Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [627,2,Mod(100,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.100");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 627.r (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.00662020673\) |
Analytic rank: | \(0\) |
Dimension: | \(54\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100.1 | −2.50055 | + | 0.910126i | 0.173648 | − | 0.984808i | 3.89233 | − | 3.26605i | −1.92507 | − | 1.61533i | 0.462083 | + | 2.62060i | −2.38697 | − | 4.13436i | −4.09942 | + | 7.10040i | −0.939693 | − | 0.342020i | 6.28389 | + | 2.28715i |
100.2 | −1.89161 | + | 0.688491i | 0.173648 | − | 0.984808i | 1.57209 | − | 1.31914i | −1.65438 | − | 1.38819i | 0.349556 | + | 1.98243i | 1.57126 | + | 2.72150i | −0.0525637 | + | 0.0910429i | −0.939693 | − | 0.342020i | 4.08520 | + | 1.48689i |
100.3 | −1.04904 | + | 0.381820i | 0.173648 | − | 0.984808i | −0.577384 | + | 0.484483i | 3.26470 | + | 2.73941i | 0.193855 | + | 1.09941i | −1.21034 | − | 2.09636i | 1.53708 | − | 2.66231i | −0.939693 | − | 0.342020i | −4.47077 | − | 1.62723i |
100.4 | −0.642665 | + | 0.233911i | 0.173648 | − | 0.984808i | −1.17378 | + | 0.984922i | 0.374881 | + | 0.314563i | 0.118760 | + | 0.673520i | −1.38207 | − | 2.39381i | 1.20788 | − | 2.09210i | −0.939693 | − | 0.342020i | −0.314503 | − | 0.114470i |
100.5 | −0.529924 | + | 0.192877i | 0.173648 | − | 0.984808i | −1.28847 | + | 1.08116i | −1.59108 | − | 1.33507i | 0.0979261 | + | 0.555366i | 0.832567 | + | 1.44205i | 1.03820 | − | 1.79821i | −0.939693 | − | 0.342020i | 1.10065 | + | 0.400605i |
100.6 | 1.14605 | − | 0.417129i | 0.173648 | − | 0.984808i | −0.392648 | + | 0.329471i | −1.91969 | − | 1.61081i | −0.211782 | − | 1.20108i | −0.627651 | − | 1.08712i | −1.53217 | + | 2.65379i | −0.939693 | − | 0.342020i | −2.87198 | − | 1.04531i |
100.7 | 1.41798 | − | 0.516103i | 0.173648 | − | 0.984808i | 0.212218 | − | 0.178072i | 1.54658 | + | 1.29773i | −0.262032 | − | 1.48606i | 1.54228 | + | 2.67130i | −1.29997 | + | 2.25161i | −0.939693 | − | 0.342020i | 2.86278 | + | 1.04197i |
100.8 | 2.24827 | − | 0.818302i | 0.173648 | − | 0.984808i | 2.85300 | − | 2.39395i | −0.281381 | − | 0.236107i | −0.415463 | − | 2.35621i | 0.491710 | + | 0.851667i | 2.06277 | − | 3.57283i | −0.939693 | − | 0.342020i | −0.825827 | − | 0.300576i |
100.9 | 2.30150 | − | 0.837676i | 0.173648 | − | 0.984808i | 3.06309 | − | 2.57024i | 2.18544 | + | 1.83380i | −0.425299 | − | 2.41199i | −2.42318 | − | 4.19708i | 2.44746 | − | 4.23913i | −0.939693 | − | 0.342020i | 6.56590 | + | 2.38979i |
199.1 | −0.357327 | − | 2.02650i | 0.766044 | − | 0.642788i | −2.09965 | + | 0.764212i | −3.54262 | − | 1.28941i | −1.57634 | − | 1.32271i | −1.09829 | + | 1.90230i | 0.241176 | + | 0.417728i | 0.173648 | − | 0.984808i | −1.34712 | + | 7.63988i |
199.2 | −0.312642 | − | 1.77308i | 0.766044 | − | 0.642788i | −1.16668 | + | 0.424636i | 3.18574 | + | 1.15951i | −1.37921 | − | 1.15729i | −0.323948 | + | 0.561094i | −0.682767 | − | 1.18259i | 0.173648 | − | 0.984808i | 1.05991 | − | 6.01107i |
199.3 | −0.163057 | − | 0.924743i | 0.766044 | − | 0.642788i | 1.05082 | − | 0.382468i | −1.79310 | − | 0.652634i | −0.719322 | − | 0.603583i | 1.21300 | − | 2.10097i | −1.46404 | − | 2.53579i | 0.173648 | − | 0.984808i | −0.311142 | + | 1.76457i |
199.4 | −0.106342 | − | 0.603094i | 0.766044 | − | 0.642788i | 1.52697 | − | 0.555772i | −1.00422 | − | 0.365505i | −0.469124 | − | 0.393642i | 0.304084 | − | 0.526689i | −1.10996 | − | 1.92251i | 0.173648 | − | 0.984808i | −0.113644 | + | 0.644505i |
199.5 | 0.00745564 | + | 0.0422831i | 0.766044 | − | 0.642788i | 1.87765 | − | 0.683410i | 2.08739 | + | 0.759748i | 0.0328904 | + | 0.0275983i | −2.26349 | + | 3.92047i | 0.0858311 | + | 0.148664i | 0.173648 | − | 0.984808i | −0.0165616 | + | 0.0939256i |
199.6 | 0.180996 | + | 1.02648i | 0.766044 | − | 0.642788i | 0.858479 | − | 0.312461i | 0.862251 | + | 0.313834i | 0.798461 | + | 0.669989i | 1.34164 | − | 2.32379i | 1.51843 | + | 2.63001i | 0.173648 | − | 0.984808i | −0.166080 | + | 0.941888i |
199.7 | 0.335406 | + | 1.90218i | 0.766044 | − | 0.642788i | −1.62641 | + | 0.591963i | −2.06412 | − | 0.751279i | 1.47963 | + | 1.24156i | −0.293014 | + | 0.507515i | 0.259998 | + | 0.450330i | 0.173648 | − | 0.984808i | 0.736750 | − | 4.17831i |
199.8 | 0.441274 | + | 2.50259i | 0.766044 | − | 0.642788i | −4.18885 | + | 1.52462i | 4.09713 | + | 1.49123i | 1.94667 | + | 1.63345i | 1.35128 | − | 2.34048i | −3.12272 | − | 5.40872i | 0.173648 | − | 0.984808i | −1.92399 | + | 10.9115i |
199.9 | 0.474236 | + | 2.68953i | 0.766044 | − | 0.642788i | −5.12927 | + | 1.86690i | −1.82845 | − | 0.665503i | 2.09208 | + | 1.75546i | −1.52552 | + | 2.64228i | −4.72255 | − | 8.17969i | 0.173648 | − | 0.984808i | 0.922769 | − | 5.23328i |
232.1 | −2.50055 | − | 0.910126i | 0.173648 | + | 0.984808i | 3.89233 | + | 3.26605i | −1.92507 | + | 1.61533i | 0.462083 | − | 2.62060i | −2.38697 | + | 4.13436i | −4.09942 | − | 7.10040i | −0.939693 | + | 0.342020i | 6.28389 | − | 2.28715i |
232.2 | −1.89161 | − | 0.688491i | 0.173648 | + | 0.984808i | 1.57209 | + | 1.31914i | −1.65438 | + | 1.38819i | 0.349556 | − | 1.98243i | 1.57126 | − | 2.72150i | −0.0525637 | − | 0.0910429i | −0.939693 | + | 0.342020i | 4.08520 | − | 1.48689i |
See all 54 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 627.2.r.c | ✓ | 54 |
19.e | even | 9 | 1 | inner | 627.2.r.c | ✓ | 54 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.r.c | ✓ | 54 | 1.a | even | 1 | 1 | trivial |
627.2.r.c | ✓ | 54 | 19.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{54} - 3 T_{2}^{53} + 3 T_{2}^{52} + 8 T_{2}^{51} - 12 T_{2}^{50} - 90 T_{2}^{49} + 755 T_{2}^{48} + \cdots + 729 \) acting on \(S_{2}^{\mathrm{new}}(627, [\chi])\).