Properties

Label 627.2.a.g.1.1
Level 627627
Weight 22
Character 627.1
Self dual yes
Analytic conductor 5.0075.007
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(1,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 627=31119 627 = 3 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 627.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.006620206735.00662020673
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x1 x^{3} - x^{2} - 4x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.651092.65109 of defining polynomial
Character χ\chi == 627.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.65109q2+1.00000q3+0.726109q4+2.27389q51.65109q6+1.37720q7+2.10331q8+1.00000q93.75441q10+1.00000q11+0.726109q12+1.89669q132.27389q14+2.27389q154.92498q16+0.896688q171.65109q18+1.00000q19+1.65109q20+1.37720q211.65109q223.54778q23+2.10331q24+0.170578q253.13161q26+1.00000q27+1.00000q28+7.67939q293.75441q306.37720q31+3.92498q32+1.00000q331.48052q34+3.13161q35+0.726109q366.30219q371.65109q38+1.89669q39+4.78270q40+10.1599q412.27389q424.72611q43+0.726109q44+2.27389q45+5.85772q46+8.61212q474.92498q485.10331q490.281641q50+0.896688q51+1.37720q52+4.57608q531.65109q54+2.27389q55+2.89669q56+1.00000q5712.6794q581.71836q59+1.65109q601.02830q61+10.5294q62+1.37720q63+3.36945q64+4.31286q651.65109q66+8.70769q67+0.651093q683.54778q695.17058q70+0.690063q71+2.10331q721.44447q73+10.4055q74+0.170578q75+0.726109q76+1.37720q773.13161q78+15.7077q7911.1989q80+1.00000q8116.7750q823.23492q83+1.00000q84+2.03897q85+7.80325q86+7.67939q87+2.10331q887.67939q893.75441q90+2.61212q912.57608q926.37720q9314.2194q94+2.27389q95+3.92498q96+18.4904q97+8.42605q98+1.00000q99+O(q100)q-1.65109 q^{2} +1.00000 q^{3} +0.726109 q^{4} +2.27389 q^{5} -1.65109 q^{6} +1.37720 q^{7} +2.10331 q^{8} +1.00000 q^{9} -3.75441 q^{10} +1.00000 q^{11} +0.726109 q^{12} +1.89669 q^{13} -2.27389 q^{14} +2.27389 q^{15} -4.92498 q^{16} +0.896688 q^{17} -1.65109 q^{18} +1.00000 q^{19} +1.65109 q^{20} +1.37720 q^{21} -1.65109 q^{22} -3.54778 q^{23} +2.10331 q^{24} +0.170578 q^{25} -3.13161 q^{26} +1.00000 q^{27} +1.00000 q^{28} +7.67939 q^{29} -3.75441 q^{30} -6.37720 q^{31} +3.92498 q^{32} +1.00000 q^{33} -1.48052 q^{34} +3.13161 q^{35} +0.726109 q^{36} -6.30219 q^{37} -1.65109 q^{38} +1.89669 q^{39} +4.78270 q^{40} +10.1599 q^{41} -2.27389 q^{42} -4.72611 q^{43} +0.726109 q^{44} +2.27389 q^{45} +5.85772 q^{46} +8.61212 q^{47} -4.92498 q^{48} -5.10331 q^{49} -0.281641 q^{50} +0.896688 q^{51} +1.37720 q^{52} +4.57608 q^{53} -1.65109 q^{54} +2.27389 q^{55} +2.89669 q^{56} +1.00000 q^{57} -12.6794 q^{58} -1.71836 q^{59} +1.65109 q^{60} -1.02830 q^{61} +10.5294 q^{62} +1.37720 q^{63} +3.36945 q^{64} +4.31286 q^{65} -1.65109 q^{66} +8.70769 q^{67} +0.651093 q^{68} -3.54778 q^{69} -5.17058 q^{70} +0.690063 q^{71} +2.10331 q^{72} -1.44447 q^{73} +10.4055 q^{74} +0.170578 q^{75} +0.726109 q^{76} +1.37720 q^{77} -3.13161 q^{78} +15.7077 q^{79} -11.1989 q^{80} +1.00000 q^{81} -16.7750 q^{82} -3.23492 q^{83} +1.00000 q^{84} +2.03897 q^{85} +7.80325 q^{86} +7.67939 q^{87} +2.10331 q^{88} -7.67939 q^{89} -3.75441 q^{90} +2.61212 q^{91} -2.57608 q^{92} -6.37720 q^{93} -14.2194 q^{94} +2.27389 q^{95} +3.92498 q^{96} +18.4904 q^{97} +8.42605 q^{98} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q2+3q3+4q4+5q5+2q6q7+3q8+3q9q10+3q11+4q12+9q135q14+5q156q16+6q17+2q18+3q192q20++3q99+O(q100) 3 q + 2 q^{2} + 3 q^{3} + 4 q^{4} + 5 q^{5} + 2 q^{6} - q^{7} + 3 q^{8} + 3 q^{9} - q^{10} + 3 q^{11} + 4 q^{12} + 9 q^{13} - 5 q^{14} + 5 q^{15} - 6 q^{16} + 6 q^{17} + 2 q^{18} + 3 q^{19} - 2 q^{20}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.65109 −1.16750 −0.583750 0.811934i 0.698415π-0.698415\pi
−0.583750 + 0.811934i 0.698415π0.698415\pi
33 1.00000 0.577350
44 0.726109 0.363055
55 2.27389 1.01691 0.508457 0.861087i 0.330216π-0.330216\pi
0.508457 + 0.861087i 0.330216π0.330216\pi
66 −1.65109 −0.674056
77 1.37720 0.520534 0.260267 0.965537i 0.416189π-0.416189\pi
0.260267 + 0.965537i 0.416189π0.416189\pi
88 2.10331 0.743633
99 1.00000 0.333333
1010 −3.75441 −1.18725
1111 1.00000 0.301511
1212 0.726109 0.209610
1313 1.89669 0.526047 0.263023 0.964789i 0.415280π-0.415280\pi
0.263023 + 0.964789i 0.415280π0.415280\pi
1414 −2.27389 −0.607723
1515 2.27389 0.587116
1616 −4.92498 −1.23125
1717 0.896688 0.217479 0.108739 0.994070i 0.465319π-0.465319\pi
0.108739 + 0.994070i 0.465319π0.465319\pi
1818 −1.65109 −0.389166
1919 1.00000 0.229416
2020 1.65109 0.369196
2121 1.37720 0.300530
2222 −1.65109 −0.352014
2323 −3.54778 −0.739763 −0.369882 0.929079i 0.620602π-0.620602\pi
−0.369882 + 0.929079i 0.620602π0.620602\pi
2424 2.10331 0.429337
2525 0.170578 0.0341157
2626 −3.13161 −0.614159
2727 1.00000 0.192450
2828 1.00000 0.188982
2929 7.67939 1.42603 0.713013 0.701150i 0.247330π-0.247330\pi
0.713013 + 0.701150i 0.247330π0.247330\pi
3030 −3.75441 −0.685458
3131 −6.37720 −1.14538 −0.572690 0.819772i 0.694100π-0.694100\pi
−0.572690 + 0.819772i 0.694100π0.694100\pi
3232 3.92498 0.693846
3333 1.00000 0.174078
3434 −1.48052 −0.253906
3535 3.13161 0.529338
3636 0.726109 0.121018
3737 −6.30219 −1.03607 −0.518037 0.855358i 0.673337π-0.673337\pi
−0.518037 + 0.855358i 0.673337π0.673337\pi
3838 −1.65109 −0.267843
3939 1.89669 0.303713
4040 4.78270 0.756212
4141 10.1599 1.58671 0.793355 0.608759i 0.208332π-0.208332\pi
0.793355 + 0.608759i 0.208332π0.208332\pi
4242 −2.27389 −0.350869
4343 −4.72611 −0.720725 −0.360362 0.932812i 0.617347π-0.617347\pi
−0.360362 + 0.932812i 0.617347π0.617347\pi
4444 0.726109 0.109465
4545 2.27389 0.338972
4646 5.85772 0.863673
4747 8.61212 1.25621 0.628104 0.778130i 0.283831π-0.283831\pi
0.628104 + 0.778130i 0.283831π0.283831\pi
4848 −4.92498 −0.710860
4949 −5.10331 −0.729045
5050 −0.281641 −0.0398300
5151 0.896688 0.125561
5252 1.37720 0.190984
5353 4.57608 0.628573 0.314286 0.949328i 0.398235π-0.398235\pi
0.314286 + 0.949328i 0.398235π0.398235\pi
5454 −1.65109 −0.224685
5555 2.27389 0.306611
5656 2.89669 0.387086
5757 1.00000 0.132453
5858 −12.6794 −1.66489
5959 −1.71836 −0.223711 −0.111856 0.993724i 0.535679π-0.535679\pi
−0.111856 + 0.993724i 0.535679π0.535679\pi
6060 1.65109 0.213155
6161 −1.02830 −0.131660 −0.0658299 0.997831i 0.520969π-0.520969\pi
−0.0658299 + 0.997831i 0.520969π0.520969\pi
6262 10.5294 1.33723
6363 1.37720 0.173511
6464 3.36945 0.421182
6565 4.31286 0.534944
6666 −1.65109 −0.203236
6767 8.70769 1.06381 0.531907 0.846803i 0.321476π-0.321476\pi
0.531907 + 0.846803i 0.321476π0.321476\pi
6868 0.651093 0.0789567
6969 −3.54778 −0.427103
7070 −5.17058 −0.618002
7171 0.690063 0.0818954 0.0409477 0.999161i 0.486962π-0.486962\pi
0.0409477 + 0.999161i 0.486962π0.486962\pi
7272 2.10331 0.247878
7373 −1.44447 −0.169062 −0.0845311 0.996421i 0.526939π-0.526939\pi
−0.0845311 + 0.996421i 0.526939π0.526939\pi
7474 10.4055 1.20961
7575 0.170578 0.0196967
7676 0.726109 0.0832905
7777 1.37720 0.156947
7878 −3.13161 −0.354585
7979 15.7077 1.76725 0.883626 0.468193i 0.155095π-0.155095\pi
0.883626 + 0.468193i 0.155095π0.155095\pi
8080 −11.1989 −1.25207
8181 1.00000 0.111111
8282 −16.7750 −1.85248
8383 −3.23492 −0.355079 −0.177539 0.984114i 0.556814π-0.556814\pi
−0.177539 + 0.984114i 0.556814π0.556814\pi
8484 1.00000 0.109109
8585 2.03897 0.221157
8686 7.80325 0.841446
8787 7.67939 0.823317
8888 2.10331 0.224214
8989 −7.67939 −0.814014 −0.407007 0.913425i 0.633427π-0.633427\pi
−0.407007 + 0.913425i 0.633427π0.633427\pi
9090 −3.75441 −0.395749
9191 2.61212 0.273825
9292 −2.57608 −0.268575
9393 −6.37720 −0.661285
9494 −14.2194 −1.46662
9595 2.27389 0.233296
9696 3.92498 0.400592
9797 18.4904 1.87741 0.938707 0.344715i 0.112025π-0.112025\pi
0.938707 + 0.344715i 0.112025π0.112025\pi
9898 8.42605 0.851159
9999 1.00000 0.100504
100100 0.123858 0.0123858
101101 −4.53711 −0.451459 −0.225730 0.974190i 0.572477π-0.572477\pi
−0.225730 + 0.974190i 0.572477π0.572477\pi
102102 −1.48052 −0.146593
103103 −10.5294 −1.03749 −0.518744 0.854929i 0.673600π-0.673600\pi
−0.518744 + 0.854929i 0.673600π0.673600\pi
104104 3.98933 0.391186
105105 3.13161 0.305614
106106 −7.55553 −0.733858
107107 −8.88601 −0.859043 −0.429522 0.903057i 0.641318π-0.641318\pi
−0.429522 + 0.903057i 0.641318π0.641318\pi
108108 0.726109 0.0698699
109109 5.13161 0.491519 0.245759 0.969331i 0.420963π-0.420963\pi
0.245759 + 0.969331i 0.420963π0.420963\pi
110110 −3.75441 −0.357969
111111 −6.30219 −0.598177
112112 −6.78270 −0.640905
113113 1.93273 0.181816 0.0909082 0.995859i 0.471023π-0.471023\pi
0.0909082 + 0.995859i 0.471023π0.471023\pi
114114 −1.65109 −0.154639
115115 −8.06727 −0.752276
116116 5.57608 0.517726
117117 1.89669 0.175349
118118 2.83717 0.261183
119119 1.23492 0.113205
120120 4.78270 0.436599
121121 1.00000 0.0909091
122122 1.69781 0.153713
123123 10.1599 0.916088
124124 −4.63055 −0.415835
125125 −10.9816 −0.982222
126126 −2.27389 −0.202574
127127 −15.8315 −1.40482 −0.702411 0.711771i 0.747893π-0.747893\pi
−0.702411 + 0.711771i 0.747893π0.747893\pi
128128 −13.4132 −1.18557
129129 −4.72611 −0.416111
130130 −7.12094 −0.624547
131131 −3.09556 −0.270461 −0.135230 0.990814i 0.543177π-0.543177\pi
−0.135230 + 0.990814i 0.543177π0.543177\pi
132132 0.726109 0.0631997
133133 1.37720 0.119419
134134 −14.3772 −1.24200
135135 2.27389 0.195705
136136 1.88601 0.161724
137137 3.48052 0.297360 0.148680 0.988885i 0.452497π-0.452497\pi
0.148680 + 0.988885i 0.452497π0.452497\pi
138138 5.85772 0.498642
139139 −12.1989 −1.03470 −0.517348 0.855775i 0.673081π-0.673081\pi
−0.517348 + 0.855775i 0.673081π0.673081\pi
140140 2.27389 0.192179
141141 8.61212 0.725272
142142 −1.13936 −0.0956129
143143 1.89669 0.158609
144144 −4.92498 −0.410415
145145 17.4621 1.45015
146146 2.38495 0.197380
147147 −5.10331 −0.420914
148148 −4.57608 −0.376151
149149 −12.2944 −1.00720 −0.503600 0.863937i 0.667991π-0.667991\pi
−0.503600 + 0.863937i 0.667991π0.667991\pi
150150 −0.281641 −0.0229959
151151 −3.48052 −0.283240 −0.141620 0.989921i 0.545231π-0.545231\pi
−0.141620 + 0.989921i 0.545231π0.545231\pi
152152 2.10331 0.170601
153153 0.896688 0.0724929
154154 −2.27389 −0.183235
155155 −14.5011 −1.16475
156156 1.37720 0.110264
157157 −7.34891 −0.586507 −0.293253 0.956035i 0.594738π-0.594738\pi
−0.293253 + 0.956035i 0.594738π0.594738\pi
158158 −25.9349 −2.06327
159159 4.57608 0.362907
160160 8.92498 0.705582
161161 −4.88601 −0.385072
162162 −1.65109 −0.129722
163163 −4.28164 −0.335364 −0.167682 0.985841i 0.553628π-0.553628\pi
−0.167682 + 0.985841i 0.553628π0.553628\pi
164164 7.37720 0.576063
165165 2.27389 0.177022
166166 5.34116 0.414554
167167 2.61505 0.202358 0.101179 0.994868i 0.467738π-0.467738\pi
0.101179 + 0.994868i 0.467738π0.467738\pi
168168 2.89669 0.223484
169169 −9.40258 −0.723275
170170 −3.36653 −0.258201
171171 1.00000 0.0764719
172172 −3.43167 −0.261663
173173 3.42392 0.260316 0.130158 0.991493i 0.458452π-0.458452\pi
0.130158 + 0.991493i 0.458452π0.458452\pi
174174 −12.6794 −0.961222
175175 0.234921 0.0177583
176176 −4.92498 −0.371235
177177 −1.71836 −0.129160
178178 12.6794 0.950360
179179 −13.0382 −0.974519 −0.487259 0.873257i 0.662003π-0.662003\pi
−0.487259 + 0.873257i 0.662003π0.662003\pi
180180 1.65109 0.123065
181181 −5.89669 −0.438297 −0.219149 0.975691i 0.570328π-0.570328\pi
−0.219149 + 0.975691i 0.570328π0.570328\pi
182182 −4.31286 −0.319690
183183 −1.02830 −0.0760138
184184 −7.46209 −0.550113
185185 −14.3305 −1.05360
186186 10.5294 0.772050
187187 0.896688 0.0655723
188188 6.25334 0.456072
189189 1.37720 0.100177
190190 −3.75441 −0.272373
191191 −23.5860 −1.70662 −0.853310 0.521404i 0.825408π-0.825408\pi
−0.853310 + 0.521404i 0.825408π0.825408\pi
192192 3.36945 0.243169
193193 −25.6708 −1.84783 −0.923914 0.382601i 0.875028π-0.875028\pi
−0.923914 + 0.382601i 0.875028π0.875028\pi
194194 −30.5294 −2.19188
195195 4.31286 0.308850
196196 −3.70556 −0.264683
197197 19.2242 1.36967 0.684835 0.728698i 0.259874π-0.259874\pi
0.684835 + 0.728698i 0.259874π0.259874\pi
198198 −1.65109 −0.117338
199199 −5.48052 −0.388503 −0.194252 0.980952i 0.562228π-0.562228\pi
−0.194252 + 0.980952i 0.562228π0.562228\pi
200200 0.358779 0.0253695
201201 8.70769 0.614193
202202 7.49119 0.527078
203203 10.5761 0.742295
204204 0.651093 0.0455857
205205 23.1025 1.61355
206206 17.3850 1.21127
207207 −3.54778 −0.246588
208208 −9.34116 −0.647693
209209 1.00000 0.0691714
210210 −5.17058 −0.356804
211211 −3.12174 −0.214909 −0.107455 0.994210i 0.534270π-0.534270\pi
−0.107455 + 0.994210i 0.534270π0.534270\pi
212212 3.32273 0.228206
213213 0.690063 0.0472823
214214 14.6716 1.00293
215215 −10.7467 −0.732916
216216 2.10331 0.143112
217217 −8.78270 −0.596209
218218 −8.47277 −0.573848
219219 −1.44447 −0.0976082
220220 1.65109 0.111317
221221 1.70074 0.114404
222222 10.4055 0.698371
223223 16.9066 1.13215 0.566074 0.824355i 0.308462π-0.308462\pi
0.566074 + 0.824355i 0.308462π0.308462\pi
224224 5.40550 0.361170
225225 0.170578 0.0113719
226226 −3.19112 −0.212270
227227 10.5838 0.702473 0.351237 0.936287i 0.385761π-0.385761\pi
0.351237 + 0.936287i 0.385761π0.385761\pi
228228 0.726109 0.0480878
229229 −14.4933 −0.957745 −0.478872 0.877884i 0.658954π-0.658954\pi
−0.478872 + 0.877884i 0.658954π0.658954\pi
230230 13.3198 0.878282
231231 1.37720 0.0906133
232232 16.1522 1.06044
233233 21.5216 1.40993 0.704964 0.709243i 0.250963π-0.250963\pi
0.704964 + 0.709243i 0.250963π0.250963\pi
234234 −3.13161 −0.204720
235235 19.5830 1.27746
236236 −1.24772 −0.0812195
237237 15.7077 1.02032
238238 −2.03897 −0.132167
239239 15.0360 0.972601 0.486300 0.873792i 0.338346π-0.338346\pi
0.486300 + 0.873792i 0.338346π0.338346\pi
240240 −11.1989 −0.722884
241241 14.3305 0.923108 0.461554 0.887112i 0.347292π-0.347292\pi
0.461554 + 0.887112i 0.347292π0.347292\pi
242242 −1.65109 −0.106136
243243 1.00000 0.0641500
244244 −0.746656 −0.0477997
245245 −11.6044 −0.741376
246246 −16.7750 −1.06953
247247 1.89669 0.120683
248248 −13.4132 −0.851742
249249 −3.23492 −0.205005
250250 18.1316 1.14674
251251 −14.5371 −0.917574 −0.458787 0.888546i 0.651716π-0.651716\pi
−0.458787 + 0.888546i 0.651716π0.651716\pi
252252 1.00000 0.0629941
253253 −3.54778 −0.223047
254254 26.1394 1.64013
255255 2.03897 0.127685
256256 15.4076 0.962976
257257 29.8598 1.86261 0.931303 0.364246i 0.118673π-0.118673\pi
0.931303 + 0.364246i 0.118673π0.118673\pi
258258 7.80325 0.485809
259259 −8.67939 −0.539311
260260 3.13161 0.194214
261261 7.67939 0.475342
262262 5.11106 0.315762
263263 −15.7926 −0.973812 −0.486906 0.873454i 0.661875π-0.661875\pi
−0.486906 + 0.873454i 0.661875π0.661875\pi
264264 2.10331 0.129450
265265 10.4055 0.639205
266266 −2.27389 −0.139421
267267 −7.67939 −0.469971
268268 6.32273 0.386222
269269 −10.3588 −0.631586 −0.315793 0.948828i 0.602271π-0.602271\pi
−0.315793 + 0.948828i 0.602271π0.602271\pi
270270 −3.75441 −0.228486
271271 1.04884 0.0637126 0.0318563 0.999492i 0.489858π-0.489858\pi
0.0318563 + 0.999492i 0.489858π0.489858\pi
272272 −4.41617 −0.267770
273273 2.61212 0.158093
274274 −5.74666 −0.347168
275275 0.170578 0.0102863
276276 −2.57608 −0.155062
277277 29.7381 1.78679 0.893395 0.449272i 0.148317π-0.148317\pi
0.893395 + 0.449272i 0.148317π0.148317\pi
278278 20.1415 1.20801
279279 −6.37720 −0.381793
280280 6.58675 0.393634
281281 −4.97170 −0.296587 −0.148293 0.988943i 0.547378π-0.547378\pi
−0.148293 + 0.988943i 0.547378π0.547378\pi
282282 −14.2194 −0.846754
283283 7.46289 0.443623 0.221811 0.975090i 0.428803π-0.428803\pi
0.221811 + 0.975090i 0.428803π0.428803\pi
284284 0.501061 0.0297325
285285 2.27389 0.134694
286286 −3.13161 −0.185176
287287 13.9922 0.825936
288288 3.92498 0.231282
289289 −16.1960 −0.952703
290290 −28.8315 −1.69305
291291 18.4904 1.08393
292292 −1.04884 −0.0613789
293293 −33.0510 −1.93086 −0.965429 0.260666i 0.916058π-0.916058\pi
−0.965429 + 0.260666i 0.916058π0.916058\pi
294294 8.42605 0.491417
295295 −3.90736 −0.227495
296296 −13.2555 −0.770458
297297 1.00000 0.0580259
298298 20.2993 1.17590
299299 −6.72903 −0.389150
300300 0.123858 0.00715097
301301 −6.50881 −0.375162
302302 5.74666 0.330683
303303 −4.53711 −0.260650
304304 −4.92498 −0.282467
305305 −2.33823 −0.133887
306306 −1.48052 −0.0846354
307307 −0.989327 −0.0564638 −0.0282319 0.999601i 0.508988π-0.508988\pi
−0.0282319 + 0.999601i 0.508988π0.508988\pi
308308 1.00000 0.0569803
309309 −10.5294 −0.598994
310310 23.9426 1.35985
311311 −28.2731 −1.60322 −0.801610 0.597847i 0.796023π-0.796023\pi
−0.801610 + 0.597847i 0.796023π0.796023\pi
312312 3.98933 0.225851
313313 16.4621 0.930492 0.465246 0.885181i 0.345966π-0.345966\pi
0.465246 + 0.885181i 0.345966π0.345966\pi
314314 12.1337 0.684746
315315 3.13161 0.176446
316316 11.4055 0.641609
317317 27.2760 1.53197 0.765987 0.642856i 0.222251π-0.222251\pi
0.765987 + 0.642856i 0.222251π0.222251\pi
318318 −7.55553 −0.423693
319319 7.67939 0.429963
320320 7.66177 0.428306
321321 −8.88601 −0.495969
322322 8.06727 0.449571
323323 0.896688 0.0498930
324324 0.726109 0.0403394
325325 0.323534 0.0179464
326326 7.06939 0.391537
327327 5.13161 0.283779
328328 21.3695 1.17993
329329 11.8606 0.653898
330330 −3.75441 −0.206673
331331 6.01280 0.330493 0.165247 0.986252i 0.447158π-0.447158\pi
0.165247 + 0.986252i 0.447158π0.447158\pi
332332 −2.34891 −0.128913
333333 −6.30219 −0.345358
334334 −4.31769 −0.236253
335335 19.8003 1.08181
336336 −6.78270 −0.370027
337337 2.81875 0.153547 0.0767735 0.997049i 0.475538π-0.475538\pi
0.0767735 + 0.997049i 0.475538π0.475538\pi
338338 15.5245 0.844423
339339 1.93273 0.104972
340340 1.48052 0.0802922
341341 −6.37720 −0.345345
342342 −1.65109 −0.0892809
343343 −16.6687 −0.900026
344344 −9.94048 −0.535955
345345 −8.06727 −0.434327
346346 −5.65322 −0.303919
347347 4.41537 0.237030 0.118515 0.992952i 0.462187π-0.462187\pi
0.118515 + 0.992952i 0.462187π0.462187\pi
348348 5.57608 0.298909
349349 0.253344 0.0135612 0.00678061 0.999977i 0.497842π-0.497842\pi
0.00678061 + 0.999977i 0.497842π0.497842\pi
350350 −0.387876 −0.0207329
351351 1.89669 0.101238
352352 3.92498 0.209202
353353 −24.9271 −1.32674 −0.663368 0.748293i 0.730874π-0.730874\pi
−0.663368 + 0.748293i 0.730874π0.730874\pi
354354 2.83717 0.150794
355355 1.56913 0.0832807
356356 −5.57608 −0.295532
357357 1.23492 0.0653589
358358 21.5272 1.13775
359359 25.0956 1.32449 0.662247 0.749286i 0.269603π-0.269603\pi
0.662247 + 0.749286i 0.269603π0.269603\pi
360360 4.78270 0.252071
361361 1.00000 0.0526316
362362 9.73598 0.511712
363363 1.00000 0.0524864
364364 1.89669 0.0994134
365365 −3.28456 −0.171922
366366 1.69781 0.0887461
367367 −29.4621 −1.53791 −0.768954 0.639304i 0.779223π-0.779223\pi
−0.768954 + 0.639304i 0.779223π0.779223\pi
368368 17.4728 0.910831
369369 10.1599 0.528904
370370 23.6610 1.23008
371371 6.30219 0.327193
372372 −4.63055 −0.240083
373373 −18.0870 −0.936510 −0.468255 0.883593i 0.655117π-0.655117\pi
−0.468255 + 0.883593i 0.655117π0.655117\pi
374374 −1.48052 −0.0765556
375375 −10.9816 −0.567086
376376 18.1140 0.934157
377377 14.5654 0.750156
378378 −2.27389 −0.116956
379379 −12.1033 −0.621705 −0.310853 0.950458i 0.600615π-0.600615\pi
−0.310853 + 0.950458i 0.600615π0.600615\pi
380380 1.65109 0.0846993
381381 −15.8315 −0.811075
382382 38.9426 1.99248
383383 2.43672 0.124511 0.0622553 0.998060i 0.480171π-0.480171\pi
0.0622553 + 0.998060i 0.480171π0.480171\pi
384384 −13.4132 −0.684492
385385 3.13161 0.159602
386386 42.3850 2.15734
387387 −4.72611 −0.240242
388388 13.4260 0.681604
389389 25.0099 1.26805 0.634025 0.773312i 0.281401π-0.281401\pi
0.634025 + 0.773312i 0.281401π0.281401\pi
390390 −7.12094 −0.360583
391391 −3.18125 −0.160883
392392 −10.7339 −0.542142
393393 −3.09556 −0.156150
394394 −31.7410 −1.59909
395395 35.7176 1.79715
396396 0.726109 0.0364884
397397 12.7592 0.640368 0.320184 0.947355i 0.396255π-0.396255\pi
0.320184 + 0.947355i 0.396255π0.396255\pi
398398 9.04884 0.453577
399399 1.37720 0.0689464
400400 −0.840095 −0.0420048
401401 8.18820 0.408899 0.204450 0.978877i 0.434460π-0.434460\pi
0.204450 + 0.978877i 0.434460π0.434460\pi
402402 −14.3772 −0.717070
403403 −12.0956 −0.602523
404404 −3.29444 −0.163904
405405 2.27389 0.112991
406406 −17.4621 −0.866629
407407 −6.30219 −0.312388
408408 1.88601 0.0933716
409409 −36.5109 −1.80535 −0.902675 0.430323i 0.858399π-0.858399\pi
−0.902675 + 0.430323i 0.858399π0.858399\pi
410410 −38.1444 −1.88382
411411 3.48052 0.171681
412412 −7.64547 −0.376665
413413 −2.36653 −0.116449
414414 5.85772 0.287891
415415 −7.35586 −0.361085
416416 7.44447 0.364995
417417 −12.1989 −0.597381
418418 −1.65109 −0.0807576
419419 −3.47277 −0.169656 −0.0848278 0.996396i 0.527034π-0.527034\pi
−0.0848278 + 0.996396i 0.527034π0.527034\pi
420420 2.27389 0.110954
421421 16.0254 0.781029 0.390514 0.920597i 0.372297π-0.372297\pi
0.390514 + 0.920597i 0.372297π0.372297\pi
422422 5.15428 0.250906
423423 8.61212 0.418736
424424 9.62492 0.467427
425425 0.152955 0.00741943
426426 −1.13936 −0.0552021
427427 −1.41617 −0.0685334
428428 −6.45222 −0.311880
429429 1.89669 0.0915729
430430 17.7437 0.855679
431431 2.63559 0.126952 0.0634760 0.997983i 0.479781π-0.479781\pi
0.0634760 + 0.997983i 0.479781π0.479781\pi
432432 −4.92498 −0.236953
433433 38.8783 1.86837 0.934185 0.356789i 0.116128π-0.116128\pi
0.934185 + 0.356789i 0.116128π0.116128\pi
434434 14.5011 0.696073
435435 17.4621 0.837243
436436 3.72611 0.178448
437437 −3.54778 −0.169713
438438 2.38495 0.113957
439439 −22.2944 −1.06406 −0.532028 0.846727i 0.678570π-0.678570\pi
−0.532028 + 0.846727i 0.678570π0.678570\pi
440440 4.78270 0.228006
441441 −5.10331 −0.243015
442442 −2.80807 −0.133567
443443 −26.8753 −1.27689 −0.638443 0.769669i 0.720421π-0.720421\pi
−0.638443 + 0.769669i 0.720421π0.720421\pi
444444 −4.57608 −0.217171
445445 −17.4621 −0.827783
446446 −27.9143 −1.32178
447447 −12.2944 −0.581507
448448 4.64042 0.219239
449449 −13.8676 −0.654452 −0.327226 0.944946i 0.606114π-0.606114\pi
−0.327226 + 0.944946i 0.606114π0.606114\pi
450450 −0.281641 −0.0132767
451451 10.1599 0.478411
452452 1.40338 0.0660093
453453 −3.48052 −0.163529
454454 −17.4749 −0.820137
455455 5.93968 0.278457
456456 2.10331 0.0984966
457457 −29.1231 −1.36232 −0.681160 0.732135i 0.738524π-0.738524\pi
−0.681160 + 0.732135i 0.738524π0.738524\pi
458458 23.9298 1.11817
459459 0.896688 0.0418538
460460 −5.85772 −0.273118
461461 10.0283 0.467064 0.233532 0.972349i 0.424972π-0.424972\pi
0.233532 + 0.972349i 0.424972π0.424972\pi
462462 −2.27389 −0.105791
463463 −14.1239 −0.656391 −0.328196 0.944610i 0.606441π-0.606441\pi
−0.328196 + 0.944610i 0.606441π0.606441\pi
464464 −37.8209 −1.75579
465465 −14.5011 −0.672471
466466 −35.5342 −1.64609
467467 −16.1111 −0.745531 −0.372766 0.927926i 0.621590π-0.621590\pi
−0.372766 + 0.927926i 0.621590π0.621590\pi
468468 1.37720 0.0636612
469469 11.9922 0.553751
470470 −32.3334 −1.49143
471471 −7.34891 −0.338620
472472 −3.61425 −0.166359
473473 −4.72611 −0.217307
474474 −25.9349 −1.19123
475475 0.170578 0.00782667
476476 0.896688 0.0410996
477477 4.57608 0.209524
478478 −24.8259 −1.13551
479479 −17.9688 −0.821015 −0.410507 0.911857i 0.634648π-0.634648\pi
−0.410507 + 0.911857i 0.634648π0.634648\pi
480480 8.92498 0.407368
481481 −11.9533 −0.545023
482482 −23.6610 −1.07773
483483 −4.88601 −0.222321
484484 0.726109 0.0330050
485485 42.0451 1.90917
486486 −1.65109 −0.0748951
487487 8.93486 0.404877 0.202439 0.979295i 0.435113π-0.435113\pi
0.202439 + 0.979295i 0.435113π0.435113\pi
488488 −2.16283 −0.0979066
489489 −4.28164 −0.193622
490490 19.1599 0.865556
491491 −30.3043 −1.36761 −0.683807 0.729663i 0.739677π-0.739677\pi
−0.683807 + 0.729663i 0.739677π0.739677\pi
492492 7.37720 0.332590
493493 6.88601 0.310130
494494 −3.13161 −0.140898
495495 2.27389 0.102204
496496 31.4076 1.41024
497497 0.950357 0.0426293
498498 5.34116 0.239343
499499 −37.0510 −1.65863 −0.829314 0.558782i 0.811269π-0.811269\pi
−0.829314 + 0.558782i 0.811269π0.811269\pi
500500 −7.97383 −0.356600
501501 2.61505 0.116832
502502 24.0021 1.07127
503503 15.0926 0.672948 0.336474 0.941693i 0.390766π-0.390766\pi
0.336474 + 0.941693i 0.390766π0.390766\pi
504504 2.89669 0.129029
505505 −10.3169 −0.459095
506506 5.85772 0.260407
507507 −9.40258 −0.417583
508508 −11.4954 −0.510027
509509 −27.8209 −1.23314 −0.616569 0.787301i 0.711478π-0.711478\pi
−0.616569 + 0.787301i 0.711478π0.711478\pi
510510 −3.36653 −0.149072
511511 −1.98933 −0.0880026
512512 1.38708 0.0613007
513513 1.00000 0.0441511
514514 −49.3014 −2.17459
515515 −23.9426 −1.05504
516516 −3.43167 −0.151071
517517 8.61212 0.378761
518518 14.3305 0.629645
519519 3.42392 0.150294
520520 9.07129 0.397802
521521 4.83717 0.211920 0.105960 0.994370i 0.466208π-0.466208\pi
0.105960 + 0.994370i 0.466208π0.466208\pi
522522 −12.6794 −0.554962
523523 −12.0566 −0.527198 −0.263599 0.964632i 0.584910π-0.584910\pi
−0.263599 + 0.964632i 0.584910π0.584910\pi
524524 −2.24772 −0.0981920
525525 0.234921 0.0102528
526526 26.0750 1.13692
527527 −5.71836 −0.249096
528528 −4.92498 −0.214332
529529 −10.4132 −0.452750
530530 −17.1805 −0.746271
531531 −1.71836 −0.0745704
532532 1.00000 0.0433555
533533 19.2702 0.834684
534534 12.6794 0.548691
535535 −20.2058 −0.873574
536536 18.3150 0.791087
537537 −13.0382 −0.562639
538538 17.1033 0.737376
539539 −5.10331 −0.219815
540540 1.65109 0.0710517
541541 9.95620 0.428051 0.214025 0.976828i 0.431342π-0.431342\pi
0.214025 + 0.976828i 0.431342π0.431342\pi
542542 −1.73174 −0.0743845
543543 −5.89669 −0.253051
544544 3.51948 0.150897
545545 11.6687 0.499833
546546 −4.31286 −0.184573
547547 7.75653 0.331645 0.165823 0.986156i 0.446972π-0.446972\pi
0.165823 + 0.986156i 0.446972π0.446972\pi
548548 2.52723 0.107958
549549 −1.02830 −0.0438866
550550 −0.281641 −0.0120092
551551 7.67939 0.327153
552552 −7.46209 −0.317608
553553 21.6327 0.919915
554554 −49.1004 −2.08608
555555 −14.3305 −0.608295
556556 −8.85772 −0.375651
557557 2.26614 0.0960195 0.0480097 0.998847i 0.484712π-0.484712\pi
0.0480097 + 0.998847i 0.484712π0.484712\pi
558558 10.5294 0.445743
559559 −8.96395 −0.379135
560560 −15.4231 −0.651746
561561 0.896688 0.0378582
562562 8.20875 0.346265
563563 4.67434 0.197000 0.0985000 0.995137i 0.468596π-0.468596\pi
0.0985000 + 0.995137i 0.468596π0.468596\pi
564564 6.25334 0.263313
565565 4.39483 0.184892
566566 −12.3219 −0.517929
567567 1.37720 0.0578371
568568 1.45142 0.0609002
569569 −15.7699 −0.661109 −0.330554 0.943787i 0.607236π-0.607236\pi
−0.330554 + 0.943787i 0.607236π0.607236\pi
570570 −3.75441 −0.157255
571571 7.20370 0.301466 0.150733 0.988575i 0.451837π-0.451837\pi
0.150733 + 0.988575i 0.451837π0.451837\pi
572572 1.37720 0.0575837
573573 −23.5860 −0.985317
574574 −23.1025 −0.964280
575575 −0.605174 −0.0252375
576576 3.36945 0.140394
577577 7.84222 0.326476 0.163238 0.986587i 0.447806π-0.447806\pi
0.163238 + 0.986587i 0.447806π0.447806\pi
578578 26.7410 1.11228
579579 −25.6708 −1.06684
580580 12.6794 0.526483
581581 −4.45514 −0.184830
582582 −30.5294 −1.26548
583583 4.57608 0.189522
584584 −3.03817 −0.125720
585585 4.31286 0.178315
586586 54.5702 2.25428
587587 7.88814 0.325578 0.162789 0.986661i 0.447951π-0.447951\pi
0.162789 + 0.986661i 0.447951π0.447951\pi
588588 −3.70556 −0.152815
589589 −6.37720 −0.262768
590590 6.45142 0.265601
591591 19.2242 0.790780
592592 31.0382 1.27566
593593 −2.13241 −0.0875676 −0.0437838 0.999041i 0.513941π-0.513941\pi
−0.0437838 + 0.999041i 0.513941π0.513941\pi
594594 −1.65109 −0.0677452
595595 2.80807 0.115120
596596 −8.92711 −0.365669
597597 −5.48052 −0.224303
598598 11.1103 0.454332
599599 32.1465 1.31347 0.656736 0.754121i 0.271937π-0.271937\pi
0.656736 + 0.754121i 0.271937π0.271937\pi
600600 0.358779 0.0146471
601601 16.8160 0.685941 0.342970 0.939346i 0.388567π-0.388567\pi
0.342970 + 0.939346i 0.388567π0.388567\pi
602602 10.7467 0.438001
603603 8.70769 0.354604
604604 −2.52723 −0.102832
605605 2.27389 0.0924468
606606 7.49119 0.304309
607607 5.31791 0.215847 0.107924 0.994159i 0.465580π-0.465580\pi
0.107924 + 0.994159i 0.465580π0.465580\pi
608608 3.92498 0.159179
609609 10.5761 0.428564
610610 3.86064 0.156313
611611 16.3345 0.660824
612612 0.651093 0.0263189
613613 −6.89881 −0.278640 −0.139320 0.990247i 0.544492π-0.544492\pi
−0.139320 + 0.990247i 0.544492π0.544492\pi
614614 1.63347 0.0659215
615615 23.1025 0.931583
616616 2.89669 0.116711
617617 23.2966 0.937884 0.468942 0.883229i 0.344635π-0.344635\pi
0.468942 + 0.883229i 0.344635π0.344635\pi
618618 17.3850 0.699325
619619 26.4514 1.06317 0.531586 0.847004i 0.321596π-0.321596\pi
0.531586 + 0.847004i 0.321596π0.321596\pi
620620 −10.5294 −0.422869
621621 −3.54778 −0.142368
622622 46.6815 1.87176
623623 −10.5761 −0.423722
624624 −9.34116 −0.373946
625625 −25.8238 −1.03295
626626 −27.1805 −1.08635
627627 1.00000 0.0399362
628628 −5.33611 −0.212934
629629 −5.65109 −0.225324
630630 −5.17058 −0.206001
631631 7.64547 0.304361 0.152181 0.988353i 0.451370π-0.451370\pi
0.152181 + 0.988353i 0.451370π0.451370\pi
632632 33.0382 1.31419
633633 −3.12174 −0.124078
634634 −45.0352 −1.78858
635635 −35.9992 −1.42858
636636 3.32273 0.131755
637637 −9.67939 −0.383511
638638 −12.6794 −0.501982
639639 0.690063 0.0272985
640640 −30.5003 −1.20563
641641 2.66177 0.105133 0.0525667 0.998617i 0.483260π-0.483260\pi
0.0525667 + 0.998617i 0.483260π0.483260\pi
642642 14.6716 0.579043
643643 −17.2504 −0.680290 −0.340145 0.940373i 0.610476π-0.610476\pi
−0.340145 + 0.940373i 0.610476π0.610476\pi
644644 −3.54778 −0.139802
645645 −10.7467 −0.423149
646646 −1.48052 −0.0582501
647647 3.59238 0.141231 0.0706155 0.997504i 0.477504π-0.477504\pi
0.0706155 + 0.997504i 0.477504π0.477504\pi
648648 2.10331 0.0826259
649649 −1.71836 −0.0674515
650650 −0.534184 −0.0209524
651651 −8.78270 −0.344221
652652 −3.10894 −0.121755
653653 4.37238 0.171104 0.0855521 0.996334i 0.472735π-0.472735\pi
0.0855521 + 0.996334i 0.472735π0.472735\pi
654654 −8.47277 −0.331311
655655 −7.03897 −0.275035
656656 −50.0374 −1.95363
657657 −1.44447 −0.0563541
658658 −19.5830 −0.763426
659659 46.1359 1.79720 0.898599 0.438771i 0.144586π-0.144586\pi
0.898599 + 0.438771i 0.144586π0.144586\pi
660660 1.65109 0.0642687
661661 6.80617 0.264729 0.132365 0.991201i 0.457743π-0.457743\pi
0.132365 + 0.991201i 0.457743π0.457743\pi
662662 −9.92769 −0.385851
663663 1.70074 0.0660511
664664 −6.80405 −0.264048
665665 3.13161 0.121439
666666 10.4055 0.403205
667667 −27.2448 −1.05492
668668 1.89881 0.0734672
669669 16.9066 0.653645
670670 −32.6922 −1.26301
671671 −1.02830 −0.0396969
672672 5.40550 0.208522
673673 33.2624 1.28217 0.641086 0.767469i 0.278484π-0.278484\pi
0.641086 + 0.767469i 0.278484π0.278484\pi
674674 −4.65402 −0.179266
675675 0.170578 0.00656556
676676 −6.82730 −0.262588
677677 43.0793 1.65567 0.827835 0.560971i 0.189572π-0.189572\pi
0.827835 + 0.560971i 0.189572π0.189572\pi
678678 −3.19112 −0.122554
679679 25.4650 0.977258
680680 4.28859 0.164460
681681 10.5838 0.405573
682682 10.5294 0.403190
683683 −31.3714 −1.20039 −0.600196 0.799853i 0.704911π-0.704911\pi
−0.600196 + 0.799853i 0.704911π0.704911\pi
684684 0.726109 0.0277635
685685 7.91431 0.302390
686686 27.5216 1.05078
687687 −14.4933 −0.552954
688688 23.2760 0.887390
689689 8.67939 0.330658
690690 13.3198 0.507076
691691 −29.5272 −1.12327 −0.561634 0.827385i 0.689827π-0.689827\pi
−0.561634 + 0.827385i 0.689827π0.689827\pi
692692 2.48614 0.0945090
693693 1.37720 0.0523156
694694 −7.29019 −0.276732
695695 −27.7389 −1.05220
696696 16.1522 0.612246
697697 9.11026 0.345076
698698 −0.418295 −0.0158327
699699 21.5216 0.814022
700700 0.170578 0.00644725
701701 16.2328 0.613104 0.306552 0.951854i 0.400825π-0.400825\pi
0.306552 + 0.951854i 0.400825π0.400825\pi
702702 −3.13161 −0.118195
703703 −6.30219 −0.237691
704704 3.36945 0.126991
705705 19.5830 0.737539
706706 41.1570 1.54896
707707 −6.24852 −0.235000
708708 −1.24772 −0.0468921
709709 19.6015 0.736148 0.368074 0.929797i 0.380017π-0.380017\pi
0.368074 + 0.929797i 0.380017π0.380017\pi
710710 −2.59078 −0.0972301
711711 15.7077 0.589084
712712 −16.1522 −0.605328
713713 22.6249 0.847310
714714 −2.03897 −0.0763065
715715 4.31286 0.161292
716716 −9.46714 −0.353804
717717 15.0360 0.561531
718718 −41.4351 −1.54634
719719 22.4359 0.836719 0.418359 0.908282i 0.362605π-0.362605\pi
0.418359 + 0.908282i 0.362605π0.362605\pi
720720 −11.1989 −0.417357
721721 −14.5011 −0.540048
722722 −1.65109 −0.0614473
723723 14.3305 0.532956
724724 −4.28164 −0.159126
725725 1.30994 0.0486498
726726 −1.65109 −0.0612778
727727 12.8881 0.477995 0.238997 0.971020i 0.423181π-0.423181\pi
0.238997 + 0.971020i 0.423181π0.423181\pi
728728 5.49411 0.203625
729729 1.00000 0.0370370
730730 5.42312 0.200719
731731 −4.23784 −0.156742
732732 −0.746656 −0.0275972
733733 14.3489 0.529989 0.264994 0.964250i 0.414630π-0.414630\pi
0.264994 + 0.964250i 0.414630π0.414630\pi
734734 48.6447 1.79551
735735 −11.6044 −0.428034
736736 −13.9250 −0.513282
737737 8.70769 0.320752
738738 −16.7750 −0.617495
739739 −19.1706 −0.705201 −0.352601 0.935774i 0.614703π-0.614703\pi
−0.352601 + 0.935774i 0.614703π0.614703\pi
740740 −10.4055 −0.382514
741741 1.89669 0.0696766
742742 −10.4055 −0.381998
743743 32.6404 1.19746 0.598730 0.800951i 0.295672π-0.295672\pi
0.598730 + 0.800951i 0.295672π0.295672\pi
744744 −13.4132 −0.491754
745745 −27.9562 −1.02424
746746 29.8633 1.09337
747747 −3.23492 −0.118360
748748 0.651093 0.0238063
749749 −12.2378 −0.447161
750750 18.1316 0.662073
751751 −51.8513 −1.89208 −0.946040 0.324049i 0.894956π-0.894956\pi
−0.946040 + 0.324049i 0.894956π0.894956\pi
752752 −42.4146 −1.54670
753753 −14.5371 −0.529762
754754 −24.0488 −0.875807
755755 −7.91431 −0.288031
756756 1.00000 0.0363696
757757 35.1367 1.27706 0.638532 0.769596i 0.279542π-0.279542\pi
0.638532 + 0.769596i 0.279542π0.279542\pi
758758 19.9837 0.725841
759759 −3.54778 −0.128776
760760 4.78270 0.173487
761761 −53.8230 −1.95108 −0.975541 0.219818i 0.929454π-0.929454\pi
−0.975541 + 0.219818i 0.929454π0.929454\pi
762762 26.1394 0.946929
763763 7.06727 0.255852
764764 −17.1260 −0.619596
765765 2.03897 0.0737191
766766 −4.02325 −0.145366
767767 −3.25919 −0.117683
768768 15.4076 0.555975
769769 −14.1084 −0.508760 −0.254380 0.967104i 0.581871π-0.581871\pi
−0.254380 + 0.967104i 0.581871π0.581871\pi
770770 −5.17058 −0.186335
771771 29.8598 1.07538
772772 −18.6398 −0.670862
773773 −13.4621 −0.484198 −0.242099 0.970252i 0.577836π-0.577836\pi
−0.242099 + 0.970252i 0.577836π0.577836\pi
774774 7.80325 0.280482
775775 −1.08781 −0.0390754
776776 38.8911 1.39611
777777 −8.67939 −0.311371
778778 −41.2936 −1.48045
779779 10.1599 0.364016
780780 3.13161 0.112130
781781 0.690063 0.0246924
782782 5.25254 0.187831
783783 7.67939 0.274439
784784 25.1337 0.897633
785785 −16.7106 −0.596427
786786 5.11106 0.182306
787787 −36.9837 −1.31833 −0.659163 0.752000i 0.729089π-0.729089\pi
−0.659163 + 0.752000i 0.729089π0.729089\pi
788788 13.9589 0.497265
789789 −15.7926 −0.562231
790790 −58.9730 −2.09817
791791 2.66177 0.0946415
792792 2.10331 0.0747379
793793 −1.95036 −0.0692592
794794 −21.0667 −0.747629
795795 10.4055 0.369045
796796 −3.97945 −0.141048
797797 −7.22987 −0.256095 −0.128048 0.991768i 0.540871π-0.540871\pi
−0.128048 + 0.991768i 0.540871π0.540871\pi
798798 −2.27389 −0.0804949
799799 7.72239 0.273198
800800 0.669517 0.0236710
801801 −7.67939 −0.271338
802802 −13.5195 −0.477390
803803 −1.44447 −0.0509742
804804 6.32273 0.222986
805805 −11.1103 −0.391585
806806 19.9709 0.703445
807807 −10.3588 −0.364646
808808 −9.54295 −0.335720
809809 42.5577 1.49625 0.748124 0.663559i 0.230955π-0.230955\pi
0.748124 + 0.663559i 0.230955π0.230955\pi
810810 −3.75441 −0.131916
811811 56.1669 1.97229 0.986143 0.165900i 0.0530530π-0.0530530\pi
0.986143 + 0.165900i 0.0530530π0.0530530\pi
812812 7.67939 0.269494
813813 1.04884 0.0367845
814814 10.4055 0.364713
815815 −9.73598 −0.341037
816816 −4.41617 −0.154597
817817 −4.72611 −0.165346
818818 60.2830 2.10774
819819 2.61212 0.0912750
820820 16.7750 0.585807
821821 −19.2838 −0.673008 −0.336504 0.941682i 0.609245π-0.609245\pi
−0.336504 + 0.941682i 0.609245π0.609245\pi
822822 −5.74666 −0.200438
823823 7.35103 0.256241 0.128120 0.991759i 0.459106π-0.459106\pi
0.128120 + 0.991759i 0.459106π0.459106\pi
824824 −22.1465 −0.771511
825825 0.170578 0.00593877
826826 3.90736 0.135954
827827 −14.0078 −0.487097 −0.243549 0.969889i 0.578312π-0.578312\pi
−0.243549 + 0.969889i 0.578312π0.578312\pi
828828 −2.57608 −0.0895249
829829 28.6901 0.996447 0.498224 0.867049i 0.333986π-0.333986\pi
0.498224 + 0.867049i 0.333986π0.333986\pi
830830 12.1452 0.421566
831831 29.7381 1.03160
832832 6.39080 0.221561
833833 −4.57608 −0.158552
834834 20.1415 0.697442
835835 5.94633 0.205781
836836 0.726109 0.0251130
837837 −6.37720 −0.220428
838838 5.73386 0.198073
839839 −47.4124 −1.63686 −0.818430 0.574607i 0.805155π-0.805155\pi
−0.818430 + 0.574607i 0.805155π0.805155\pi
840840 6.58675 0.227264
841841 29.9730 1.03355
842842 −26.4594 −0.911851
843843 −4.97170 −0.171235
844844 −2.26672 −0.0780238
845845 −21.3804 −0.735509
846846 −14.2194 −0.488874
847847 1.37720 0.0473213
848848 −22.5371 −0.773927
849849 7.46289 0.256126
850850 −0.252544 −0.00866218
851851 22.3588 0.766449
852852 0.501061 0.0171661
853853 19.7339 0.675674 0.337837 0.941205i 0.390305π-0.390305\pi
0.337837 + 0.941205i 0.390305π0.390305\pi
854854 2.33823 0.0800127
855855 2.27389 0.0777654
856856 −18.6901 −0.638813
857857 −53.4712 −1.82654 −0.913270 0.407355i 0.866451π-0.866451\pi
−0.913270 + 0.407355i 0.866451π0.866451\pi
858858 −3.13161 −0.106911
859859 −29.7106 −1.01371 −0.506856 0.862030i 0.669193π-0.669193\pi
−0.506856 + 0.862030i 0.669193π0.669193\pi
860860 −7.80325 −0.266089
861861 13.9922 0.476855
862862 −4.35161 −0.148216
863863 30.0566 1.02314 0.511569 0.859242i 0.329064π-0.329064\pi
0.511569 + 0.859242i 0.329064π0.329064\pi
864864 3.92498 0.133531
865865 7.78563 0.264719
866866 −64.1916 −2.18132
867867 −16.1960 −0.550043
868868 −6.37720 −0.216456
869869 15.7077 0.532847
870870 −28.8315 −0.977481
871871 16.5158 0.559615
872872 10.7934 0.365510
873873 18.4904 0.625805
874874 5.85772 0.198140
875875 −15.1239 −0.511280
876876 −1.04884 −0.0354371
877877 31.2816 1.05631 0.528153 0.849149i 0.322885π-0.322885\pi
0.528153 + 0.849149i 0.322885π0.322885\pi
878878 36.8102 1.24228
879879 −33.0510 −1.11478
880880 −11.1989 −0.377514
881881 7.70769 0.259679 0.129839 0.991535i 0.458554π-0.458554\pi
0.129839 + 0.991535i 0.458554π0.458554\pi
882882 8.42605 0.283720
883883 −18.7750 −0.631827 −0.315914 0.948788i 0.602311π-0.602311\pi
−0.315914 + 0.948788i 0.602311π0.602311\pi
884884 1.23492 0.0415349
885885 −3.90736 −0.131345
886886 44.3737 1.49076
887887 34.8959 1.17169 0.585845 0.810423i 0.300763π-0.300763\pi
0.585845 + 0.810423i 0.300763π0.300763\pi
888888 −13.2555 −0.444824
889889 −21.8032 −0.731257
890890 28.8315 0.966436
891891 1.00000 0.0335013
892892 12.2760 0.411031
893893 8.61212 0.288194
894894 20.2993 0.678909
895895 −29.6474 −0.991002
896896 −18.4728 −0.617132
897897 −6.72903 −0.224676
898898 22.8967 0.764072
899899 −48.9730 −1.63334
900900 0.123858 0.00412862
901901 4.10331 0.136701
902902 −16.7750 −0.558545
903903 −6.50881 −0.216600
904904 4.06514 0.135205
905905 −13.4084 −0.445711
906906 5.74666 0.190920
907907 −4.46209 −0.148161 −0.0740807 0.997252i 0.523602π-0.523602\pi
−0.0740807 + 0.997252i 0.523602π0.523602\pi
908908 7.68502 0.255036
909909 −4.53711 −0.150486
910910 −9.80697 −0.325098
911911 39.3764 1.30460 0.652299 0.757962i 0.273805π-0.273805\pi
0.652299 + 0.757962i 0.273805π0.273805\pi
912912 −4.92498 −0.163083
913913 −3.23492 −0.107060
914914 48.0849 1.59051
915915 −2.33823 −0.0772996
916916 −10.5237 −0.347714
917917 −4.26322 −0.140784
918918 −1.48052 −0.0488643
919919 11.7905 0.388931 0.194466 0.980909i 0.437703π-0.437703\pi
0.194466 + 0.980909i 0.437703π0.437703\pi
920920 −16.9680 −0.559418
921921 −0.989327 −0.0325994
922922 −16.5577 −0.545297
923923 1.30883 0.0430808
924924 1.00000 0.0328976
925925 −1.07502 −0.0353463
926926 23.3198 0.766336
927927 −10.5294 −0.345829
928928 30.1415 0.989443
929929 −34.4239 −1.12941 −0.564706 0.825292i 0.691010π-0.691010\pi
−0.564706 + 0.825292i 0.691010π0.691010\pi
930930 23.9426 0.785109
931931 −5.10331 −0.167254
932932 15.6270 0.511881
933933 −28.2731 −0.925619
934934 26.6009 0.870407
935935 2.03897 0.0666814
936936 3.98933 0.130395
937937 1.84785 0.0603665 0.0301832 0.999544i 0.490391π-0.490391\pi
0.0301832 + 0.999544i 0.490391π0.490391\pi
938938 −19.8003 −0.646504
939939 16.4621 0.537220
940940 14.2194 0.463786
941941 −4.80032 −0.156486 −0.0782431 0.996934i 0.524931π-0.524931\pi
−0.0782431 + 0.996934i 0.524931π0.524931\pi
942942 12.1337 0.395338
943943 −36.0451 −1.17379
944944 8.46289 0.275444
945945 3.13161 0.101871
946946 7.80325 0.253705
947947 29.9292 0.972569 0.486285 0.873800i 0.338352π-0.338352\pi
0.486285 + 0.873800i 0.338352π0.338352\pi
948948 11.4055 0.370433
949949 −2.73971 −0.0889346
950950 −0.281641 −0.00913763
951951 27.2760 0.884485
952952 2.59742 0.0841830
953953 40.8860 1.32443 0.662214 0.749315i 0.269617π-0.269617\pi
0.662214 + 0.749315i 0.269617π0.269617\pi
954954 −7.55553 −0.244619
955955 −53.6319 −1.73549
956956 10.9178 0.353107
957957 7.67939 0.248239
958958 29.6681 0.958534
959959 4.79338 0.154786
960960 7.66177 0.247282
961961 9.66872 0.311894
962962 19.7360 0.636314
963963 −8.88601 −0.286348
964964 10.4055 0.335139
965965 −58.3727 −1.87908
966966 8.06727 0.259560
967967 61.7557 1.98593 0.992965 0.118407i 0.0377787π-0.0377787\pi
0.992965 + 0.118407i 0.0377787π0.0377787\pi
968968 2.10331 0.0676030
969969 0.896688 0.0288058
970970 −69.4204 −2.22896
971971 −52.7042 −1.69136 −0.845679 0.533692i 0.820804π-0.820804\pi
−0.845679 + 0.533692i 0.820804π0.820804\pi
972972 0.726109 0.0232900
973973 −16.8003 −0.538594
974974 −14.7523 −0.472694
975975 0.323534 0.0103614
976976 5.06434 0.162106
977977 26.9434 0.861996 0.430998 0.902353i 0.358162π-0.358162\pi
0.430998 + 0.902353i 0.358162π0.358162\pi
978978 7.06939 0.226054
979979 −7.67939 −0.245434
980980 −8.42605 −0.269160
981981 5.13161 0.163840
982982 50.0352 1.59669
983983 54.9349 1.75215 0.876075 0.482175i 0.160153π-0.160153\pi
0.876075 + 0.482175i 0.160153π0.160153\pi
984984 21.3695 0.681233
985985 43.7138 1.39284
986986 −11.3695 −0.362077
987987 11.8606 0.377528
988988 1.37720 0.0438147
989989 16.7672 0.533166
990990 −3.75441 −0.119323
991991 −54.3892 −1.72773 −0.863865 0.503724i 0.831963π-0.831963\pi
−0.863865 + 0.503724i 0.831963π0.831963\pi
992992 −25.0304 −0.794717
993993 6.01280 0.190810
994994 −1.56913 −0.0497697
995995 −12.4621 −0.395075
996996 −2.34891 −0.0744280
997997 32.8422 1.04012 0.520062 0.854129i 0.325909π-0.325909\pi
0.520062 + 0.854129i 0.325909π0.325909\pi
998998 61.1746 1.93645
999999 −6.30219 −0.199392
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 627.2.a.g.1.1 3
3.2 odd 2 1881.2.a.f.1.3 3
11.10 odd 2 6897.2.a.m.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.g.1.1 3 1.1 even 1 trivial
1881.2.a.f.1.3 3 3.2 odd 2
6897.2.a.m.1.3 3 11.10 odd 2