Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [627,2,Mod(10,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 9, 17]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.10");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 627.be (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.00662020673\) |
Analytic rank: | \(0\) |
Dimension: | \(240\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −0.485290 | − | 2.75222i | 0.642788 | + | 0.766044i | −5.45980 | + | 1.98721i | 2.33741 | + | 0.850748i | 1.79638 | − | 2.14084i | −2.71663 | − | 1.56845i | 5.32413 | + | 9.22167i | −0.173648 | + | 0.984808i | 1.20712 | − | 6.84592i |
10.2 | −0.452416 | − | 2.56578i | −0.642788 | − | 0.766044i | −4.49915 | + | 1.63756i | 0.645086 | + | 0.234792i | −1.67469 | + | 1.99582i | 1.91835 | + | 1.10756i | 3.63174 | + | 6.29036i | −0.173648 | + | 0.984808i | 0.310577 | − | 1.76137i |
10.3 | −0.450301 | − | 2.55378i | 0.642788 | + | 0.766044i | −4.43965 | + | 1.61590i | −2.55901 | − | 0.931403i | 1.66686 | − | 1.98649i | 1.18777 | + | 0.685761i | 3.53266 | + | 6.11874i | −0.173648 | + | 0.984808i | −1.22628 | + | 6.95456i |
10.4 | −0.434923 | − | 2.46657i | −0.642788 | − | 0.766044i | −4.01544 | + | 1.46150i | 3.32981 | + | 1.21195i | −1.60994 | + | 1.91865i | −1.37672 | − | 0.794852i | 2.84668 | + | 4.93059i | −0.173648 | + | 0.984808i | 1.54116 | − | 8.74033i |
10.5 | −0.409779 | − | 2.32397i | −0.642788 | − | 0.766044i | −3.35354 | + | 1.22059i | −1.28121 | − | 0.466321i | −1.51686 | + | 1.80773i | −3.53290 | − | 2.03972i | 1.85100 | + | 3.20602i | −0.173648 | + | 0.984808i | −0.558705 | + | 3.16858i |
10.6 | −0.359441 | − | 2.03849i | 0.642788 | + | 0.766044i | −2.14686 | + | 0.781393i | 0.143283 | + | 0.0521508i | 1.33053 | − | 1.58566i | −2.77971 | − | 1.60487i | 0.294595 | + | 0.510253i | −0.173648 | + | 0.984808i | 0.0548071 | − | 0.310827i |
10.7 | −0.341690 | − | 1.93782i | 0.642788 | + | 0.766044i | −1.75901 | + | 0.640227i | 2.83928 | + | 1.03341i | 1.26482 | − | 1.50736i | 1.12046 | + | 0.646899i | −0.126035 | − | 0.218298i | −0.173648 | + | 0.984808i | 1.03242 | − | 5.85512i |
10.8 | −0.308703 | − | 1.75074i | −0.642788 | − | 0.766044i | −1.09041 | + | 0.396879i | −0.129752 | − | 0.0472258i | −1.14272 | + | 1.36184i | 2.51719 | + | 1.45330i | −0.746304 | − | 1.29264i | −0.173648 | + | 0.984808i | −0.0426254 | + | 0.241741i |
10.9 | −0.298396 | − | 1.69229i | −0.642788 | − | 0.766044i | −0.895420 | + | 0.325906i | −2.11525 | − | 0.769887i | −1.10456 | + | 1.31637i | 1.79166 | + | 1.03441i | −0.899679 | − | 1.55829i | −0.173648 | + | 0.984808i | −0.671690 | + | 3.80934i |
10.10 | −0.296656 | − | 1.68242i | 0.642788 | + | 0.766044i | −0.863144 | + | 0.314159i | −2.17291 | − | 0.790873i | 1.09812 | − | 1.30869i | 3.30762 | + | 1.90965i | −0.923770 | − | 1.60002i | −0.173648 | + | 0.984808i | −0.685974 | + | 3.89035i |
10.11 | −0.263484 | − | 1.49429i | 0.642788 | + | 0.766044i | −0.284097 | + | 0.103403i | 3.13219 | + | 1.14002i | 0.975329 | − | 1.16235i | 1.86040 | + | 1.07410i | −1.28797 | − | 2.23084i | −0.173648 | + | 0.984808i | 0.878246 | − | 4.98078i |
10.12 | −0.251762 | − | 1.42781i | −0.642788 | − | 0.766044i | −0.0958771 | + | 0.0348964i | −3.52251 | − | 1.28209i | −0.931938 | + | 1.11064i | −1.53275 | − | 0.884935i | −1.37587 | − | 2.38308i | −0.173648 | + | 0.984808i | −0.943748 | + | 5.35226i |
10.13 | −0.249862 | − | 1.41704i | −0.642788 | − | 0.766044i | −0.0661850 | + | 0.0240894i | 2.05628 | + | 0.748426i | −0.924907 | + | 1.10226i | −2.92865 | − | 1.69086i | −1.38823 | − | 2.40448i | −0.173648 | + | 0.984808i | 0.546761 | − | 3.10084i |
10.14 | −0.173752 | − | 0.985397i | −0.642788 | − | 0.766044i | 0.938568 | − | 0.341611i | 3.11785 | + | 1.13481i | −0.643172 | + | 0.766503i | 0.730564 | + | 0.421791i | −1.50030 | − | 2.59859i | −0.173648 | + | 0.984808i | 0.576501 | − | 3.26950i |
10.15 | −0.166979 | − | 0.946983i | 0.642788 | + | 0.766044i | 1.01049 | − | 0.367789i | −3.69883 | − | 1.34626i | 0.618099 | − | 0.736622i | 0.270897 | + | 0.156403i | −1.47861 | − | 2.56103i | −0.173648 | + | 0.984808i | −0.657262 | + | 3.72752i |
10.16 | −0.166220 | − | 0.942679i | 0.642788 | + | 0.766044i | 1.01837 | − | 0.370657i | −0.837352 | − | 0.304771i | 0.615290 | − | 0.733274i | −3.86246 | − | 2.22999i | −1.47590 | − | 2.55634i | −0.173648 | + | 0.984808i | −0.148117 | + | 0.840013i |
10.17 | −0.0860339 | − | 0.487922i | 0.642788 | + | 0.766044i | 1.64872 | − | 0.600085i | −0.122114 | − | 0.0444457i | 0.318469 | − | 0.379536i | −1.58750 | − | 0.916543i | −0.930090 | − | 1.61096i | −0.173648 | + | 0.984808i | −0.0111802 | + | 0.0634058i |
10.18 | −0.0377067 | − | 0.213846i | −0.642788 | − | 0.766044i | 1.83508 | − | 0.667913i | −2.08488 | − | 0.758835i | −0.139578 | + | 0.166342i | 3.25299 | + | 1.87811i | −0.429169 | − | 0.743343i | −0.173648 | + | 0.984808i | −0.0836593 | + | 0.474456i |
10.19 | −0.0329979 | − | 0.187140i | −0.642788 | − | 0.766044i | 1.84545 | − | 0.671690i | 0.281468 | + | 0.102446i | −0.122147 | + | 0.145569i | −1.33226 | − | 0.769180i | −0.376624 | − | 0.652332i | −0.173648 | + | 0.984808i | 0.00988394 | − | 0.0560546i |
10.20 | −0.00653270 | − | 0.0370488i | 0.642788 | + | 0.766044i | 1.87806 | − | 0.683556i | 2.52052 | + | 0.917394i | 0.0241819 | − | 0.0288188i | −1.94562 | − | 1.12331i | −0.0752140 | − | 0.130274i | −0.173648 | + | 0.984808i | 0.0175225 | − | 0.0993752i |
See next 80 embeddings (of 240 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
19.f | odd | 18 | 1 | inner |
209.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 627.2.be.a | ✓ | 240 |
11.b | odd | 2 | 1 | inner | 627.2.be.a | ✓ | 240 |
19.f | odd | 18 | 1 | inner | 627.2.be.a | ✓ | 240 |
209.p | even | 18 | 1 | inner | 627.2.be.a | ✓ | 240 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.be.a | ✓ | 240 | 1.a | even | 1 | 1 | trivial |
627.2.be.a | ✓ | 240 | 11.b | odd | 2 | 1 | inner |
627.2.be.a | ✓ | 240 | 19.f | odd | 18 | 1 | inner |
627.2.be.a | ✓ | 240 | 209.p | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(627, [\chi])\).