Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [627,2,Mod(274,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.274");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 627.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.00662020673\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
274.1 | −1.35430 | + | 2.34572i | 0.866025 | + | 0.500000i | −2.66827 | − | 4.62157i | −1.05875 | + | 1.83380i | −2.34572 | + | 1.35430i | 3.93679i | 9.03734 | 0.500000 | + | 0.866025i | −2.86773 | − | 4.96705i | ||||
274.2 | −1.34279 | + | 2.32577i | −0.866025 | − | 0.500000i | −2.60614 | − | 4.51397i | −1.81012 | + | 3.13522i | 2.32577 | − | 1.34279i | − | 0.952391i | 8.62682 | 0.500000 | + | 0.866025i | −4.86121 | − | 8.41986i | |||
274.3 | −1.29260 | + | 2.23886i | 0.866025 | + | 0.500000i | −2.34165 | − | 4.05585i | 1.87956 | − | 3.25549i | −2.23886 | + | 1.29260i | 1.35502i | 6.93688 | 0.500000 | + | 0.866025i | 4.85905 | + | 8.41611i | ||||
274.4 | −1.24629 | + | 2.15863i | −0.866025 | − | 0.500000i | −2.10647 | − | 3.64851i | 1.28883 | − | 2.23232i | 2.15863 | − | 1.24629i | − | 0.861110i | 5.51591 | 0.500000 | + | 0.866025i | 3.21251 | + | 5.56422i | |||
274.5 | −1.10110 | + | 1.90715i | 0.866025 | + | 0.500000i | −1.42482 | − | 2.46787i | 0.631882 | − | 1.09445i | −1.90715 | + | 1.10110i | 0.523096i | 1.87109 | 0.500000 | + | 0.866025i | 1.39153 | + | 2.41019i | ||||
274.6 | −1.10029 | + | 1.90576i | 0.866025 | + | 0.500000i | −1.42128 | − | 2.46172i | −1.35732 | + | 2.35095i | −1.90576 | + | 1.10029i | − | 3.75702i | 1.85410 | 0.500000 | + | 0.866025i | −2.98690 | − | 5.17346i | |||
274.7 | −1.01165 | + | 1.75223i | −0.866025 | − | 0.500000i | −1.04687 | − | 1.81324i | −0.897161 | + | 1.55393i | 1.75223 | − | 1.01165i | − | 4.05167i | 0.189683 | 0.500000 | + | 0.866025i | −1.81523 | − | 3.14407i | |||
274.8 | −1.01051 | + | 1.75025i | −0.866025 | − | 0.500000i | −1.04226 | − | 1.80524i | 1.27988 | − | 2.21683i | 1.75025 | − | 1.01051i | 4.75094i | 0.170810 | 0.500000 | + | 0.866025i | 2.58667 | + | 4.48025i | ||||
274.9 | −0.890907 | + | 1.54310i | −0.866025 | − | 0.500000i | −0.587432 | − | 1.01746i | −1.80116 | + | 3.11970i | 1.54310 | − | 0.890907i | 3.47801i | −1.47024 | 0.500000 | + | 0.866025i | −3.20933 | − | 5.55873i | ||||
274.10 | −0.794908 | + | 1.37682i | 0.866025 | + | 0.500000i | −0.263759 | − | 0.456844i | 0.635326 | − | 1.10042i | −1.37682 | + | 0.794908i | − | 3.77458i | −2.34098 | 0.500000 | + | 0.866025i | 1.01005 | + | 1.74946i | |||
274.11 | −0.706504 | + | 1.22370i | −0.866025 | − | 0.500000i | 0.00170454 | + | 0.00295235i | −0.192549 | + | 0.333505i | 1.22370 | − | 0.706504i | − | 0.136702i | −2.83083 | 0.500000 | + | 0.866025i | −0.272074 | − | 0.471245i | |||
274.12 | −0.702805 | + | 1.21729i | 0.866025 | + | 0.500000i | 0.0121308 | + | 0.0210111i | 0.600102 | − | 1.03941i | −1.21729 | + | 0.702805i | 2.32368i | −2.84532 | 0.500000 | + | 0.866025i | 0.843508 | + | 1.46100i | ||||
274.13 | −0.697148 | + | 1.20750i | −0.866025 | − | 0.500000i | 0.0279699 | + | 0.0484453i | 1.69812 | − | 2.94122i | 1.20750 | − | 0.697148i | − | 2.09693i | −2.86659 | 0.500000 | + | 0.866025i | 2.36768 | + | 4.10094i | |||
274.14 | −0.515776 | + | 0.893349i | −0.866025 | − | 0.500000i | 0.467951 | + | 0.810515i | −1.08337 | + | 1.87645i | 0.893349 | − | 0.515776i | 1.35171i | −3.02853 | 0.500000 | + | 0.866025i | −1.11755 | − | 1.93565i | ||||
274.15 | −0.460857 | + | 0.798227i | 0.866025 | + | 0.500000i | 0.575222 | + | 0.996315i | −0.869775 | + | 1.50649i | −0.798227 | + | 0.460857i | 3.56103i | −2.90381 | 0.500000 | + | 0.866025i | −0.801683 | − | 1.38856i | ||||
274.16 | −0.390401 | + | 0.676194i | 0.866025 | + | 0.500000i | 0.695174 | + | 1.20408i | 0.326365 | − | 0.565281i | −0.676194 | + | 0.390401i | − | 4.16312i | −2.64719 | 0.500000 | + | 0.866025i | 0.254827 | + | 0.441373i | |||
274.17 | −0.266436 | + | 0.461482i | 0.866025 | + | 0.500000i | 0.858023 | + | 1.48614i | −1.50574 | + | 2.60802i | −0.461482 | + | 0.266436i | − | 0.319406i | −1.98018 | 0.500000 | + | 0.866025i | −0.802370 | − | 1.38975i | |||
274.18 | −0.213122 | + | 0.369138i | −0.866025 | − | 0.500000i | 0.909158 | + | 1.57471i | 1.43711 | − | 2.48915i | 0.369138 | − | 0.213122i | 3.80160i | −1.62753 | 0.500000 | + | 0.866025i | 0.612560 | + | 1.06099i | ||||
274.19 | −0.101927 | + | 0.176542i | 0.866025 | + | 0.500000i | 0.979222 | + | 1.69606i | 2.08438 | − | 3.61025i | −0.176542 | + | 0.101927i | 1.40693i | −0.806942 | 0.500000 | + | 0.866025i | 0.424908 | + | 0.735963i | ||||
274.20 | −0.0938248 | + | 0.162509i | −0.866025 | − | 0.500000i | 0.982394 | + | 1.70156i | −0.285605 | + | 0.494682i | 0.162509 | − | 0.0938248i | − | 1.76300i | −0.743991 | 0.500000 | + | 0.866025i | −0.0535936 | − | 0.0928268i | |||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
19.d | odd | 6 | 1 | inner |
209.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 627.2.k.a | ✓ | 80 |
11.b | odd | 2 | 1 | inner | 627.2.k.a | ✓ | 80 |
19.d | odd | 6 | 1 | inner | 627.2.k.a | ✓ | 80 |
209.g | even | 6 | 1 | inner | 627.2.k.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.k.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
627.2.k.a | ✓ | 80 | 11.b | odd | 2 | 1 | inner |
627.2.k.a | ✓ | 80 | 19.d | odd | 6 | 1 | inner |
627.2.k.a | ✓ | 80 | 209.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(627, [\chi])\).