Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [627,2,Mod(197,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.197");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 627.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.00662020673\) |
Analytic rank: | \(0\) |
Dimension: | \(152\) |
Relative dimension: | \(76\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
197.1 | −1.40640 | − | 2.43595i | −0.427063 | + | 1.67858i | −2.95590 | + | 5.11976i | 2.41646 | − | 1.39514i | 4.68954 | − | 1.32044i | − | 1.25614i | 11.0031 | −2.63523 | − | 1.43372i | −6.79700 | − | 3.92425i | |||
197.2 | −1.40640 | − | 2.43595i | 1.66722 | + | 0.469440i | −2.95590 | + | 5.11976i | −2.41646 | + | 1.39514i | −1.20124 | − | 4.72148i | 1.25614i | 11.0031 | 2.55925 | + | 1.56532i | 6.79700 | + | 3.92425i | ||||
197.3 | −1.26757 | − | 2.19550i | −1.50271 | − | 0.861307i | −2.21348 | + | 3.83387i | 2.53073 | − | 1.46112i | 0.0138007 | + | 4.39098i | − | 0.937410i | 6.15272 | 1.51630 | + | 2.58860i | −6.41578 | − | 3.70415i | |||
197.4 | −1.26757 | − | 2.19550i | 0.00544374 | − | 1.73204i | −2.21348 | + | 3.83387i | −2.53073 | + | 1.46112i | −3.80960 | + | 2.18354i | 0.937410i | 6.15272 | −2.99994 | − | 0.0188576i | 6.41578 | + | 3.70415i | ||||
197.5 | −1.22254 | − | 2.11749i | −1.37504 | − | 1.05322i | −1.98919 | + | 3.44537i | −1.16544 | + | 0.672865i | −0.549148 | + | 4.19923i | − | 2.71504i | 4.83727 | 0.781465 | + | 2.89643i | 2.84958 | + | 1.64520i | |||
197.6 | −1.22254 | − | 2.11749i | −0.224594 | − | 1.71743i | −1.98919 | + | 3.44537i | 1.16544 | − | 0.672865i | −3.36207 | + | 2.57519i | 2.71504i | 4.83727 | −2.89912 | + | 0.771447i | −2.84958 | − | 1.64520i | ||||
197.7 | −1.21589 | − | 2.10598i | −1.50839 | + | 0.851323i | −1.95678 | + | 3.38923i | −2.15832 | + | 1.24611i | 3.62691 | + | 2.14153i | − | 4.93096i | 4.65333 | 1.55050 | − | 2.56826i | 5.24856 | + | 3.03025i | |||
197.8 | −1.21589 | − | 2.10598i | 1.49146 | − | 0.880645i | −1.95678 | + | 3.38923i | 2.15832 | − | 1.24611i | −3.66808 | − | 2.07023i | 4.93096i | 4.65333 | 1.44893 | − | 2.62690i | −5.24856 | − | 3.03025i | ||||
197.9 | −1.19514 | − | 2.07004i | −0.898802 | + | 1.48059i | −1.85670 | + | 3.21589i | −2.17193 | + | 1.25397i | 4.13907 | + | 0.0910427i | 2.65442i | 4.09548 | −1.38431 | − | 2.66152i | 5.19151 | + | 2.99732i | ||||
197.10 | −1.19514 | − | 2.07004i | 1.73163 | − | 0.0380889i | −1.85670 | + | 3.21589i | 2.17193 | − | 1.25397i | −2.14838 | − | 3.53902i | − | 2.65442i | 4.09548 | 2.99710 | − | 0.131912i | −5.19151 | − | 2.99732i | |||
197.11 | −1.11716 | − | 1.93498i | 0.686511 | + | 1.59019i | −1.49610 | + | 2.59133i | −0.636140 | + | 0.367275i | 2.31004 | − | 3.10489i | − | 1.30275i | 2.21691 | −2.05740 | + | 2.18337i | 1.42134 | + | 0.820612i | |||
197.12 | −1.11716 | − | 1.93498i | 1.03389 | + | 1.38963i | −1.49610 | + | 2.59133i | 0.636140 | − | 0.367275i | 1.53389 | − | 3.55300i | 1.30275i | 2.21691 | −0.862148 | + | 2.87345i | −1.42134 | − | 0.820612i | ||||
197.13 | −1.00748 | − | 1.74501i | −1.64530 | + | 0.541282i | −1.03004 | + | 1.78408i | 1.60686 | − | 0.927720i | 2.60215 | + | 2.32573i | 1.64515i | 0.121055 | 2.41403 | − | 1.78114i | −3.23776 | − | 1.86932i | ||||
197.14 | −1.00748 | − | 1.74501i | 1.29141 | − | 1.15423i | −1.03004 | + | 1.78408i | −1.60686 | + | 0.927720i | −3.31522 | − | 1.09066i | − | 1.64515i | 0.121055 | 0.335501 | − | 2.98118i | 3.23776 | + | 1.86932i | |||
197.15 | −0.873606 | − | 1.51313i | −0.568916 | + | 1.63595i | −0.526375 | + | 0.911708i | 3.14552 | − | 1.81607i | 2.97241 | − | 0.568333i | 1.70419i | −1.65505 | −2.35267 | − | 1.86144i | −5.49590 | − | 3.17306i | ||||
197.16 | −0.873606 | − | 1.51313i | 1.70123 | + | 0.325280i | −0.526375 | + | 0.911708i | −3.14552 | + | 1.81607i | −0.994017 | − | 2.85835i | − | 1.70419i | −1.65505 | 2.78839 | + | 1.10675i | 5.49590 | + | 3.17306i | |||
197.17 | −0.849649 | − | 1.47164i | −1.53953 | − | 0.793637i | −0.443807 | + | 0.768696i | −3.73665 | + | 2.15735i | 0.140113 | + | 2.93993i | 3.70345i | −1.89028 | 1.74028 | + | 2.44365i | 6.34968 | + | 3.66599i | ||||
197.18 | −0.849649 | − | 1.47164i | 0.0824532 | − | 1.73009i | −0.443807 | + | 0.768696i | 3.73665 | − | 2.15735i | −2.61611 | + | 1.34863i | − | 3.70345i | −1.89028 | −2.98640 | − | 0.285303i | −6.34968 | − | 3.66599i | |||
197.19 | −0.796127 | − | 1.37893i | −1.71617 | + | 0.234005i | −0.267637 | + | 0.463560i | −0.555733 | + | 0.320852i | 1.68897 | + | 2.18019i | 0.0200664i | −2.33222 | 2.89048 | − | 0.803183i | 0.884868 | + | 0.510879i | ||||
197.20 | −0.796127 | − | 1.37893i | 1.06074 | − | 1.36925i | −0.267637 | + | 0.463560i | 0.555733 | − | 0.320852i | −2.73258 | − | 0.372595i | − | 0.0200664i | −2.33222 | −0.749665 | − | 2.90482i | −0.884868 | − | 0.510879i | |||
See next 80 embeddings (of 152 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
33.d | even | 2 | 1 | inner |
57.h | odd | 6 | 1 | inner |
209.h | odd | 6 | 1 | inner |
627.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 627.2.l.a | ✓ | 152 |
3.b | odd | 2 | 1 | inner | 627.2.l.a | ✓ | 152 |
11.b | odd | 2 | 1 | inner | 627.2.l.a | ✓ | 152 |
19.c | even | 3 | 1 | inner | 627.2.l.a | ✓ | 152 |
33.d | even | 2 | 1 | inner | 627.2.l.a | ✓ | 152 |
57.h | odd | 6 | 1 | inner | 627.2.l.a | ✓ | 152 |
209.h | odd | 6 | 1 | inner | 627.2.l.a | ✓ | 152 |
627.l | even | 6 | 1 | inner | 627.2.l.a | ✓ | 152 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.l.a | ✓ | 152 | 1.a | even | 1 | 1 | trivial |
627.2.l.a | ✓ | 152 | 3.b | odd | 2 | 1 | inner |
627.2.l.a | ✓ | 152 | 11.b | odd | 2 | 1 | inner |
627.2.l.a | ✓ | 152 | 19.c | even | 3 | 1 | inner |
627.2.l.a | ✓ | 152 | 33.d | even | 2 | 1 | inner |
627.2.l.a | ✓ | 152 | 57.h | odd | 6 | 1 | inner |
627.2.l.a | ✓ | 152 | 209.h | odd | 6 | 1 | inner |
627.2.l.a | ✓ | 152 | 627.l | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(627, [\chi])\).