Properties

Label 63.8.a.c
Level $63$
Weight $8$
Character orbit 63.a
Self dual yes
Analytic conductor $19.680$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,8,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.6802566055\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{67}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{67}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 6) q^{2} + ( - 12 \beta + 176) q^{4} + (8 \beta + 12) q^{5} - 343 q^{7} + (120 \beta - 3504) q^{8} + ( - 36 \beta + 2072) q^{10} + ( - 280 \beta - 1062) q^{11} + (288 \beta - 542) q^{13} + ( - 343 \beta + 2058) q^{14}+ \cdots + (117649 \beta - 705894) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{2} + 352 q^{4} + 24 q^{5} - 686 q^{7} - 7008 q^{8} + 4144 q^{10} - 2124 q^{11} - 1084 q^{13} + 4116 q^{14} + 61312 q^{16} + 29256 q^{17} - 25816 q^{19} - 47232 q^{20} - 137336 q^{22} - 68316 q^{23}+ \cdots - 1411788 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.18535
8.18535
−22.3707 0 372.448 −118.966 0 −343.000 −5468.48 0 2661.35
1.2 10.3707 0 −20.4485 142.966 0 −343.000 −1539.52 0 1482.65
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.8.a.c 2
3.b odd 2 1 21.8.a.c 2
7.b odd 2 1 441.8.a.h 2
12.b even 2 1 336.8.a.p 2
15.d odd 2 1 525.8.a.d 2
21.c even 2 1 147.8.a.d 2
21.g even 6 2 147.8.e.e 4
21.h odd 6 2 147.8.e.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.a.c 2 3.b odd 2 1
63.8.a.c 2 1.a even 1 1 trivial
147.8.a.d 2 21.c even 2 1
147.8.e.e 4 21.g even 6 2
147.8.e.f 4 21.h odd 6 2
336.8.a.p 2 12.b even 2 1
441.8.a.h 2 7.b odd 2 1
525.8.a.d 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 12T_{2} - 232 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(63))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 12T - 232 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 24T - 17008 \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2124 T - 19883356 \) Copy content Toggle raw display
$13$ \( T^{2} + 1084 T - 21935228 \) Copy content Toggle raw display
$17$ \( T^{2} - 29256 T - 287563248 \) Copy content Toggle raw display
$19$ \( T^{2} + 25816 T - 160026224 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1166614596 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 1307845988 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 43635483648 \) Copy content Toggle raw display
$37$ \( T^{2} + 28428 T - 887182812 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 127701459200 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 71585337968 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 268603868016 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 263627226684 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 345691376064 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 504531767044 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 11591287019456 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3929864540796 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 10787980935996 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 26777501165936 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 7065815171184 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 6900412319488 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 164115180472068 \) Copy content Toggle raw display
show more
show less