Properties

Label 627.2.be.a
Level $627$
Weight $2$
Character orbit 627.be
Analytic conductor $5.007$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(10,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.be (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.00662020673\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(40\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 240 q + 6 q^{11} - 48 q^{14} + 24 q^{15} - 216 q^{20} + 24 q^{26} - 36 q^{31} - 6 q^{33} - 132 q^{34} + 180 q^{38} + 12 q^{42} - 24 q^{44} - 12 q^{45} + 72 q^{47} + 48 q^{48} + 132 q^{49} + 108 q^{53} - 30 q^{55}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1 −0.485290 2.75222i 0.642788 + 0.766044i −5.45980 + 1.98721i 2.33741 + 0.850748i 1.79638 2.14084i −2.71663 1.56845i 5.32413 + 9.22167i −0.173648 + 0.984808i 1.20712 6.84592i
10.2 −0.452416 2.56578i −0.642788 0.766044i −4.49915 + 1.63756i 0.645086 + 0.234792i −1.67469 + 1.99582i 1.91835 + 1.10756i 3.63174 + 6.29036i −0.173648 + 0.984808i 0.310577 1.76137i
10.3 −0.450301 2.55378i 0.642788 + 0.766044i −4.43965 + 1.61590i −2.55901 0.931403i 1.66686 1.98649i 1.18777 + 0.685761i 3.53266 + 6.11874i −0.173648 + 0.984808i −1.22628 + 6.95456i
10.4 −0.434923 2.46657i −0.642788 0.766044i −4.01544 + 1.46150i 3.32981 + 1.21195i −1.60994 + 1.91865i −1.37672 0.794852i 2.84668 + 4.93059i −0.173648 + 0.984808i 1.54116 8.74033i
10.5 −0.409779 2.32397i −0.642788 0.766044i −3.35354 + 1.22059i −1.28121 0.466321i −1.51686 + 1.80773i −3.53290 2.03972i 1.85100 + 3.20602i −0.173648 + 0.984808i −0.558705 + 3.16858i
10.6 −0.359441 2.03849i 0.642788 + 0.766044i −2.14686 + 0.781393i 0.143283 + 0.0521508i 1.33053 1.58566i −2.77971 1.60487i 0.294595 + 0.510253i −0.173648 + 0.984808i 0.0548071 0.310827i
10.7 −0.341690 1.93782i 0.642788 + 0.766044i −1.75901 + 0.640227i 2.83928 + 1.03341i 1.26482 1.50736i 1.12046 + 0.646899i −0.126035 0.218298i −0.173648 + 0.984808i 1.03242 5.85512i
10.8 −0.308703 1.75074i −0.642788 0.766044i −1.09041 + 0.396879i −0.129752 0.0472258i −1.14272 + 1.36184i 2.51719 + 1.45330i −0.746304 1.29264i −0.173648 + 0.984808i −0.0426254 + 0.241741i
10.9 −0.298396 1.69229i −0.642788 0.766044i −0.895420 + 0.325906i −2.11525 0.769887i −1.10456 + 1.31637i 1.79166 + 1.03441i −0.899679 1.55829i −0.173648 + 0.984808i −0.671690 + 3.80934i
10.10 −0.296656 1.68242i 0.642788 + 0.766044i −0.863144 + 0.314159i −2.17291 0.790873i 1.09812 1.30869i 3.30762 + 1.90965i −0.923770 1.60002i −0.173648 + 0.984808i −0.685974 + 3.89035i
10.11 −0.263484 1.49429i 0.642788 + 0.766044i −0.284097 + 0.103403i 3.13219 + 1.14002i 0.975329 1.16235i 1.86040 + 1.07410i −1.28797 2.23084i −0.173648 + 0.984808i 0.878246 4.98078i
10.12 −0.251762 1.42781i −0.642788 0.766044i −0.0958771 + 0.0348964i −3.52251 1.28209i −0.931938 + 1.11064i −1.53275 0.884935i −1.37587 2.38308i −0.173648 + 0.984808i −0.943748 + 5.35226i
10.13 −0.249862 1.41704i −0.642788 0.766044i −0.0661850 + 0.0240894i 2.05628 + 0.748426i −0.924907 + 1.10226i −2.92865 1.69086i −1.38823 2.40448i −0.173648 + 0.984808i 0.546761 3.10084i
10.14 −0.173752 0.985397i −0.642788 0.766044i 0.938568 0.341611i 3.11785 + 1.13481i −0.643172 + 0.766503i 0.730564 + 0.421791i −1.50030 2.59859i −0.173648 + 0.984808i 0.576501 3.26950i
10.15 −0.166979 0.946983i 0.642788 + 0.766044i 1.01049 0.367789i −3.69883 1.34626i 0.618099 0.736622i 0.270897 + 0.156403i −1.47861 2.56103i −0.173648 + 0.984808i −0.657262 + 3.72752i
10.16 −0.166220 0.942679i 0.642788 + 0.766044i 1.01837 0.370657i −0.837352 0.304771i 0.615290 0.733274i −3.86246 2.22999i −1.47590 2.55634i −0.173648 + 0.984808i −0.148117 + 0.840013i
10.17 −0.0860339 0.487922i 0.642788 + 0.766044i 1.64872 0.600085i −0.122114 0.0444457i 0.318469 0.379536i −1.58750 0.916543i −0.930090 1.61096i −0.173648 + 0.984808i −0.0111802 + 0.0634058i
10.18 −0.0377067 0.213846i −0.642788 0.766044i 1.83508 0.667913i −2.08488 0.758835i −0.139578 + 0.166342i 3.25299 + 1.87811i −0.429169 0.743343i −0.173648 + 0.984808i −0.0836593 + 0.474456i
10.19 −0.0329979 0.187140i −0.642788 0.766044i 1.84545 0.671690i 0.281468 + 0.102446i −0.122147 + 0.145569i −1.33226 0.769180i −0.376624 0.652332i −0.173648 + 0.984808i 0.00988394 0.0560546i
10.20 −0.00653270 0.0370488i 0.642788 + 0.766044i 1.87806 0.683556i 2.52052 + 0.917394i 0.0241819 0.0288188i −1.94562 1.12331i −0.0752140 0.130274i −0.173648 + 0.984808i 0.0175225 0.0993752i
See next 80 embeddings (of 240 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 10.40
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner
19.f odd 18 1 inner
209.p even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 627.2.be.a 240
11.b odd 2 1 inner 627.2.be.a 240
19.f odd 18 1 inner 627.2.be.a 240
209.p even 18 1 inner 627.2.be.a 240
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.be.a 240 1.a even 1 1 trivial
627.2.be.a 240 11.b odd 2 1 inner
627.2.be.a 240 19.f odd 18 1 inner
627.2.be.a 240 209.p even 18 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(627, [\chi])\).