Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [63,8,Mod(25,63)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(63, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 4]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("63.25");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.h (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(19.6802566055\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −22.0028 | 34.7176 | − | 31.3319i | 356.122 | 145.681 | − | 252.326i | −763.883 | + | 689.390i | −303.887 | − | 855.100i | −5019.33 | 223.620 | − | 2175.54i | −3205.38 | + | 5551.88i | ||||||
25.2 | −21.7221 | −10.9736 | − | 45.4597i | 343.851 | −233.757 | + | 404.878i | 238.369 | + | 987.481i | 739.781 | + | 525.612i | −4688.75 | −1946.16 | + | 997.708i | 5077.69 | − | 8794.82i | ||||||
25.3 | −21.1764 | −31.9133 | + | 34.1839i | 320.441 | −39.8456 | + | 69.0147i | 675.811 | − | 723.893i | −857.480 | − | 297.104i | −4075.22 | −150.078 | − | 2181.84i | 843.789 | − | 1461.48i | ||||||
25.4 | −20.0358 | 33.2746 | + | 32.8603i | 273.432 | 65.6746 | − | 113.752i | −666.683 | − | 658.381i | −332.989 | + | 844.193i | −2913.84 | 27.4046 | + | 2186.83i | −1315.84 | + | 2279.10i | ||||||
25.5 | −19.3904 | −46.7353 | − | 1.67546i | 247.987 | 143.053 | − | 247.775i | 906.216 | + | 32.4878i | 900.856 | + | 109.551i | −2326.58 | 2181.39 | + | 156.606i | −2773.85 | + | 4804.45i | ||||||
25.6 | −18.5497 | 25.9770 | + | 38.8870i | 216.092 | −264.606 | + | 458.310i | −481.866 | − | 721.342i | 165.435 | − | 892.286i | −1634.08 | −837.390 | + | 2020.33i | 4908.36 | − | 8501.53i | ||||||
25.7 | −17.8618 | −41.8243 | − | 20.9220i | 191.043 | −69.5880 | + | 120.530i | 747.056 | + | 373.704i | −819.973 | − | 388.829i | −1126.07 | 1311.54 | + | 1750.09i | 1242.97 | − | 2152.88i | ||||||
25.8 | −17.1725 | 46.4864 | − | 5.10084i | 166.895 | −16.8936 | + | 29.2606i | −798.287 | + | 87.5943i | 897.313 | − | 135.542i | −667.927 | 2134.96 | − | 474.239i | 290.106 | − | 502.478i | ||||||
25.9 | −16.4519 | −25.8895 | + | 38.9453i | 142.666 | −81.2779 | + | 140.777i | 425.933 | − | 640.725i | 401.495 | + | 813.846i | −241.291 | −846.466 | − | 2016.55i | 1337.18 | − | 2316.06i | ||||||
25.10 | −16.2500 | 0.187335 | − | 46.7650i | 136.064 | 168.642 | − | 292.097i | −3.04419 | + | 759.933i | −289.417 | + | 860.105i | −131.033 | −2186.93 | − | 17.5214i | −2740.44 | + | 4746.58i | ||||||
25.11 | −15.9040 | 1.05606 | + | 46.7534i | 124.937 | 223.705 | − | 387.469i | −16.7956 | − | 743.566i | 357.985 | − | 833.900i | 48.7143 | −2184.77 | + | 98.7492i | −3557.80 | + | 6162.30i | ||||||
25.12 | −14.9058 | 37.0045 | − | 28.5948i | 94.1825 | −151.448 | + | 262.315i | −551.581 | + | 426.229i | −856.219 | + | 300.719i | 504.077 | 551.669 | − | 2116.28i | 2257.44 | − | 3910.01i | ||||||
25.13 | −14.1340 | −20.1996 | − | 42.1779i | 71.7697 | 50.1511 | − | 86.8643i | 285.502 | + | 596.142i | 77.2576 | − | 904.198i | 794.758 | −1370.95 | + | 1703.96i | −708.836 | + | 1227.74i | ||||||
25.14 | −10.9059 | −38.2693 | + | 26.8786i | −9.06177 | −185.898 | + | 321.986i | 417.360 | − | 293.135i | 490.087 | − | 763.778i | 1494.78 | 742.080 | − | 2057.25i | 2027.39 | − | 3511.54i | ||||||
25.15 | −10.1682 | −44.8504 | − | 13.2455i | −24.6071 | −179.394 | + | 310.719i | 456.049 | + | 134.683i | −260.605 | + | 869.269i | 1551.74 | 1836.12 | + | 1188.13i | 1824.12 | − | 3159.46i | ||||||
25.16 | −9.72250 | 43.2655 | + | 17.7509i | −33.4730 | 12.5884 | − | 21.8038i | −420.649 | − | 172.583i | −714.928 | − | 558.946i | 1569.92 | 1556.81 | + | 1536.01i | −122.391 | + | 211.987i | ||||||
25.17 | −9.49162 | −45.1496 | + | 12.1865i | −37.9092 | 243.873 | − | 422.401i | 428.543 | − | 115.669i | −858.815 | + | 293.222i | 1574.75 | 1889.98 | − | 1100.43i | −2314.75 | + | 4009.27i | ||||||
25.18 | −9.47009 | 16.1710 | − | 43.8805i | −38.3174 | −94.8517 | + | 164.288i | −153.141 | + | 415.552i | 878.923 | − | 225.914i | 1575.04 | −1664.00 | − | 1419.18i | 898.254 | − | 1555.82i | ||||||
25.19 | −8.81268 | −4.01164 | + | 46.5930i | −50.3367 | 33.1374 | − | 57.3957i | 35.3533 | − | 410.609i | −844.012 | + | 333.447i | 1571.62 | −2154.81 | − | 373.828i | −292.029 | + | 505.810i | ||||||
25.20 | −8.75411 | 46.7562 | − | 0.924996i | −51.3655 | 237.436 | − | 411.251i | −409.309 | + | 8.09752i | 482.651 | + | 768.499i | 1570.19 | 2185.29 | − | 86.4986i | −2078.54 | + | 3600.13i | ||||||
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.8.h.a | yes | 108 |
7.c | even | 3 | 1 | 63.8.g.a | ✓ | 108 | |
9.c | even | 3 | 1 | 63.8.g.a | ✓ | 108 | |
63.h | even | 3 | 1 | inner | 63.8.h.a | yes | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.8.g.a | ✓ | 108 | 7.c | even | 3 | 1 | |
63.8.g.a | ✓ | 108 | 9.c | even | 3 | 1 | |
63.8.h.a | yes | 108 | 1.a | even | 1 | 1 | trivial |
63.8.h.a | yes | 108 | 63.h | even | 3 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(63, [\chi])\).