Properties

Label 63.2.i.a
Level $63$
Weight $2$
Character orbit 63.i
Analytic conductor $0.503$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,2,Mod(5,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 1) q^{2} + ( - 2 \zeta_{6} + 1) q^{3} - q^{4} + (3 \zeta_{6} - 3) q^{5} - 3 q^{6} + (2 \zeta_{6} + 1) q^{7} + ( - 2 \zeta_{6} + 1) q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{6} + 1) q^{2} + ( - 2 \zeta_{6} + 1) q^{3} - q^{4} + (3 \zeta_{6} - 3) q^{5} - 3 q^{6} + (2 \zeta_{6} + 1) q^{7} + ( - 2 \zeta_{6} + 1) q^{8} - 3 q^{9} + (3 \zeta_{6} + 3) q^{10} + ( - \zeta_{6} + 2) q^{11} + (2 \zeta_{6} - 1) q^{12} + ( - \zeta_{6} + 2) q^{13} + ( - 4 \zeta_{6} + 5) q^{14} + (3 \zeta_{6} + 3) q^{15} - 5 q^{16} + (3 \zeta_{6} - 3) q^{17} + (6 \zeta_{6} - 3) q^{18} + (3 \zeta_{6} - 6) q^{19} + ( - 3 \zeta_{6} + 3) q^{20} + ( - 4 \zeta_{6} + 5) q^{21} - 3 \zeta_{6} q^{22} + (3 \zeta_{6} + 3) q^{23} - 3 q^{24} - 4 \zeta_{6} q^{25} - 3 \zeta_{6} q^{26} + (6 \zeta_{6} - 3) q^{27} + ( - 2 \zeta_{6} - 1) q^{28} + ( - 3 \zeta_{6} - 3) q^{29} + ( - 9 \zeta_{6} + 9) q^{30} + ( - 4 \zeta_{6} + 2) q^{31} + (6 \zeta_{6} - 3) q^{32} - 3 \zeta_{6} q^{33} + (3 \zeta_{6} + 3) q^{34} + (3 \zeta_{6} - 9) q^{35} + 3 q^{36} - 7 \zeta_{6} q^{37} + 9 \zeta_{6} q^{38} - 3 \zeta_{6} q^{39} + (3 \zeta_{6} + 3) q^{40} - 3 \zeta_{6} q^{41} + ( - 6 \zeta_{6} - 3) q^{42} + (\zeta_{6} - 1) q^{43} + (\zeta_{6} - 2) q^{44} + ( - 9 \zeta_{6} + 9) q^{45} + ( - 9 \zeta_{6} + 9) q^{46} + (10 \zeta_{6} - 5) q^{48} + (8 \zeta_{6} - 3) q^{49} + (4 \zeta_{6} - 8) q^{50} + (3 \zeta_{6} + 3) q^{51} + (\zeta_{6} - 2) q^{52} + (5 \zeta_{6} + 5) q^{53} + 9 q^{54} + (6 \zeta_{6} - 3) q^{55} + ( - 4 \zeta_{6} + 5) q^{56} + 9 \zeta_{6} q^{57} + (9 \zeta_{6} - 9) q^{58} + ( - 3 \zeta_{6} - 3) q^{60} + ( - 16 \zeta_{6} + 8) q^{61} - 6 q^{62} + ( - 6 \zeta_{6} - 3) q^{63} - q^{64} + (6 \zeta_{6} - 3) q^{65} + (3 \zeta_{6} - 6) q^{66} - 4 q^{67} + ( - 3 \zeta_{6} + 3) q^{68} + ( - 9 \zeta_{6} + 9) q^{69} + (15 \zeta_{6} - 3) q^{70} + (4 \zeta_{6} - 2) q^{71} + (6 \zeta_{6} - 3) q^{72} + ( - 3 \zeta_{6} - 3) q^{73} + (7 \zeta_{6} - 14) q^{74} + (4 \zeta_{6} - 8) q^{75} + ( - 3 \zeta_{6} + 6) q^{76} + (\zeta_{6} + 4) q^{77} + (3 \zeta_{6} - 6) q^{78} + 8 q^{79} + ( - 15 \zeta_{6} + 15) q^{80} + 9 q^{81} + (3 \zeta_{6} - 6) q^{82} + ( - 15 \zeta_{6} + 15) q^{83} + (4 \zeta_{6} - 5) q^{84} - 9 \zeta_{6} q^{85} + (\zeta_{6} + 1) q^{86} + (9 \zeta_{6} - 9) q^{87} - 3 \zeta_{6} q^{88} - 3 \zeta_{6} q^{89} + ( - 9 \zeta_{6} - 9) q^{90} + (\zeta_{6} + 4) q^{91} + ( - 3 \zeta_{6} - 3) q^{92} - 6 q^{93} + ( - 18 \zeta_{6} + 9) q^{95} + 9 q^{96} + (\zeta_{6} + 1) q^{97} + ( - 2 \zeta_{6} + 13) q^{98} + (3 \zeta_{6} - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 3 q^{5} - 6 q^{6} + 4 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 3 q^{5} - 6 q^{6} + 4 q^{7} - 6 q^{9} + 9 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} + 9 q^{15} - 10 q^{16} - 3 q^{17} - 9 q^{19} + 3 q^{20} + 6 q^{21} - 3 q^{22} + 9 q^{23} - 6 q^{24} - 4 q^{25} - 3 q^{26} - 4 q^{28} - 9 q^{29} + 9 q^{30} - 3 q^{33} + 9 q^{34} - 15 q^{35} + 6 q^{36} - 7 q^{37} + 9 q^{38} - 3 q^{39} + 9 q^{40} - 3 q^{41} - 12 q^{42} - q^{43} - 3 q^{44} + 9 q^{45} + 9 q^{46} + 2 q^{49} - 12 q^{50} + 9 q^{51} - 3 q^{52} + 15 q^{53} + 18 q^{54} + 6 q^{56} + 9 q^{57} - 9 q^{58} - 9 q^{60} - 12 q^{62} - 12 q^{63} - 2 q^{64} - 9 q^{66} - 8 q^{67} + 3 q^{68} + 9 q^{69} + 9 q^{70} - 9 q^{73} - 21 q^{74} - 12 q^{75} + 9 q^{76} + 9 q^{77} - 9 q^{78} + 16 q^{79} + 15 q^{80} + 18 q^{81} - 9 q^{82} + 15 q^{83} - 6 q^{84} - 9 q^{85} + 3 q^{86} - 9 q^{87} - 3 q^{88} - 3 q^{89} - 27 q^{90} + 9 q^{91} - 9 q^{92} - 12 q^{93} + 18 q^{96} + 3 q^{97} + 24 q^{98} - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(\zeta_{6}\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.500000 0.866025i
0.500000 + 0.866025i
1.73205i 1.73205i −1.00000 −1.50000 2.59808i −3.00000 2.00000 1.73205i 1.73205i −3.00000 4.50000 2.59808i
38.1 1.73205i 1.73205i −1.00000 −1.50000 + 2.59808i −3.00000 2.00000 + 1.73205i 1.73205i −3.00000 4.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.2.i.a 2
3.b odd 2 1 189.2.i.a 2
4.b odd 2 1 1008.2.ca.a 2
7.b odd 2 1 441.2.i.a 2
7.c even 3 1 441.2.o.a 2
7.c even 3 1 441.2.s.a 2
7.d odd 6 1 63.2.s.a yes 2
7.d odd 6 1 441.2.o.b 2
9.c even 3 1 189.2.s.a 2
9.c even 3 1 567.2.p.a 2
9.d odd 6 1 63.2.s.a yes 2
9.d odd 6 1 567.2.p.b 2
12.b even 2 1 3024.2.ca.a 2
21.c even 2 1 1323.2.i.a 2
21.g even 6 1 189.2.s.a 2
21.g even 6 1 1323.2.o.a 2
21.h odd 6 1 1323.2.o.b 2
21.h odd 6 1 1323.2.s.a 2
28.f even 6 1 1008.2.df.a 2
36.f odd 6 1 3024.2.df.a 2
36.h even 6 1 1008.2.df.a 2
63.g even 3 1 1323.2.o.a 2
63.h even 3 1 1323.2.i.a 2
63.i even 6 1 inner 63.2.i.a 2
63.j odd 6 1 441.2.i.a 2
63.k odd 6 1 567.2.p.b 2
63.k odd 6 1 1323.2.o.b 2
63.l odd 6 1 1323.2.s.a 2
63.n odd 6 1 441.2.o.b 2
63.o even 6 1 441.2.s.a 2
63.s even 6 1 441.2.o.a 2
63.s even 6 1 567.2.p.a 2
63.t odd 6 1 189.2.i.a 2
84.j odd 6 1 3024.2.df.a 2
252.r odd 6 1 1008.2.ca.a 2
252.bj even 6 1 3024.2.ca.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.i.a 2 1.a even 1 1 trivial
63.2.i.a 2 63.i even 6 1 inner
63.2.s.a yes 2 7.d odd 6 1
63.2.s.a yes 2 9.d odd 6 1
189.2.i.a 2 3.b odd 2 1
189.2.i.a 2 63.t odd 6 1
189.2.s.a 2 9.c even 3 1
189.2.s.a 2 21.g even 6 1
441.2.i.a 2 7.b odd 2 1
441.2.i.a 2 63.j odd 6 1
441.2.o.a 2 7.c even 3 1
441.2.o.a 2 63.s even 6 1
441.2.o.b 2 7.d odd 6 1
441.2.o.b 2 63.n odd 6 1
441.2.s.a 2 7.c even 3 1
441.2.s.a 2 63.o even 6 1
567.2.p.a 2 9.c even 3 1
567.2.p.a 2 63.s even 6 1
567.2.p.b 2 9.d odd 6 1
567.2.p.b 2 63.k odd 6 1
1008.2.ca.a 2 4.b odd 2 1
1008.2.ca.a 2 252.r odd 6 1
1008.2.df.a 2 28.f even 6 1
1008.2.df.a 2 36.h even 6 1
1323.2.i.a 2 21.c even 2 1
1323.2.i.a 2 63.h even 3 1
1323.2.o.a 2 21.g even 6 1
1323.2.o.a 2 63.g even 3 1
1323.2.o.b 2 21.h odd 6 1
1323.2.o.b 2 63.k odd 6 1
1323.2.s.a 2 21.h odd 6 1
1323.2.s.a 2 63.l odd 6 1
3024.2.ca.a 2 12.b even 2 1
3024.2.ca.a 2 252.bj even 6 1
3024.2.df.a 2 36.f odd 6 1
3024.2.df.a 2 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3 \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$29$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$31$ \( T^{2} + 12 \) Copy content Toggle raw display
$37$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$41$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 15T + 75 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 192 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 12 \) Copy content Toggle raw display
$73$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$89$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$97$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
show more
show less