Properties

Label 627.2.l.a
Level $627$
Weight $2$
Character orbit 627.l
Analytic conductor $5.007$
Analytic rank $0$
Dimension $152$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(197,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.00662020673\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(76\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 152 q - 76 q^{4} - 8 q^{9} - 14 q^{15} - 76 q^{16} + 4 q^{22} + 60 q^{25} + 12 q^{27} - 16 q^{31} + 16 q^{33} - 16 q^{34} - 10 q^{36} - 16 q^{37} + 50 q^{42} - 108 q^{45} + 54 q^{48} - 80 q^{49} + 32 q^{55}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1 −1.40640 2.43595i −0.427063 + 1.67858i −2.95590 + 5.11976i 2.41646 1.39514i 4.68954 1.32044i 1.25614i 11.0031 −2.63523 1.43372i −6.79700 3.92425i
197.2 −1.40640 2.43595i 1.66722 + 0.469440i −2.95590 + 5.11976i −2.41646 + 1.39514i −1.20124 4.72148i 1.25614i 11.0031 2.55925 + 1.56532i 6.79700 + 3.92425i
197.3 −1.26757 2.19550i −1.50271 0.861307i −2.21348 + 3.83387i 2.53073 1.46112i 0.0138007 + 4.39098i 0.937410i 6.15272 1.51630 + 2.58860i −6.41578 3.70415i
197.4 −1.26757 2.19550i 0.00544374 1.73204i −2.21348 + 3.83387i −2.53073 + 1.46112i −3.80960 + 2.18354i 0.937410i 6.15272 −2.99994 0.0188576i 6.41578 + 3.70415i
197.5 −1.22254 2.11749i −1.37504 1.05322i −1.98919 + 3.44537i −1.16544 + 0.672865i −0.549148 + 4.19923i 2.71504i 4.83727 0.781465 + 2.89643i 2.84958 + 1.64520i
197.6 −1.22254 2.11749i −0.224594 1.71743i −1.98919 + 3.44537i 1.16544 0.672865i −3.36207 + 2.57519i 2.71504i 4.83727 −2.89912 + 0.771447i −2.84958 1.64520i
197.7 −1.21589 2.10598i −1.50839 + 0.851323i −1.95678 + 3.38923i −2.15832 + 1.24611i 3.62691 + 2.14153i 4.93096i 4.65333 1.55050 2.56826i 5.24856 + 3.03025i
197.8 −1.21589 2.10598i 1.49146 0.880645i −1.95678 + 3.38923i 2.15832 1.24611i −3.66808 2.07023i 4.93096i 4.65333 1.44893 2.62690i −5.24856 3.03025i
197.9 −1.19514 2.07004i −0.898802 + 1.48059i −1.85670 + 3.21589i −2.17193 + 1.25397i 4.13907 + 0.0910427i 2.65442i 4.09548 −1.38431 2.66152i 5.19151 + 2.99732i
197.10 −1.19514 2.07004i 1.73163 0.0380889i −1.85670 + 3.21589i 2.17193 1.25397i −2.14838 3.53902i 2.65442i 4.09548 2.99710 0.131912i −5.19151 2.99732i
197.11 −1.11716 1.93498i 0.686511 + 1.59019i −1.49610 + 2.59133i −0.636140 + 0.367275i 2.31004 3.10489i 1.30275i 2.21691 −2.05740 + 2.18337i 1.42134 + 0.820612i
197.12 −1.11716 1.93498i 1.03389 + 1.38963i −1.49610 + 2.59133i 0.636140 0.367275i 1.53389 3.55300i 1.30275i 2.21691 −0.862148 + 2.87345i −1.42134 0.820612i
197.13 −1.00748 1.74501i −1.64530 + 0.541282i −1.03004 + 1.78408i 1.60686 0.927720i 2.60215 + 2.32573i 1.64515i 0.121055 2.41403 1.78114i −3.23776 1.86932i
197.14 −1.00748 1.74501i 1.29141 1.15423i −1.03004 + 1.78408i −1.60686 + 0.927720i −3.31522 1.09066i 1.64515i 0.121055 0.335501 2.98118i 3.23776 + 1.86932i
197.15 −0.873606 1.51313i −0.568916 + 1.63595i −0.526375 + 0.911708i 3.14552 1.81607i 2.97241 0.568333i 1.70419i −1.65505 −2.35267 1.86144i −5.49590 3.17306i
197.16 −0.873606 1.51313i 1.70123 + 0.325280i −0.526375 + 0.911708i −3.14552 + 1.81607i −0.994017 2.85835i 1.70419i −1.65505 2.78839 + 1.10675i 5.49590 + 3.17306i
197.17 −0.849649 1.47164i −1.53953 0.793637i −0.443807 + 0.768696i −3.73665 + 2.15735i 0.140113 + 2.93993i 3.70345i −1.89028 1.74028 + 2.44365i 6.34968 + 3.66599i
197.18 −0.849649 1.47164i 0.0824532 1.73009i −0.443807 + 0.768696i 3.73665 2.15735i −2.61611 + 1.34863i 3.70345i −1.89028 −2.98640 0.285303i −6.34968 3.66599i
197.19 −0.796127 1.37893i −1.71617 + 0.234005i −0.267637 + 0.463560i −0.555733 + 0.320852i 1.68897 + 2.18019i 0.0200664i −2.33222 2.89048 0.803183i 0.884868 + 0.510879i
197.20 −0.796127 1.37893i 1.06074 1.36925i −0.267637 + 0.463560i 0.555733 0.320852i −2.73258 0.372595i 0.0200664i −2.33222 −0.749665 2.90482i −0.884868 0.510879i
See next 80 embeddings (of 152 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 197.76
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
19.c even 3 1 inner
33.d even 2 1 inner
57.h odd 6 1 inner
209.h odd 6 1 inner
627.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 627.2.l.a 152
3.b odd 2 1 inner 627.2.l.a 152
11.b odd 2 1 inner 627.2.l.a 152
19.c even 3 1 inner 627.2.l.a 152
33.d even 2 1 inner 627.2.l.a 152
57.h odd 6 1 inner 627.2.l.a 152
209.h odd 6 1 inner 627.2.l.a 152
627.l even 6 1 inner 627.2.l.a 152
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.l.a 152 1.a even 1 1 trivial
627.2.l.a 152 3.b odd 2 1 inner
627.2.l.a 152 11.b odd 2 1 inner
627.2.l.a 152 19.c even 3 1 inner
627.2.l.a 152 33.d even 2 1 inner
627.2.l.a 152 57.h odd 6 1 inner
627.2.l.a 152 209.h odd 6 1 inner
627.2.l.a 152 627.l even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(627, [\chi])\).