Properties

Label 63.2.c.a.62.2
Level $63$
Weight $2$
Character 63.62
Analytic conductor $0.503$
Analytic rank $0$
Dimension $4$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,2,Mod(62,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.62");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 62.2
Root \(-1.16372i\) of defining polynomial
Character \(\chi\) \(=\) 63.62
Dual form 63.2.c.a.62.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.16372i q^{2} +0.645751 q^{4} -2.64575 q^{7} -3.07892i q^{8} +6.57008i q^{11} +3.07892i q^{14} -2.29150 q^{16} +7.64575 q^{22} -1.91520i q^{23} -5.00000 q^{25} -1.70850 q^{28} -8.89753i q^{29} -3.49117i q^{32} +10.5830 q^{37} -5.29150 q^{43} +4.24264i q^{44} -2.22876 q^{46} +7.00000 q^{49} +5.81861i q^{50} -0.412247i q^{53} +8.14605i q^{56} -10.3542 q^{58} -8.64575 q^{64} -4.00000 q^{67} +15.0554i q^{71} -12.3157i q^{74} -17.3828i q^{77} +8.00000 q^{79} +6.15784i q^{86} +20.2288 q^{88} -1.23674i q^{92} -8.14605i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 12 q^{16} + 20 q^{22} - 20 q^{25} - 28 q^{28} + 44 q^{46} + 28 q^{49} - 52 q^{58} - 24 q^{64} - 16 q^{67} + 32 q^{79} + 28 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.16372i − 0.822876i −0.911438 0.411438i \(-0.865027\pi\)
0.911438 0.411438i \(-0.134973\pi\)
\(3\) 0 0
\(4\) 0.645751 0.322876
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −2.64575 −1.00000
\(8\) − 3.07892i − 1.08856i
\(9\) 0 0
\(10\) 0 0
\(11\) 6.57008i 1.98096i 0.137675 + 0.990478i \(0.456037\pi\)
−0.137675 + 0.990478i \(0.543963\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 3.07892i 0.822876i
\(15\) 0 0
\(16\) −2.29150 −0.572876
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.64575 1.63008
\(23\) − 1.91520i − 0.399346i −0.979863 0.199673i \(-0.936012\pi\)
0.979863 0.199673i \(-0.0639880\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −1.70850 −0.322876
\(29\) − 8.89753i − 1.65223i −0.563502 0.826115i \(-0.690546\pi\)
0.563502 0.826115i \(-0.309454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 3.49117i − 0.617157i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.5830 1.73984 0.869918 0.493197i \(-0.164172\pi\)
0.869918 + 0.493197i \(0.164172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −5.29150 −0.806947 −0.403473 0.914991i \(-0.632197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 4.24264i 0.639602i
\(45\) 0 0
\(46\) −2.22876 −0.328612
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 5.81861i 0.822876i
\(51\) 0 0
\(52\) 0 0
\(53\) − 0.412247i − 0.0566265i −0.999599 0.0283132i \(-0.990986\pi\)
0.999599 0.0283132i \(-0.00901359\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 8.14605i 1.08856i
\(57\) 0 0
\(58\) −10.3542 −1.35958
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.64575 −1.08072
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0554i 1.78674i 0.449319 + 0.893372i \(0.351667\pi\)
−0.449319 + 0.893372i \(0.648333\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) − 12.3157i − 1.43167i
\(75\) 0 0
\(76\) 0 0
\(77\) − 17.3828i − 1.98096i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.15784i 0.664017i
\(87\) 0 0
\(88\) 20.2288 2.15639
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 1.23674i − 0.128939i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) − 8.14605i − 0.822876i
\(99\) 0 0
\(100\) −3.22876 −0.322876
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.479741 −0.0465965
\(107\) − 10.4005i − 1.00545i −0.864446 0.502726i \(-0.832330\pi\)
0.864446 0.502726i \(-0.167670\pi\)
\(108\) 0 0
\(109\) 10.5830 1.01367 0.506834 0.862044i \(-0.330816\pi\)
0.506834 + 0.862044i \(0.330816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.06275 0.572876
\(113\) 13.5524i 1.27490i 0.770490 + 0.637452i \(0.220012\pi\)
−0.770490 + 0.637452i \(0.779988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 5.74559i − 0.533465i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −32.1660 −2.92418
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 3.07892i 0.272141i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.65489i 0.402121i
\(135\) 0 0
\(136\) 0 0
\(137\) 22.0377i 1.88281i 0.337282 + 0.941404i \(0.390493\pi\)
−0.337282 + 0.941404i \(0.609507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 17.5203 1.47027
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 6.83399 0.561750
\(149\) 8.07303i 0.661369i 0.943741 + 0.330684i \(0.107280\pi\)
−0.943741 + 0.330684i \(0.892720\pi\)
\(150\) 0 0
\(151\) −5.29150 −0.430616 −0.215308 0.976546i \(-0.569076\pi\)
−0.215308 + 0.976546i \(0.569076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −20.2288 −1.63008
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) − 9.30978i − 0.740646i
\(159\) 0 0
\(160\) 0 0
\(161\) 5.06713i 0.399346i
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −3.41699 −0.260543
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 13.2288 1.00000
\(176\) − 15.0554i − 1.13484i
\(177\) 0 0
\(178\) 0 0
\(179\) − 15.8799i − 1.18692i −0.804865 0.593458i \(-0.797762\pi\)
0.804865 0.593458i \(-0.202238\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −5.89674 −0.434713
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 24.3651i − 1.76300i −0.472184 0.881500i \(-0.656534\pi\)
0.472184 0.881500i \(-0.343466\pi\)
\(192\) 0 0
\(193\) −21.1660 −1.52356 −0.761781 0.647834i \(-0.775675\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 4.52026 0.322876
\(197\) − 25.8681i − 1.84303i −0.388348 0.921513i \(-0.626954\pi\)
0.388348 0.921513i \(-0.373046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 15.3946i 1.08856i
\(201\) 0 0
\(202\) 0 0
\(203\) 23.5406i 1.65223i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 26.4575 1.82141 0.910705 0.413057i \(-0.135539\pi\)
0.910705 + 0.413057i \(0.135539\pi\)
\(212\) − 0.266209i − 0.0182833i
\(213\) 0 0
\(214\) −12.1033 −0.827362
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 12.3157i − 0.834123i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 9.23676i 0.617157i
\(225\) 0 0
\(226\) 15.7712 1.04909
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −27.3948 −1.79855
\(233\) 30.5230i 1.99963i 0.0193169 + 0.999813i \(0.493851\pi\)
−0.0193169 + 0.999813i \(0.506149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 7.39458i − 0.478316i −0.970981 0.239158i \(-0.923129\pi\)
0.970981 0.239158i \(-0.0768713\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 37.4323i 2.40624i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 12.5830 0.791087
\(254\) 18.6196i 1.16829i
\(255\) 0 0
\(256\) −13.7085 −0.856781
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −28.0000 −1.73984
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 18.8858i − 1.16455i −0.812993 0.582273i \(-0.802164\pi\)
0.812993 0.582273i \(-0.197836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.58301 −0.157782
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 25.6458 1.54932
\(275\) − 32.8504i − 1.98096i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3.41815i − 0.203910i −0.994789 0.101955i \(-0.967490\pi\)
0.994789 0.101955i \(-0.0325097\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 9.72202i 0.576896i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 32.5842i − 1.89392i
\(297\) 0 0
\(298\) 9.39477 0.544224
\(299\) 0 0
\(300\) 0 0
\(301\) 14.0000 0.806947
\(302\) 6.15784i 0.354344i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) − 11.2250i − 0.639602i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 5.16601 0.290611
\(317\) 16.5583i 0.930008i 0.885309 + 0.465004i \(0.153947\pi\)
−0.885309 + 0.465004i \(0.846053\pi\)
\(318\) 0 0
\(319\) 58.4575 3.27299
\(320\) 0 0
\(321\) 0 0
\(322\) 5.89674 0.328612
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) − 23.2744i − 1.28905i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.29150 −0.290847 −0.145424 0.989369i \(-0.546455\pi\)
−0.145424 + 0.989369i \(0.546455\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.1660 −1.15299 −0.576493 0.817102i \(-0.695579\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(338\) − 15.1284i − 0.822876i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 16.2921i 0.878412i
\(345\) 0 0
\(346\) 0 0
\(347\) 29.0200i 1.55788i 0.627100 + 0.778938i \(0.284242\pi\)
−0.627100 + 0.778938i \(0.715758\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) − 15.3946i − 0.822876i
\(351\) 0 0
\(352\) 22.9373 1.22256
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −18.4797 −0.976685
\(359\) 20.5347i 1.08378i 0.840449 + 0.541891i \(0.182292\pi\)
−0.840449 + 0.541891i \(0.817708\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 4.38868i 0.228776i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.09070i 0.0566265i
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −37.0405 −1.90264 −0.951322 0.308199i \(-0.900274\pi\)
−0.951322 + 0.308199i \(0.900274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −28.3542 −1.45073
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.6314i 1.25370i
\(387\) 0 0
\(388\) 0 0
\(389\) − 34.3534i − 1.74179i −0.491473 0.870893i \(-0.663542\pi\)
0.491473 0.870893i \(-0.336458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 21.5524i − 1.08856i
\(393\) 0 0
\(394\) −30.1033 −1.51658
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 11.4575 0.572876
\(401\) 39.0083i 1.94798i 0.226592 + 0.973990i \(0.427242\pi\)
−0.226592 + 0.973990i \(0.572758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 27.3948 1.35958
\(407\) 69.5312i 3.44654i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) − 30.7892i − 1.49879i
\(423\) 0 0
\(424\) −1.26927 −0.0616414
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 6.71612i − 0.324636i
\(429\) 0 0
\(430\) 0 0
\(431\) − 41.3357i − 1.99107i −0.0943889 0.995535i \(-0.530090\pi\)
0.0943889 0.995535i \(-0.469910\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.83399 0.327289
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0495i 0.572487i 0.958157 + 0.286244i \(0.0924067\pi\)
−0.958157 + 0.286244i \(0.907593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 22.8745 1.08072
\(449\) − 31.3475i − 1.47938i −0.672948 0.739689i \(-0.734972\pi\)
0.672948 0.739689i \(-0.265028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 8.75149i 0.411635i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 42.3320 1.98021 0.990104 0.140334i \(-0.0448177\pi\)
0.990104 + 0.140334i \(0.0448177\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 20.3887i 0.946522i
\(465\) 0 0
\(466\) 35.5203 1.64544
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 10.5830 0.488678
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 34.7656i − 1.59852i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −8.60523 −0.393594
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −20.7712 −0.944147
\(485\) 0 0
\(486\) 0 0
\(487\) −37.0405 −1.67847 −0.839233 0.543772i \(-0.816996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 27.3710i − 1.23524i −0.786478 0.617619i \(-0.788097\pi\)
0.786478 0.617619i \(-0.211903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 39.8328i − 1.78674i
\(498\) 0 0
\(499\) 26.4575 1.18440 0.592200 0.805791i \(-0.298259\pi\)
0.592200 + 0.805791i \(0.298259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 14.6431i − 0.650966i
\(507\) 0 0
\(508\) −10.3320 −0.458409
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.1107i 0.977165i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 32.5842i 1.43167i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −21.9778 −0.958276
\(527\) 0 0
\(528\) 0 0
\(529\) 19.3320 0.840523
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 12.3157i 0.531956i
\(537\) 0 0
\(538\) 0 0
\(539\) 45.9906i 1.98096i
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 14.2309i 0.607913i
\(549\) 0 0
\(550\) −38.2288 −1.63008
\(551\) 0 0
\(552\) 0 0
\(553\) −21.1660 −0.900070
\(554\) 11.6372i 0.494418i
\(555\) 0 0
\(556\) 0 0
\(557\) 25.0436i 1.06113i 0.847644 + 0.530566i \(0.178020\pi\)
−0.847644 + 0.530566i \(0.821980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −3.97777 −0.167792
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 46.3542 1.94498
\(569\) − 14.3769i − 0.602711i −0.953512 0.301356i \(-0.902561\pi\)
0.953512 0.301356i \(-0.0974392\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.57598i 0.399346i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 19.7833i 0.822876i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.70850 0.112174
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −24.2510 −0.996709
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.21317i 0.213540i
\(597\) 0 0
\(598\) 0 0
\(599\) 3.56418i 0.145629i 0.997346 + 0.0728143i \(0.0231980\pi\)
−0.997346 + 0.0728143i \(0.976802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) − 16.2921i − 0.664017i
\(603\) 0 0
\(604\) −3.41699 −0.139036
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −53.5203 −2.15639
\(617\) − 48.3180i − 1.94521i −0.232462 0.972605i \(-0.574678\pi\)
0.232462 0.972605i \(-0.425322\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) − 24.6314i − 0.979783i
\(633\) 0 0
\(634\) 19.2693 0.765281
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) − 68.0283i − 2.69327i
\(639\) 0 0
\(640\) 0 0
\(641\) 47.4935i 1.87588i 0.346795 + 0.937941i \(0.387270\pi\)
−0.346795 + 0.937941i \(0.612730\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 3.27211i 0.128939i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 12.9150 0.505791
\(653\) − 42.8387i − 1.67641i −0.545358 0.838203i \(-0.683606\pi\)
0.545358 0.838203i \(-0.316394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 49.8210i − 1.94075i −0.241604 0.970375i \(-0.577673\pi\)
0.241604 0.970375i \(-0.422327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 6.15784i 0.239331i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17.0405 −0.659812
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 42.3320 1.63178 0.815890 0.578208i \(-0.196248\pi\)
0.815890 + 0.578208i \(0.196248\pi\)
\(674\) 24.6314i 0.948764i
\(675\) 0 0
\(676\) 8.39477 0.322876
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.5112i 1.55012i 0.631889 + 0.775059i \(0.282280\pi\)
−0.631889 + 0.775059i \(0.717720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 21.5524i 0.822876i
\(687\) 0 0
\(688\) 12.1255 0.462280
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 33.7712 1.28194
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 8.54249 0.322876
\(701\) 36.0024i 1.35979i 0.733309 + 0.679895i \(0.237975\pi\)
−0.733309 + 0.679895i \(0.762025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) − 56.8033i − 2.14086i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −52.9150 −1.98727 −0.993633 0.112667i \(-0.964061\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) − 10.2544i − 0.383226i
\(717\) 0 0
\(718\) 23.8967 0.891818
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 22.1107i − 0.822876i
\(723\) 0 0
\(724\) 0 0
\(725\) 44.4876i 1.65223i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −6.68627 −0.246459
\(737\) − 26.2803i − 0.968049i
\(738\) 0 0
\(739\) −52.0000 −1.91285 −0.956425 0.291977i \(-0.905687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.26927 0.0465965
\(743\) 54.4759i 1.99853i 0.0383863 + 0.999263i \(0.487778\pi\)
−0.0383863 + 0.999263i \(0.512222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 25.6019i 0.937352i
\(747\) 0 0
\(748\) 0 0
\(749\) 27.5171i 1.00545i
\(750\) 0 0
\(751\) 26.4575 0.965448 0.482724 0.875772i \(-0.339647\pi\)
0.482724 + 0.875772i \(0.339647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.5830 0.384646 0.192323 0.981332i \(-0.438398\pi\)
0.192323 + 0.981332i \(0.438398\pi\)
\(758\) 43.1049i 1.56564i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −28.0000 −1.01367
\(764\) − 15.7338i − 0.569230i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.6680 −0.491921
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −39.9778 −1.43327
\(779\) 0 0
\(780\) 0 0
\(781\) −98.9150 −3.53946
\(782\) 0 0
\(783\) 0 0
\(784\) −16.0405 −0.572876
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) − 16.7044i − 0.595068i
\(789\) 0 0
\(790\) 0 0
\(791\) − 35.8563i − 1.27490i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 17.4558i 0.617157i
\(801\) 0 0
\(802\) 45.3948 1.60294
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 56.8033i − 1.99710i −0.0538482 0.998549i \(-0.517149\pi\)
0.0538482 0.998549i \(-0.482851\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 15.2014i 0.533465i
\(813\) 0 0
\(814\) 80.9150 2.83607
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.9729i 1.84877i 0.381464 + 0.924384i \(0.375420\pi\)
−0.381464 + 0.924384i \(0.624580\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4.92110i − 0.171123i −0.996333 0.0855616i \(-0.972732\pi\)
0.996333 0.0855616i \(-0.0272685\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −50.1660 −1.72986
\(842\) − 30.2568i − 1.04272i
\(843\) 0 0
\(844\) 17.0850 0.588089
\(845\) 0 0
\(846\) 0 0
\(847\) 85.1033 2.92418
\(848\) 0.944665i 0.0324399i
\(849\) 0 0
\(850\) 0 0
\(851\) − 20.2685i − 0.694797i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32.0222 −1.09450
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −48.1033 −1.63840
\(863\) − 46.8151i − 1.59360i −0.604240 0.796802i \(-0.706523\pi\)
0.604240 0.796802i \(-0.293477\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 52.5607i 1.78300i
\(870\) 0 0
\(871\) 0 0
\(872\) − 32.5842i − 1.10344i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 58.2065 1.95881 0.979403 0.201916i \(-0.0647168\pi\)
0.979403 + 0.201916i \(0.0647168\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 14.0222 0.471086
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 42.3320 1.41977
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) − 8.14605i − 0.272141i
\(897\) 0 0
\(898\) −36.4797 −1.21734
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 41.7268 1.38781
\(905\) 0 0
\(906\) 0 0
\(907\) −5.29150 −0.175701 −0.0878507 0.996134i \(-0.528000\pi\)
−0.0878507 + 0.996134i \(0.528000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 29.8445i − 0.988793i −0.869236 0.494397i \(-0.835389\pi\)
0.869236 0.494397i \(-0.164611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) − 49.2627i − 1.62947i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −37.0405 −1.22185 −0.610927 0.791687i \(-0.709203\pi\)
−0.610927 + 0.791687i \(0.709203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −52.9150 −1.73984
\(926\) 46.5489i 1.52969i
\(927\) 0 0
\(928\) −31.0627 −1.01968
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.7103i 0.645631i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) − 12.3157i − 0.402121i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −40.4575 −1.31539
\(947\) − 55.3004i − 1.79702i −0.438953 0.898510i \(-0.644650\pi\)
0.438953 0.898510i \(-0.355350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 55.9788i 1.81333i 0.421849 + 0.906666i \(0.361381\pi\)
−0.421849 + 0.906666i \(0.638619\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 4.77506i − 0.154436i
\(957\) 0 0
\(958\) 0 0
\(959\) − 58.3063i − 1.88281i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 99.0365i 3.18315i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 43.1049i 1.38117i
\(975\) 0 0
\(976\) 0 0
\(977\) 2.59365i 0.0829783i 0.999139 + 0.0414892i \(0.0132102\pi\)
−0.999139 + 0.0414892i \(0.986790\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −31.8523 −1.01645
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.1343i 0.322251i
\(990\) 0 0
\(991\) 58.2065 1.84899 0.924496 0.381193i \(-0.124487\pi\)
0.924496 + 0.381193i \(0.124487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −46.3542 −1.47027
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) − 30.7892i − 0.974615i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.2.c.a.62.2 4
3.2 odd 2 inner 63.2.c.a.62.3 yes 4
4.3 odd 2 1008.2.k.a.881.3 4
5.2 odd 4 1575.2.g.d.1574.5 8
5.3 odd 4 1575.2.g.d.1574.4 8
5.4 even 2 1575.2.b.a.251.3 4
7.2 even 3 441.2.p.b.80.2 8
7.3 odd 6 441.2.p.b.215.3 8
7.4 even 3 441.2.p.b.215.3 8
7.5 odd 6 441.2.p.b.80.2 8
7.6 odd 2 CM 63.2.c.a.62.2 4
8.3 odd 2 4032.2.k.b.3905.4 4
8.5 even 2 4032.2.k.c.3905.1 4
9.2 odd 6 567.2.o.f.377.3 8
9.4 even 3 567.2.o.f.188.3 8
9.5 odd 6 567.2.o.f.188.2 8
9.7 even 3 567.2.o.f.377.2 8
12.11 even 2 1008.2.k.a.881.4 4
15.2 even 4 1575.2.g.d.1574.3 8
15.8 even 4 1575.2.g.d.1574.6 8
15.14 odd 2 1575.2.b.a.251.2 4
21.2 odd 6 441.2.p.b.80.3 8
21.5 even 6 441.2.p.b.80.3 8
21.11 odd 6 441.2.p.b.215.2 8
21.17 even 6 441.2.p.b.215.2 8
21.20 even 2 inner 63.2.c.a.62.3 yes 4
24.5 odd 2 4032.2.k.c.3905.2 4
24.11 even 2 4032.2.k.b.3905.3 4
28.27 even 2 1008.2.k.a.881.3 4
35.13 even 4 1575.2.g.d.1574.4 8
35.27 even 4 1575.2.g.d.1574.5 8
35.34 odd 2 1575.2.b.a.251.3 4
56.13 odd 2 4032.2.k.c.3905.1 4
56.27 even 2 4032.2.k.b.3905.4 4
63.13 odd 6 567.2.o.f.188.3 8
63.20 even 6 567.2.o.f.377.3 8
63.34 odd 6 567.2.o.f.377.2 8
63.41 even 6 567.2.o.f.188.2 8
84.83 odd 2 1008.2.k.a.881.4 4
105.62 odd 4 1575.2.g.d.1574.3 8
105.83 odd 4 1575.2.g.d.1574.6 8
105.104 even 2 1575.2.b.a.251.2 4
168.83 odd 2 4032.2.k.b.3905.3 4
168.125 even 2 4032.2.k.c.3905.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.c.a.62.2 4 1.1 even 1 trivial
63.2.c.a.62.2 4 7.6 odd 2 CM
63.2.c.a.62.3 yes 4 3.2 odd 2 inner
63.2.c.a.62.3 yes 4 21.20 even 2 inner
441.2.p.b.80.2 8 7.2 even 3
441.2.p.b.80.2 8 7.5 odd 6
441.2.p.b.80.3 8 21.2 odd 6
441.2.p.b.80.3 8 21.5 even 6
441.2.p.b.215.2 8 21.11 odd 6
441.2.p.b.215.2 8 21.17 even 6
441.2.p.b.215.3 8 7.3 odd 6
441.2.p.b.215.3 8 7.4 even 3
567.2.o.f.188.2 8 9.5 odd 6
567.2.o.f.188.2 8 63.41 even 6
567.2.o.f.188.3 8 9.4 even 3
567.2.o.f.188.3 8 63.13 odd 6
567.2.o.f.377.2 8 9.7 even 3
567.2.o.f.377.2 8 63.34 odd 6
567.2.o.f.377.3 8 9.2 odd 6
567.2.o.f.377.3 8 63.20 even 6
1008.2.k.a.881.3 4 4.3 odd 2
1008.2.k.a.881.3 4 28.27 even 2
1008.2.k.a.881.4 4 12.11 even 2
1008.2.k.a.881.4 4 84.83 odd 2
1575.2.b.a.251.2 4 15.14 odd 2
1575.2.b.a.251.2 4 105.104 even 2
1575.2.b.a.251.3 4 5.4 even 2
1575.2.b.a.251.3 4 35.34 odd 2
1575.2.g.d.1574.3 8 15.2 even 4
1575.2.g.d.1574.3 8 105.62 odd 4
1575.2.g.d.1574.4 8 5.3 odd 4
1575.2.g.d.1574.4 8 35.13 even 4
1575.2.g.d.1574.5 8 5.2 odd 4
1575.2.g.d.1574.5 8 35.27 even 4
1575.2.g.d.1574.6 8 15.8 even 4
1575.2.g.d.1574.6 8 105.83 odd 4
4032.2.k.b.3905.3 4 24.11 even 2
4032.2.k.b.3905.3 4 168.83 odd 2
4032.2.k.b.3905.4 4 8.3 odd 2
4032.2.k.b.3905.4 4 56.27 even 2
4032.2.k.c.3905.1 4 8.5 even 2
4032.2.k.c.3905.1 4 56.13 odd 2
4032.2.k.c.3905.2 4 24.5 odd 2
4032.2.k.c.3905.2 4 168.125 even 2