520\) 0 0
\(521\) 5.00448e6 0.807727 0.403864 0.914819i \(-0.367667\pi\)
0.403864 + 0.914819i \(0.367667\pi\)
\(522\) 0 0
\(523\) 5.64842e6 0.902969 0.451484 0.892279i \(-0.350895\pi\)
0.451484 + 0.892279i \(0.350895\pi\)
\(524\) 0 0
\(525\) 1.12047e6i 0.177420i
\(526\) 0 0
\(527\) 623127.i 0.0977350i
\(528\) 0 0
\(529\) 7.51211e6 1.16714
\(530\) 0 0
\(531\) 1.96626e6i 0.302625i
\(532\) 0 0
\(533\) −5.02789e6 5.33549e6i −0.766598 0.813497i
\(534\) 0 0
\(535\) 4.14133e6i 0.625541i
\(536\) 0 0
\(537\) 5.13162e6 0.767925
\(538\) 0 0
\(539\) 2.14956e6i 0.318697i
\(540\) 0 0
\(541\) 1.27506e7i 1.87300i −0.350670 0.936499i \(-0.614046\pi\)
0.350670 0.936499i \(-0.385954\pi\)
\(542\) 0 0
\(543\) −1.73396e6 −0.252372
\(544\) 0 0
\(545\) −1.88024e6 −0.271158
\(546\) 0 0
\(547\) 1.22119e7 1.74507 0.872537 0.488547i \(-0.162473\pi\)
0.872537 + 0.488547i \(0.162473\pi\)
\(548\) 0 0
\(549\) −2.16855e6 −0.307071
\(550\) 0 0
\(551\) 299839.i 0.0420735i
\(552\) 0 0
\(553\) 1.04146e6i 0.144821i
\(554\) 0 0
\(555\) 814993. 0.112311
\(556\) 0 0
\(557\) 3.33060e6i 0.454867i −0.973794 0.227433i \(-0.926967\pi\)
0.973794 0.227433i \(-0.0730334\pi\)
\(558\) 0 0
\(559\) −958512. + 903253.i −0.129738 + 0.122259i
\(560\) 0 0
\(561\) 498959.i 0.0669357i
\(562\) 0 0
\(563\) −5.83292e6 −0.775559 −0.387779 0.921752i \(-0.626758\pi\)
−0.387779 + 0.921752i \(0.626758\pi\)
\(564\) 0 0
\(565\) 7.77396e6i 1.02452i
\(566\) 0 0
\(567\) 401947.i 0.0525063i
\(568\) 0 0
\(569\) −237693. −0.0307777 −0.0153888 0.999882i \(-0.504899\pi\)
−0.0153888 + 0.999882i \(0.504899\pi\)
\(570\) 0 0
\(571\) 7.42085e6 0.952496 0.476248 0.879311i \(-0.341996\pi\)
0.476248 + 0.879311i \(0.341996\pi\)
\(572\) 0 0
\(573\) −2.88602e6 −0.367208
\(574\) 0 0
\(575\) −7.58966e6 −0.957311
\(576\) 0 0
\(577\) 6.17238e6i 0.771814i 0.922538 + 0.385907i \(0.126112\pi\)
−0.922538 + 0.385907i \(0.873888\pi\)
\(578\) 0 0
\(579\) 3.47476e6i 0.430753i
\(580\) 0 0
\(581\) −2.36126e6 −0.290204
\(582\) 0 0
\(583\) 114721.i 0.0139788i
\(584\) 0 0
\(585\) 1.11900e6 + 1.18745e6i 0.135188 + 0.143459i
\(586\) 0 0
\(587\) 4.27561e6i 0.512157i −0.966656 0.256078i \(-0.917569\pi\)
0.966656 0.256078i \(-0.0824305\pi\)
\(588\) 0 0
\(589\) 128914. 0.0153113
\(590\) 0 0
\(591\) 8.02456e6i 0.945045i
\(592\) 0 0
\(593\) 1.00584e6i 0.117460i −0.998274 0.0587302i \(-0.981295\pi\)
0.998274 0.0587302i \(-0.0187052\pi\)
\(594\) 0 0
\(595\) 681845. 0.0789575
\(596\) 0 0
\(597\) 6.30353e6 0.723849
\(598\) 0 0
\(599\) 2.06786e6 0.235480 0.117740 0.993044i \(-0.462435\pi\)
0.117740 + 0.993044i \(0.462435\pi\)
\(600\) 0 0
\(601\) 4.96901e6 0.561157 0.280578 0.959831i \(-0.409474\pi\)
0.280578 + 0.959831i \(0.409474\pi\)
\(602\) 0 0
\(603\) 5.56365e6i 0.623112i
\(604\) 0 0
\(605\) 4.42763e6i 0.491793i
\(606\) 0 0
\(607\) 7.68015e6 0.846054 0.423027 0.906117i \(-0.360968\pi\)
0.423027 + 0.906117i \(0.360968\pi\)
\(608\) 0 0
\(609\) 2.37355e6i 0.259331i
\(610\) 0 0
\(611\) 4.32026e6 + 4.58456e6i 0.468174 + 0.496815i
\(612\) 0 0
\(613\) 1.42866e7i 1.53560i 0.640689 + 0.767801i \(0.278649\pi\)
−0.640689 + 0.767801i \(0.721351\pi\)
\(614\) 0 0
\(615\) −3.57963e6 −0.381637
\(616\) 0 0
\(617\) 1.20205e7i 1.27119i −0.772022 0.635596i \(-0.780754\pi\)
0.772022 0.635596i \(-0.219246\pi\)
\(618\) 0 0
\(619\) 6.90208e6i 0.724025i 0.932173 + 0.362013i \(0.117910\pi\)
−0.932173 + 0.362013i \(0.882090\pi\)
\(620\) 0 0
\(621\) 2.72264e6 0.283310
\(622\) 0 0
\(623\) 8.59202e6 0.886901
\(624\) 0 0
\(625\) 714605. 0.0731755
\(626\) 0 0
\(627\) 103226. 0.0104862
\(628\) 0 0
\(629\) 922241.i 0.0929432i
\(630\) 0 0
\(631\) 8.31995e6i 0.831855i 0.909398 + 0.415927i \(0.136543\pi\)
−0.909398 + 0.415927i \(0.863457\pi\)
\(632\) 0 0
\(633\) 5.38783e6 0.534447
\(634\) 0 0
\(635\) 3.62306e6i 0.356567i
\(636\) 0 0
\(637\) −5.78886e6 + 5.45512e6i −0.565255 + 0.532667i
\(638\) 0 0
\(639\) 1.32565e6i 0.128433i
\(640\) 0 0
\(641\) 5.62851e6 0.541064 0.270532 0.962711i \(-0.412800\pi\)
0.270532 + 0.962711i \(0.412800\pi\)
\(642\) 0 0
\(643\) 1.34363e7i 1.28160i −0.767708 0.640799i \(-0.778603\pi\)
0.767708 0.640799i \(-0.221397\pi\)
\(644\) 0 0
\(645\) 643075.i 0.0608643i
\(646\) 0 0
\(647\) −1.14169e7 −1.07223 −0.536115 0.844145i \(-0.680109\pi\)
−0.536115 + 0.844145i \(0.680109\pi\)
\(648\) 0 0
\(649\) −3.99732e6 −0.372527
\(650\) 0 0
\(651\) −1.02049e6 −0.0943749
\(652\) 0 0
\(653\) −1.01592e7 −0.932345 −0.466173 0.884694i \(-0.654367\pi\)
−0.466173 + 0.884694i \(0.654367\pi\)
\(654\) 0 0
\(655\) 7.26267e6i 0.661444i
\(656\) 0 0
\(657\) 6.78741e6i 0.613466i
\(658\) 0 0
\(659\) 7.04782e6 0.632181 0.316090 0.948729i \(-0.397630\pi\)
0.316090 + 0.948729i \(0.397630\pi\)
\(660\) 0 0
\(661\) 1.08823e7i 0.968762i −0.874857 0.484381i \(-0.839045\pi\)
0.874857 0.484381i \(-0.160955\pi\)
\(662\) 0 0
\(663\) 1.34371e6 1.26625e6i 0.118720 0.111876i
\(664\) 0 0
\(665\) 141061.i 0.0123695i
\(666\) 0 0
\(667\) −1.60775e7 −1.39928
\(668\) 0 0
\(669\) 6.25429e6i 0.540272i
\(670\) 0 0
\(671\) 4.40857e6i 0.378000i
\(672\) 0 0
\(673\) 2.82794e6 0.240676 0.120338 0.992733i \(-0.461602\pi\)
0.120338 + 0.992733i \(0.461602\pi\)
\(674\) 0 0
\(675\) −1.48145e6 −0.125149
\(676\) 0 0
\(677\) −2.19071e7 −1.83702 −0.918508 0.395401i \(-0.870605\pi\)
−0.918508 + 0.395401i \(0.870605\pi\)
\(678\) 0 0
\(679\) 5.35000e6 0.445328
\(680\) 0 0
\(681\) 9.59456e6i 0.792788i
\(682\) 0 0
\(683\) 7.16197e6i 0.587463i 0.955888 + 0.293732i \(0.0948972\pi\)
−0.955888 + 0.293732i \(0.905103\pi\)
\(684\) 0 0
\(685\) −302330. −0.0246181
\(686\) 0 0
\(687\) 8.87071e6i 0.717078i
\(688\) 0 0
\(689\) 308947. 291136.i 0.0247934 0.0233641i
\(690\) 0 0
\(691\) 1.89454e7i 1.50941i −0.656062 0.754707i \(-0.727779\pi\)
0.656062 0.754707i \(-0.272221\pi\)
\(692\) 0 0
\(693\) −817141. −0.0646344
\(694\) 0 0
\(695\) 4.85247e6i 0.381066i
\(696\) 0 0
\(697\) 4.05069e6i 0.315825i
\(698\) 0 0
\(699\) 9.11534e6 0.705635
\(700\) 0 0
\(701\) −2.38204e7 −1.83085 −0.915426 0.402487i \(-0.868146\pi\)
−0.915426 + 0.402487i \(0.868146\pi\)
\(702\) 0 0
\(703\) 190795. 0.0145606
\(704\) 0 0
\(705\) 3.07583e6 0.233072
\(706\) 0 0
\(707\) 7.87011e6i 0.592151i
\(708\) 0 0
\(709\) 1.15066e7i 0.859666i −0.902908 0.429833i \(-0.858572\pi\)
0.902908 0.429833i \(-0.141428\pi\)
\(710\) 0 0
\(711\) 1.37699e6 0.102154
\(712\) 0 0
\(713\) 6.91242e6i 0.509221i
\(714\) 0 0
\(715\) −2.41404e6 + 2.27487e6i −0.176595 + 0.166414i
\(716\) 0 0
\(717\) 1.01444e6i 0.0736931i
\(718\) 0 0
\(719\) −2.25090e7 −1.62381 −0.811903 0.583792i \(-0.801568\pi\)
−0.811903 + 0.583792i \(0.801568\pi\)
\(720\) 0 0
\(721\) 3.89805e6i 0.279260i
\(722\) 0 0
\(723\) 8.46020e6i 0.601915i
\(724\) 0 0
\(725\) 8.74813e6 0.618117
\(726\) 0 0
\(727\) −1.44393e7 −1.01323 −0.506617 0.862171i \(-0.669104\pi\)
−0.506617 + 0.862171i \(0.669104\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 727700. 0.0503685
\(732\) 0 0
\(733\) 1.27813e6i 0.0878648i 0.999035 + 0.0439324i \(0.0139886\pi\)
−0.999035 + 0.0439324i \(0.986011\pi\)
\(734\) 0 0
\(735\) 3.88380e6i 0.265179i
\(736\) 0 0
\(737\) 1.13106e7 0.767040
\(738\) 0 0
\(739\) 8.59162e6i 0.578714i 0.957221 + 0.289357i \(0.0934414\pi\)
−0.957221 + 0.289357i \(0.906559\pi\)
\(740\) 0 0
\(741\) 261964. + 277990.i 0.0175265 + 0.0185988i
\(742\) 0 0
\(743\) 1.97043e7i 1.30945i −0.755866 0.654727i \(-0.772784\pi\)
0.755866 0.654727i \(-0.227216\pi\)
\(744\) 0 0
\(745\) 6.79076e6 0.448258
\(746\) 0 0
\(747\) 3.12197e6i 0.204705i
\(748\) 0 0
\(749\) 7.67472e6i 0.499871i
\(750\) 0 0
\(751\) −1.40159e7 −0.906818 −0.453409 0.891302i \(-0.649792\pi\)
−0.453409 + 0.891302i \(0.649792\pi\)
\(752\) 0 0
\(753\) 1.10389e7 0.709474
\(754\) 0 0
\(755\) −1.07668e7 −0.687416
\(756\) 0 0
\(757\) −1.63210e7 −1.03516 −0.517581 0.855634i \(-0.673167\pi\)
−0.517581 + 0.855634i \(0.673167\pi\)
\(758\) 0 0
\(759\) 5.53501e6i 0.348750i
\(760\) 0 0
\(761\) 1.94245e7i 1.21587i −0.793987 0.607935i \(-0.791998\pi\)
0.793987 0.607935i \(-0.208002\pi\)
\(762\) 0 0
\(763\) 3.48446e6 0.216683
\(764\) 0 0
\(765\) 901512.i 0.0556952i
\(766\) 0 0
\(767\) −1.01443e7 1.07649e7i −0.622637 0.660728i
\(768\) 0 0
\(769\) 1.44865e7i 0.883378i 0.897168 + 0.441689i \(0.145620\pi\)
−0.897168 + 0.441689i \(0.854380\pi\)
\(770\) 0 0
\(771\) −7.29328e6 −0.441862
\(772\) 0 0
\(773\) 1.93608e7i 1.16540i −0.812687 0.582700i \(-0.801996\pi\)
0.812687 0.582700i \(-0.198004\pi\)
\(774\) 0 0
\(775\) 3.76120e6i 0.224943i
\(776\) 0 0
\(777\) −1.51035e6 −0.0897478
\(778\) 0 0
\(779\) −838014. −0.0494775
\(780\) 0 0
\(781\) −2.69498e6 −0.158099
\(782\) 0 0
\(783\) −3.13822e6 −0.182928
\(784\) 0 0
\(785\) 1.84339e7i 1.06768i
\(786\) 0 0
\(787\) 1.82561e6i 0.105068i −0.998619 0.0525341i \(-0.983270\pi\)
0.998619 0.0525341i \(-0.0167298\pi\)
\(788\) 0 0
\(789\) −226919. −0.0129771
\(790\) 0 0
\(791\) 1.44067e7i 0.818698i
\(792\) 0 0
\(793\) 1.18724e7 1.11880e7i 0.670436 0.631784i
\(794\) 0 0
\(795\) 207276.i 0.0116314i
\(796\) 0 0
\(797\) −4.34190e6 −0.242122 −0.121061 0.992645i \(-0.538630\pi\)
−0.121061 + 0.992645i \(0.538630\pi\)
\(798\) 0 0
\(799\) 3.48059e6i 0.192879i
\(800\) 0 0
\(801\) 1.13601e7i 0.625605i
\(802\) 0 0
\(803\) −1.37985e7 −0.755166
\(804\) 0 0
\(805\) −7.56378e6 −0.411386
\(806\) 0 0
\(807\) 4.48946e6 0.242667
\(808\) 0 0
\(809\) −2.31393e7 −1.24302 −0.621510 0.783406i \(-0.713480\pi\)
−0.621510 + 0.783406i \(0.713480\pi\)
\(810\) 0 0
\(811\) 1.93460e6i 0.103285i 0.998666 + 0.0516427i \(0.0164457\pi\)
−0.998666 + 0.0516427i \(0.983554\pi\)
\(812\) 0 0
\(813\) 4.87585e6i 0.258716i
\(814\) 0 0
\(815\) −2.09922e7 −1.10704
\(816\) 0 0
\(817\) 150548.i 0.00789077i
\(818\) 0 0
\(819\) −2.07372e6 2.20059e6i −0.108029 0.114638i
\(820\) 0 0
\(821\) 1.93584e7i 1.00233i −0.865352 0.501165i \(-0.832905\pi\)
0.865352 0.501165i \(-0.167095\pi\)
\(822\) 0 0
\(823\) 1.38012e6 0.0710260 0.0355130 0.999369i \(-0.488693\pi\)
0.0355130 + 0.999369i \(0.488693\pi\)
\(824\) 0 0
\(825\) 3.01172e6i 0.154056i
\(826\) 0 0
\(827\) 595025.i 0.0302532i 0.999886 + 0.0151266i \(0.00481513\pi\)
−0.999886 + 0.0151266i \(0.995185\pi\)
\(828\) 0 0
\(829\) −1.58534e7 −0.801193 −0.400597 0.916254i \(-0.631197\pi\)
−0.400597 + 0.916254i \(0.631197\pi\)
\(830\) 0 0
\(831\) 1.28388e7 0.644946
\(832\) 0 0
\(833\) 4.39489e6 0.219450
\(834\) 0 0
\(835\) −1.58754e7 −0.787967
\(836\) 0 0
\(837\) 1.34926e6i 0.0665704i
\(838\) 0 0
\(839\) 3.11440e7i 1.52746i −0.645538 0.763728i \(-0.723367\pi\)
0.645538 0.763728i \(-0.276633\pi\)
\(840\) 0 0
\(841\) −1.97959e6 −0.0965131
\(842\) 0 0
\(843\) 1.67557e6i 0.0812071i
\(844\) 0 0
\(845\) −1.22526e7 727982.i −0.590319 0.0350735i
\(846\) 0 0
\(847\) 8.20528e6i 0.392993i
\(848\) 0 0
\(849\) −1.47952e7 −0.704452
\(850\) 0 0
\(851\) 1.02305e7i 0.484255i
\(852\) 0 0
\(853\) 6.07749e6i 0.285991i −0.989723 0.142995i \(-0.954327\pi\)
0.989723 0.142995i \(-0.0456734\pi\)
\(854\) 0 0
\(855\) 186506. 0.00872526
\(856\) 0 0
\(857\) 1.18639e7 0.551790 0.275895 0.961188i \(-0.411026\pi\)
0.275895 + 0.961188i \(0.411026\pi\)
\(858\) 0 0
\(859\) 8.22653e6 0.380394 0.190197 0.981746i \(-0.439087\pi\)
0.190197 + 0.981746i \(0.439087\pi\)
\(860\) 0 0
\(861\) 6.63378e6 0.304967
\(862\) 0 0
\(863\) 1.04409e7i 0.477212i −0.971116 0.238606i \(-0.923310\pi\)
0.971116 0.238606i \(-0.0766905\pi\)
\(864\) 0 0
\(865\) 1.11496e7i 0.506662i
\(866\) 0 0
\(867\) 1.17586e7 0.531259
\(868\) 0 0
\(869\) 2.79935e6i 0.125750i
\(870\) 0 0
\(871\) 2.87039e7 + 3.04600e7i 1.28202 + 1.36045i
\(872\) 0 0
\(873\) 7.07359e6i 0.314126i
\(874\) 0 0
\(875\) 1.04445e7 0.461176
\(876\) 0 0
\(877\) 3.73473e7i 1.63968i −0.572590 0.819842i \(-0.694061\pi\)
0.572590 0.819842i \(-0.305939\pi\)
\(878\) 0 0
\(879\) 1.83853e7i 0.802600i
\(880\) 0 0
\(881\) 1.87870e7 0.815489 0.407745 0.913096i \(-0.366315\pi\)
0.407745 + 0.913096i \(0.366315\pi\)
\(882\) 0 0
\(883\) 671977. 0.0290036 0.0145018 0.999895i \(-0.495384\pi\)
0.0145018 + 0.999895i \(0.495384\pi\)
\(884\) 0 0
\(885\) −7.22230e6 −0.309968
\(886\) 0 0
\(887\) 1.74761e6 0.0745823 0.0372912 0.999304i \(-0.488127\pi\)
0.0372912 + 0.999304i \(0.488127\pi\)
\(888\) 0 0
\(889\) 6.71426e6i 0.284934i
\(890\) 0 0
\(891\) 1.08040e6i 0.0455920i
\(892\) 0 0
\(893\) 720071. 0.0302167
\(894\) 0 0
\(895\) 1.88490e7i 0.786559i
\(896\) 0 0
\(897\) −1.49060e7 + 1.40466e7i −0.618556 + 0.582896i
\(898\) 0 0
\(899\) 7.96752e6i 0.328794i
\(900\) 0 0
\(901\) −234552. −0.00962559
\(902\) 0 0
\(903\) 1.19175e6i 0.0486368i
\(904\) 0 0
\(905\) 6.36905e6i 0.258496i
\(906\) 0 0
\(907\) −3.53654e7 −1.42745 −0.713723 0.700428i \(-0.752993\pi\)
−0.713723 + 0.700428i \(0.752993\pi\)
\(908\) 0 0
\(909\) −1.04056e7 −0.417693
\(910\) 0 0
\(911\) 8.75487e6 0.349505 0.174753 0.984612i \(-0.444087\pi\)
0.174753 + 0.984612i \(0.444087\pi\)
\(912\) 0 0
\(913\) −6.34683e6 −0.251988
\(914\) 0 0
\(915\) 7.96534e6i 0.314522i
\(916\) 0 0
\(917\) 1.34592e7i 0.528561i
\(918\) 0 0
\(919\) 4.34862e6 0.169849 0.0849243 0.996387i \(-0.472935\pi\)
0.0849243 + 0.996387i \(0.472935\pi\)
\(920\) 0 0
\(921\) 2.83911e7i 1.10289i
\(922\) 0 0
\(923\) −6.83927e6 7.25768e6i −0.264244 0.280410i
\(924\) 0 0
\(925\) 5.56666e6i 0.213914i
\(926\) 0 0
\(927\) 5.15387e6 0.196985
\(928\) 0 0
\(929\) 3.42017e7i 1.30019i 0.759851 + 0.650097i \(0.225272\pi\)
−0.759851 + 0.650097i \(0.774728\pi\)
\(930\) 0 0
\(931\) 909222.i 0.0343792i
\(932\) 0 0
\(933\) −2.43162e6 −0.0914515
\(934\) 0 0
\(935\) 1.83273e6 0.0685599
\(936\) 0 0
\(937\) 2.46362e7 0.916697 0.458348 0.888773i \(-0.348441\pi\)
0.458348 + 0.888773i \(0.348441\pi\)
\(938\) 0 0
\(939\) 9.50238e6 0.351697
\(940\) 0 0
\(941\) 1.57679e7i 0.580496i −0.956951 0.290248i \(-0.906262\pi\)
0.956951 0.290248i \(-0.0937378\pi\)
\(942\) 0 0
\(943\) 4.49347e7i 1.64552i
\(944\) 0 0
\(945\) −1.47640e6 −0.0537804
\(946\) 0 0
\(947\) 4.99665e7i 1.81052i −0.424857 0.905261i \(-0.639675\pi\)
0.424857 0.905261i \(-0.360325\pi\)
\(948\) 0 0
\(949\) −3.50175e7 3.71598e7i −1.26218 1.33939i
\(950\) 0 0
\(951\) 1.49259e6i 0.0535168i
\(952\) 0 0
\(953\) −2.99714e7 −1.06899 −0.534496 0.845171i \(-0.679499\pi\)
−0.534496 + 0.845171i \(0.679499\pi\)
\(954\) 0 0
\(955\) 1.06007e7i 0.376118i
\(956\) 0 0
\(957\) 6.37986e6i 0.225181i
\(958\) 0 0
\(959\) 560278. 0.0196724
\(960\) 0 0
\(961\) 2.52036e7 0.880346
\(962\) 0 0
\(963\) −1.01472e7 −0.352600
\(964\) 0 0
\(965\) −1.27632e7 −0.441205
\(966\) 0 0
\(967\) 3.53755e6i 0.121657i −0.998148 0.0608284i \(-0.980626\pi\)
0.998148 0.0608284i \(-0.0193743\pi\)
\(968\) 0 0
\(969\) 211049.i 0.00722062i
\(970\) 0 0
\(971\) 4.50145e6 0.153216 0.0766081 0.997061i \(-0.475591\pi\)
0.0766081 + 0.997061i \(0.475591\pi\)
\(972\) 0 0
\(973\) 8.99259e6i 0.304511i
\(974\) 0 0
\(975\) 8.11067e6 7.64309e6i 0.273241 0.257488i
\(976\) 0 0
\(977\) 3.17740e6i 0.106497i −0.998581 0.0532483i \(-0.983043\pi\)
0.998581 0.0532483i \(-0.0169575\pi\)
\(978\) 0 0
\(979\) 2.30945e7 0.770109
\(980\) 0 0
\(981\) 4.60704e6i 0.152844i
\(982\) 0 0
\(983\) 4.62115e7i 1.52534i 0.646789 + 0.762669i \(0.276112\pi\)
−0.646789 + 0.762669i \(0.723888\pi\)
\(984\) 0 0
\(985\) −2.94751e7 −0.967977
\(986\) 0 0
\(987\) −5.70013e6 −0.186248
\(988\) 0 0
\(989\) −8.07245e6 −0.262431
\(990\) 0 0
\(991\) −2.68291e7 −0.867803 −0.433902 0.900960i \(-0.642863\pi\)
−0.433902 + 0.900960i \(0.642863\pi\)
\(992\) 0 0
\(993\) 2.06110e7i 0.663325i
\(994\) 0 0
\(995\) 2.31536e7i 0.741413i
\(996\) 0 0
\(997\) 2.27086e7 0.723524 0.361762 0.932271i \(-0.382175\pi\)
0.361762 + 0.932271i \(0.382175\pi\)
\(998\) 0 0
\(999\) 1.99693e6i 0.0633065i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.c.a.337.2 4
4.3 odd 2 39.6.b.a.25.1 4
12.11 even 2 117.6.b.b.64.4 4
13.12 even 2 inner 624.6.c.a.337.3 4
52.31 even 4 507.6.a.f.1.1 4
52.47 even 4 507.6.a.f.1.4 4
52.51 odd 2 39.6.b.a.25.4 yes 4
156.155 even 2 117.6.b.b.64.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.b.a.25.1 4 4.3 odd 2
39.6.b.a.25.4 yes 4 52.51 odd 2
117.6.b.b.64.1 4 156.155 even 2
117.6.b.b.64.4 4 12.11 even 2
507.6.a.f.1.1 4 52.31 even 4
507.6.a.f.1.4 4 52.47 even 4
624.6.c.a.337.2 4 1.1 even 1 trivial
624.6.c.a.337.3 4 13.12 even 2 inner