Properties

Label 630.4.m.a.323.2
Level $630$
Weight $4$
Character 630.323
Analytic conductor $37.171$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(197,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.197");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} - 62 x^{14} + 184 x^{13} + 5442 x^{12} + 68448 x^{11} + 1829094 x^{10} + \cdots + 101023536964 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.2
Root \(3.04417 - 7.34926i\) of defining polynomial
Character \(\chi\) \(=\) 630.323
Dual form 630.4.m.a.197.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +4.00000i q^{4} +(-4.93229 - 10.0336i) q^{5} +(-4.94975 + 4.94975i) q^{7} +(5.65685 - 5.65685i) q^{8} +(-7.21430 + 21.1649i) q^{10} -50.0412i q^{11} +(-53.8210 - 53.8210i) q^{13} +14.0000 q^{14} -16.0000 q^{16} +(79.2489 + 79.2489i) q^{17} -53.7189i q^{19} +(40.1343 - 19.7292i) q^{20} +(-70.7689 + 70.7689i) q^{22} +(136.901 - 136.901i) q^{23} +(-76.3450 + 98.9769i) q^{25} +152.229i q^{26} +(-19.7990 - 19.7990i) q^{28} -254.335 q^{29} +128.624 q^{31} +(22.6274 + 22.6274i) q^{32} -224.150i q^{34} +(74.0772 + 25.2500i) q^{35} +(11.7935 - 11.7935i) q^{37} +(-75.9700 + 75.9700i) q^{38} +(-84.6597 - 28.8572i) q^{40} +319.078i q^{41} +(-193.204 - 193.204i) q^{43} +200.165 q^{44} -387.216 q^{46} +(-263.998 - 263.998i) q^{47} -49.0000i q^{49} +(247.943 - 32.0064i) q^{50} +(215.284 - 215.284i) q^{52} +(145.779 - 145.779i) q^{53} +(-502.091 + 246.817i) q^{55} +56.0000i q^{56} +(359.684 + 359.684i) q^{58} +429.023 q^{59} -146.439 q^{61} +(-181.902 - 181.902i) q^{62} -64.0000i q^{64} +(-274.556 + 805.477i) q^{65} +(-656.932 + 656.932i) q^{67} +(-316.996 + 316.996i) q^{68} +(-69.0521 - 140.470i) q^{70} +731.101i q^{71} +(-464.640 - 464.640i) q^{73} -33.3571 q^{74} +214.876 q^{76} +(247.691 + 247.691i) q^{77} +449.741i q^{79} +(78.9166 + 160.537i) q^{80} +(451.244 - 451.244i) q^{82} +(-338.503 + 338.503i) q^{83} +(404.271 - 1186.03i) q^{85} +546.462i q^{86} +(-283.076 - 283.076i) q^{88} +251.633 q^{89} +532.800 q^{91} +(547.605 + 547.605i) q^{92} +746.700i q^{94} +(-538.992 + 264.957i) q^{95} +(-942.169 + 942.169i) q^{97} +(-69.2965 + 69.2965i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 44 q^{5} - 24 q^{10} - 212 q^{13} + 224 q^{14} - 256 q^{16} + 32 q^{17} + 32 q^{20} + 72 q^{22} - 128 q^{23} - 268 q^{25} + 232 q^{29} - 200 q^{31} + 112 q^{35} + 900 q^{37} - 368 q^{38} - 128 q^{40}+ \cdots - 2668 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) 0 0
\(4\) 4.00000i 0.500000i
\(5\) −4.93229 10.0336i −0.441157 0.897430i
\(6\) 0 0
\(7\) −4.94975 + 4.94975i −0.267261 + 0.267261i
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) 0 0
\(10\) −7.21430 + 21.1649i −0.228136 + 0.669294i
\(11\) 50.0412i 1.37163i −0.727774 0.685817i \(-0.759445\pi\)
0.727774 0.685817i \(-0.240555\pi\)
\(12\) 0 0
\(13\) −53.8210 53.8210i −1.14825 1.14825i −0.986897 0.161353i \(-0.948414\pi\)
−0.161353 0.986897i \(-0.551586\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 79.2489 + 79.2489i 1.13063 + 1.13063i 0.990073 + 0.140556i \(0.0448890\pi\)
0.140556 + 0.990073i \(0.455111\pi\)
\(18\) 0 0
\(19\) 53.7189i 0.648630i −0.945949 0.324315i \(-0.894866\pi\)
0.945949 0.324315i \(-0.105134\pi\)
\(20\) 40.1343 19.7292i 0.448715 0.220579i
\(21\) 0 0
\(22\) −70.7689 + 70.7689i −0.685817 + 0.685817i
\(23\) 136.901 136.901i 1.24113 1.24113i 0.281592 0.959534i \(-0.409137\pi\)
0.959534 0.281592i \(-0.0908625\pi\)
\(24\) 0 0
\(25\) −76.3450 + 98.9769i −0.610760 + 0.791816i
\(26\) 152.229i 1.14825i
\(27\) 0 0
\(28\) −19.7990 19.7990i −0.133631 0.133631i
\(29\) −254.335 −1.62858 −0.814291 0.580457i \(-0.802874\pi\)
−0.814291 + 0.580457i \(0.802874\pi\)
\(30\) 0 0
\(31\) 128.624 0.745211 0.372605 0.927990i \(-0.378464\pi\)
0.372605 + 0.927990i \(0.378464\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 224.150i 1.13063i
\(35\) 74.0772 + 25.2500i 0.357752 + 0.121944i
\(36\) 0 0
\(37\) 11.7935 11.7935i 0.0524012 0.0524012i −0.680421 0.732822i \(-0.738203\pi\)
0.732822 + 0.680421i \(0.238203\pi\)
\(38\) −75.9700 + 75.9700i −0.324315 + 0.324315i
\(39\) 0 0
\(40\) −84.6597 28.8572i −0.334647 0.114068i
\(41\) 319.078i 1.21540i 0.794165 + 0.607702i \(0.207909\pi\)
−0.794165 + 0.607702i \(0.792091\pi\)
\(42\) 0 0
\(43\) −193.204 193.204i −0.685192 0.685192i 0.275973 0.961165i \(-0.411000\pi\)
−0.961165 + 0.275973i \(0.911000\pi\)
\(44\) 200.165 0.685817
\(45\) 0 0
\(46\) −387.216 −1.24113
\(47\) −263.998 263.998i −0.819321 0.819321i 0.166689 0.986010i \(-0.446693\pi\)
−0.986010 + 0.166689i \(0.946693\pi\)
\(48\) 0 0
\(49\) 49.0000i 0.142857i
\(50\) 247.943 32.0064i 0.701288 0.0905276i
\(51\) 0 0
\(52\) 215.284 215.284i 0.574125 0.574125i
\(53\) 145.779 145.779i 0.377816 0.377816i −0.492498 0.870314i \(-0.663916\pi\)
0.870314 + 0.492498i \(0.163916\pi\)
\(54\) 0 0
\(55\) −502.091 + 246.817i −1.23095 + 0.605107i
\(56\) 56.0000i 0.133631i
\(57\) 0 0
\(58\) 359.684 + 359.684i 0.814291 + 0.814291i
\(59\) 429.023 0.946680 0.473340 0.880880i \(-0.343048\pi\)
0.473340 + 0.880880i \(0.343048\pi\)
\(60\) 0 0
\(61\) −146.439 −0.307370 −0.153685 0.988120i \(-0.549114\pi\)
−0.153685 + 0.988120i \(0.549114\pi\)
\(62\) −181.902 181.902i −0.372605 0.372605i
\(63\) 0 0
\(64\) 64.0000i 0.125000i
\(65\) −274.556 + 805.477i −0.523915 + 1.53703i
\(66\) 0 0
\(67\) −656.932 + 656.932i −1.19787 + 1.19787i −0.223062 + 0.974804i \(0.571605\pi\)
−0.974804 + 0.223062i \(0.928395\pi\)
\(68\) −316.996 + 316.996i −0.565314 + 0.565314i
\(69\) 0 0
\(70\) −69.0521 140.470i −0.117904 0.239848i
\(71\) 731.101i 1.22205i 0.791610 + 0.611026i \(0.209243\pi\)
−0.791610 + 0.611026i \(0.790757\pi\)
\(72\) 0 0
\(73\) −464.640 464.640i −0.744958 0.744958i 0.228569 0.973528i \(-0.426595\pi\)
−0.973528 + 0.228569i \(0.926595\pi\)
\(74\) −33.3571 −0.0524012
\(75\) 0 0
\(76\) 214.876 0.324315
\(77\) 247.691 + 247.691i 0.366585 + 0.366585i
\(78\) 0 0
\(79\) 449.741i 0.640504i 0.947332 + 0.320252i \(0.103768\pi\)
−0.947332 + 0.320252i \(0.896232\pi\)
\(80\) 78.9166 + 160.537i 0.110289 + 0.224357i
\(81\) 0 0
\(82\) 451.244 451.244i 0.607702 0.607702i
\(83\) −338.503 + 338.503i −0.447657 + 0.447657i −0.894575 0.446918i \(-0.852522\pi\)
0.446918 + 0.894575i \(0.352522\pi\)
\(84\) 0 0
\(85\) 404.271 1186.03i 0.515875 1.51345i
\(86\) 546.462i 0.685192i
\(87\) 0 0
\(88\) −283.076 283.076i −0.342909 0.342909i
\(89\) 251.633 0.299697 0.149848 0.988709i \(-0.452121\pi\)
0.149848 + 0.988709i \(0.452121\pi\)
\(90\) 0 0
\(91\) 532.800 0.613765
\(92\) 547.605 + 547.605i 0.620563 + 0.620563i
\(93\) 0 0
\(94\) 746.700i 0.819321i
\(95\) −538.992 + 264.957i −0.582099 + 0.286148i
\(96\) 0 0
\(97\) −942.169 + 942.169i −0.986214 + 0.986214i −0.999906 0.0136920i \(-0.995642\pi\)
0.0136920 + 0.999906i \(0.495642\pi\)
\(98\) −69.2965 + 69.2965i −0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −395.908 305.380i −0.395908 0.305380i
\(101\) 1796.02i 1.76941i −0.466147 0.884707i \(-0.654358\pi\)
0.466147 0.884707i \(-0.345642\pi\)
\(102\) 0 0
\(103\) −361.347 361.347i −0.345675 0.345675i 0.512821 0.858496i \(-0.328601\pi\)
−0.858496 + 0.512821i \(0.828601\pi\)
\(104\) −608.915 −0.574125
\(105\) 0 0
\(106\) −412.324 −0.377816
\(107\) 31.5227 + 31.5227i 0.0284805 + 0.0284805i 0.721204 0.692723i \(-0.243589\pi\)
−0.692723 + 0.721204i \(0.743589\pi\)
\(108\) 0 0
\(109\) 841.974i 0.739876i 0.929056 + 0.369938i \(0.120621\pi\)
−0.929056 + 0.369938i \(0.879379\pi\)
\(110\) 1059.12 + 361.012i 0.918026 + 0.312919i
\(111\) 0 0
\(112\) 79.1960 79.1960i 0.0668153 0.0668153i
\(113\) −1061.14 + 1061.14i −0.883393 + 0.883393i −0.993878 0.110485i \(-0.964760\pi\)
0.110485 + 0.993878i \(0.464760\pi\)
\(114\) 0 0
\(115\) −2048.85 698.372i −1.66136 0.566292i
\(116\) 1017.34i 0.814291i
\(117\) 0 0
\(118\) −606.731 606.731i −0.473340 0.473340i
\(119\) −784.524 −0.604346
\(120\) 0 0
\(121\) −1173.12 −0.881380
\(122\) 207.096 + 207.096i 0.153685 + 0.153685i
\(123\) 0 0
\(124\) 514.496i 0.372605i
\(125\) 1369.65 + 277.830i 0.980040 + 0.198799i
\(126\) 0 0
\(127\) −1108.69 + 1108.69i −0.774647 + 0.774647i −0.978915 0.204268i \(-0.934519\pi\)
0.204268 + 0.978915i \(0.434519\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 1527.40 750.836i 1.03047 0.506559i
\(131\) 1495.11i 0.997165i 0.866842 + 0.498582i \(0.166146\pi\)
−0.866842 + 0.498582i \(0.833854\pi\)
\(132\) 0 0
\(133\) 265.895 + 265.895i 0.173354 + 0.173354i
\(134\) 1858.09 1.19787
\(135\) 0 0
\(136\) 896.599 0.565314
\(137\) 1081.55 + 1081.55i 0.674477 + 0.674477i 0.958745 0.284268i \(-0.0917504\pi\)
−0.284268 + 0.958745i \(0.591750\pi\)
\(138\) 0 0
\(139\) 920.420i 0.561648i 0.959759 + 0.280824i \(0.0906077\pi\)
−0.959759 + 0.280824i \(0.909392\pi\)
\(140\) −101.000 + 296.309i −0.0609720 + 0.178876i
\(141\) 0 0
\(142\) 1033.93 1033.93i 0.611026 0.611026i
\(143\) −2693.26 + 2693.26i −1.57498 + 1.57498i
\(144\) 0 0
\(145\) 1254.45 + 2551.89i 0.718461 + 1.46154i
\(146\) 1314.20i 0.744958i
\(147\) 0 0
\(148\) 47.1741 + 47.1741i 0.0262006 + 0.0262006i
\(149\) 2676.61 1.47165 0.735827 0.677169i \(-0.236794\pi\)
0.735827 + 0.677169i \(0.236794\pi\)
\(150\) 0 0
\(151\) 1383.90 0.745830 0.372915 0.927866i \(-0.378358\pi\)
0.372915 + 0.927866i \(0.378358\pi\)
\(152\) −303.880 303.880i −0.162157 0.162157i
\(153\) 0 0
\(154\) 700.576i 0.366585i
\(155\) −634.410 1290.56i −0.328755 0.668774i
\(156\) 0 0
\(157\) −2110.89 + 2110.89i −1.07304 + 1.07304i −0.0759270 + 0.997113i \(0.524192\pi\)
−0.997113 + 0.0759270i \(0.975808\pi\)
\(158\) 636.030 636.030i 0.320252 0.320252i
\(159\) 0 0
\(160\) 115.429 338.639i 0.0570340 0.167323i
\(161\) 1355.25i 0.663410i
\(162\) 0 0
\(163\) 1530.70 + 1530.70i 0.735543 + 0.735543i 0.971712 0.236169i \(-0.0758919\pi\)
−0.236169 + 0.971712i \(0.575892\pi\)
\(164\) −1276.31 −0.607702
\(165\) 0 0
\(166\) 957.432 0.447657
\(167\) −1215.99 1215.99i −0.563451 0.563451i 0.366835 0.930286i \(-0.380441\pi\)
−0.930286 + 0.366835i \(0.880441\pi\)
\(168\) 0 0
\(169\) 3596.39i 1.63696i
\(170\) −2249.02 + 1105.57i −1.01466 + 0.498785i
\(171\) 0 0
\(172\) 772.814 772.814i 0.342596 0.342596i
\(173\) 1696.87 1696.87i 0.745727 0.745727i −0.227947 0.973674i \(-0.573201\pi\)
0.973674 + 0.227947i \(0.0732012\pi\)
\(174\) 0 0
\(175\) −112.022 867.800i −0.0483891 0.374854i
\(176\) 800.658i 0.342909i
\(177\) 0 0
\(178\) −355.862 355.862i −0.149848 0.149848i
\(179\) −2294.83 −0.958234 −0.479117 0.877751i \(-0.659043\pi\)
−0.479117 + 0.877751i \(0.659043\pi\)
\(180\) 0 0
\(181\) −94.7403 −0.0389060 −0.0194530 0.999811i \(-0.506192\pi\)
−0.0194530 + 0.999811i \(0.506192\pi\)
\(182\) −753.493 753.493i −0.306883 0.306883i
\(183\) 0 0
\(184\) 1548.86i 0.620563i
\(185\) −176.500 60.1621i −0.0701435 0.0239092i
\(186\) 0 0
\(187\) 3965.71 3965.71i 1.55081 1.55081i
\(188\) 1055.99 1055.99i 0.409661 0.409661i
\(189\) 0 0
\(190\) 1136.96 + 387.544i 0.434124 + 0.147976i
\(191\) 2981.63i 1.12955i 0.825246 + 0.564774i \(0.191037\pi\)
−0.825246 + 0.564774i \(0.808963\pi\)
\(192\) 0 0
\(193\) −2295.50 2295.50i −0.856132 0.856132i 0.134748 0.990880i \(-0.456977\pi\)
−0.990880 + 0.134748i \(0.956977\pi\)
\(194\) 2664.86 0.986214
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −3248.66 3248.66i −1.17491 1.17491i −0.981024 0.193888i \(-0.937890\pi\)
−0.193888 0.981024i \(-0.562110\pi\)
\(198\) 0 0
\(199\) 1023.17i 0.364475i −0.983255 0.182238i \(-0.941666\pi\)
0.983255 0.182238i \(-0.0583340\pi\)
\(200\) 128.025 + 991.771i 0.0452638 + 0.350644i
\(201\) 0 0
\(202\) −2539.96 + 2539.96i −0.884707 + 0.884707i
\(203\) 1258.89 1258.89i 0.435257 0.435257i
\(204\) 0 0
\(205\) 3201.49 1573.78i 1.09074 0.536185i
\(206\) 1022.04i 0.345675i
\(207\) 0 0
\(208\) 861.135 + 861.135i 0.287062 + 0.287062i
\(209\) −2688.16 −0.889682
\(210\) 0 0
\(211\) −275.984 −0.0900450 −0.0450225 0.998986i \(-0.514336\pi\)
−0.0450225 + 0.998986i \(0.514336\pi\)
\(212\) 583.115 + 583.115i 0.188908 + 0.188908i
\(213\) 0 0
\(214\) 89.1595i 0.0284805i
\(215\) −985.585 + 2891.46i −0.312634 + 0.917189i
\(216\) 0 0
\(217\) −636.656 + 636.656i −0.199166 + 0.199166i
\(218\) 1190.73 1190.73i 0.369938 0.369938i
\(219\) 0 0
\(220\) −987.270 2008.37i −0.302553 0.615473i
\(221\) 8530.51i 2.59649i
\(222\) 0 0
\(223\) 442.803 + 442.803i 0.132970 + 0.132970i 0.770459 0.637489i \(-0.220027\pi\)
−0.637489 + 0.770459i \(0.720027\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) 3001.35 0.883393
\(227\) −4734.13 4734.13i −1.38421 1.38421i −0.836990 0.547218i \(-0.815687\pi\)
−0.547218 0.836990i \(-0.684313\pi\)
\(228\) 0 0
\(229\) 242.150i 0.0698764i 0.999389 + 0.0349382i \(0.0111234\pi\)
−0.999389 + 0.0349382i \(0.988877\pi\)
\(230\) 1909.86 + 3885.15i 0.547532 + 1.11382i
\(231\) 0 0
\(232\) −1438.74 + 1438.74i −0.407145 + 0.407145i
\(233\) 2074.96 2074.96i 0.583412 0.583412i −0.352427 0.935839i \(-0.614644\pi\)
0.935839 + 0.352427i \(0.114644\pi\)
\(234\) 0 0
\(235\) −1346.73 + 3950.96i −0.373834 + 1.09673i
\(236\) 1716.09i 0.473340i
\(237\) 0 0
\(238\) 1109.49 + 1109.49i 0.302173 + 0.302173i
\(239\) 5538.03 1.49885 0.749425 0.662089i \(-0.230330\pi\)
0.749425 + 0.662089i \(0.230330\pi\)
\(240\) 0 0
\(241\) 1842.19 0.492390 0.246195 0.969220i \(-0.420820\pi\)
0.246195 + 0.969220i \(0.420820\pi\)
\(242\) 1659.04 + 1659.04i 0.440690 + 0.440690i
\(243\) 0 0
\(244\) 585.755i 0.153685i
\(245\) −491.645 + 241.682i −0.128204 + 0.0630225i
\(246\) 0 0
\(247\) −2891.20 + 2891.20i −0.744789 + 0.744789i
\(248\) 727.607 727.607i 0.186303 0.186303i
\(249\) 0 0
\(250\) −1544.06 2329.89i −0.390621 0.589420i
\(251\) 4808.65i 1.20924i −0.796514 0.604620i \(-0.793325\pi\)
0.796514 0.604620i \(-0.206675\pi\)
\(252\) 0 0
\(253\) −6850.70 6850.70i −1.70237 1.70237i
\(254\) 3135.84 0.774647
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5130.50 5130.50i −1.24526 1.24526i −0.957790 0.287469i \(-0.907186\pi\)
−0.287469 0.957790i \(-0.592814\pi\)
\(258\) 0 0
\(259\) 116.750i 0.0280096i
\(260\) −3221.91 1098.22i −0.768516 0.261957i
\(261\) 0 0
\(262\) 2114.41 2114.41i 0.498582 0.498582i
\(263\) 3399.42 3399.42i 0.797023 0.797023i −0.185602 0.982625i \(-0.559423\pi\)
0.982625 + 0.185602i \(0.0594235\pi\)
\(264\) 0 0
\(265\) −2181.70 743.658i −0.505739 0.172387i
\(266\) 752.065i 0.173354i
\(267\) 0 0
\(268\) −2627.73 2627.73i −0.598933 0.598933i
\(269\) 3096.54 0.701857 0.350928 0.936402i \(-0.385866\pi\)
0.350928 + 0.936402i \(0.385866\pi\)
\(270\) 0 0
\(271\) 3315.54 0.743190 0.371595 0.928395i \(-0.378811\pi\)
0.371595 + 0.928395i \(0.378811\pi\)
\(272\) −1267.98 1267.98i −0.282657 0.282657i
\(273\) 0 0
\(274\) 3059.10i 0.674477i
\(275\) 4952.92 + 3820.39i 1.08608 + 0.837740i
\(276\) 0 0
\(277\) 3973.23 3973.23i 0.861834 0.861834i −0.129717 0.991551i \(-0.541407\pi\)
0.991551 + 0.129717i \(0.0414068\pi\)
\(278\) 1301.67 1301.67i 0.280824 0.280824i
\(279\) 0 0
\(280\) 561.880 276.208i 0.119924 0.0589521i
\(281\) 6226.68i 1.32190i −0.750432 0.660948i \(-0.770154\pi\)
0.750432 0.660948i \(-0.229846\pi\)
\(282\) 0 0
\(283\) 49.7888 + 49.7888i 0.0104581 + 0.0104581i 0.712316 0.701858i \(-0.247646\pi\)
−0.701858 + 0.712316i \(0.747646\pi\)
\(284\) −2924.40 −0.611026
\(285\) 0 0
\(286\) 7617.70 1.57498
\(287\) −1579.35 1579.35i −0.324830 0.324830i
\(288\) 0 0
\(289\) 7647.79i 1.55664i
\(290\) 1834.85 5382.98i 0.371538 1.09000i
\(291\) 0 0
\(292\) 1858.56 1858.56i 0.372479 0.372479i
\(293\) −4162.42 + 4162.42i −0.829935 + 0.829935i −0.987507 0.157572i \(-0.949633\pi\)
0.157572 + 0.987507i \(0.449633\pi\)
\(294\) 0 0
\(295\) −2116.07 4304.64i −0.417635 0.849578i
\(296\) 133.428i 0.0262006i
\(297\) 0 0
\(298\) −3785.30 3785.30i −0.735827 0.735827i
\(299\) −14736.3 −2.85025
\(300\) 0 0
\(301\) 1912.62 0.366251
\(302\) −1957.13 1957.13i −0.372915 0.372915i
\(303\) 0 0
\(304\) 859.502i 0.162157i
\(305\) 722.278 + 1469.30i 0.135598 + 0.275843i
\(306\) 0 0
\(307\) 3575.70 3575.70i 0.664743 0.664743i −0.291751 0.956494i \(-0.594238\pi\)
0.956494 + 0.291751i \(0.0942380\pi\)
\(308\) −990.764 + 990.764i −0.183292 + 0.183292i
\(309\) 0 0
\(310\) −927.931 + 2722.32i −0.170010 + 0.498765i
\(311\) 1755.61i 0.320102i −0.987109 0.160051i \(-0.948834\pi\)
0.987109 0.160051i \(-0.0511658\pi\)
\(312\) 0 0
\(313\) −1945.93 1945.93i −0.351407 0.351407i 0.509226 0.860633i \(-0.329932\pi\)
−0.860633 + 0.509226i \(0.829932\pi\)
\(314\) 5970.50 1.07304
\(315\) 0 0
\(316\) −1798.96 −0.320252
\(317\) 2326.21 + 2326.21i 0.412155 + 0.412155i 0.882489 0.470334i \(-0.155866\pi\)
−0.470334 + 0.882489i \(0.655866\pi\)
\(318\) 0 0
\(319\) 12727.2i 2.23382i
\(320\) −642.148 + 315.667i −0.112179 + 0.0551447i
\(321\) 0 0
\(322\) 1916.62 1916.62i 0.331705 0.331705i
\(323\) 4257.17 4257.17i 0.733359 0.733359i
\(324\) 0 0
\(325\) 9436.00 1218.07i 1.61051 0.207897i
\(326\) 4329.47i 0.735543i
\(327\) 0 0
\(328\) 1804.98 + 1804.98i 0.303851 + 0.303851i
\(329\) 2613.45 0.437946
\(330\) 0 0
\(331\) −10635.1 −1.76603 −0.883017 0.469341i \(-0.844491\pi\)
−0.883017 + 0.469341i \(0.844491\pi\)
\(332\) −1354.01 1354.01i −0.223829 0.223829i
\(333\) 0 0
\(334\) 3439.35i 0.563451i
\(335\) 9831.56 + 3351.20i 1.60345 + 0.546553i
\(336\) 0 0
\(337\) −5154.26 + 5154.26i −0.833147 + 0.833147i −0.987946 0.154799i \(-0.950527\pi\)
0.154799 + 0.987946i \(0.450527\pi\)
\(338\) 5086.07 5086.07i 0.818478 0.818478i
\(339\) 0 0
\(340\) 4744.11 + 1617.08i 0.756723 + 0.257937i
\(341\) 6436.49i 1.02216i
\(342\) 0 0
\(343\) 242.538 + 242.538i 0.0381802 + 0.0381802i
\(344\) −2185.85 −0.342596
\(345\) 0 0
\(346\) −4799.48 −0.745727
\(347\) −2956.45 2956.45i −0.457380 0.457380i 0.440415 0.897794i \(-0.354831\pi\)
−0.897794 + 0.440415i \(0.854831\pi\)
\(348\) 0 0
\(349\) 6561.02i 1.00631i −0.864195 0.503157i \(-0.832172\pi\)
0.864195 0.503157i \(-0.167828\pi\)
\(350\) −1068.83 + 1385.68i −0.163233 + 0.211622i
\(351\) 0 0
\(352\) 1132.30 1132.30i 0.171454 0.171454i
\(353\) 4459.98 4459.98i 0.672467 0.672467i −0.285817 0.958284i \(-0.592265\pi\)
0.958284 + 0.285817i \(0.0922651\pi\)
\(354\) 0 0
\(355\) 7335.55 3606.00i 1.09671 0.539117i
\(356\) 1006.53i 0.149848i
\(357\) 0 0
\(358\) 3245.39 + 3245.39i 0.479117 + 0.479117i
\(359\) −1916.27 −0.281718 −0.140859 0.990030i \(-0.544986\pi\)
−0.140859 + 0.990030i \(0.544986\pi\)
\(360\) 0 0
\(361\) 3973.28 0.579280
\(362\) 133.983 + 133.983i 0.0194530 + 0.0194530i
\(363\) 0 0
\(364\) 2131.20i 0.306883i
\(365\) −2370.26 + 6953.73i −0.339904 + 0.997191i
\(366\) 0 0
\(367\) −3806.35 + 3806.35i −0.541389 + 0.541389i −0.923936 0.382547i \(-0.875047\pi\)
0.382547 + 0.923936i \(0.375047\pi\)
\(368\) −2190.42 + 2190.42i −0.310282 + 0.310282i
\(369\) 0 0
\(370\) 164.527 + 334.691i 0.0231172 + 0.0470264i
\(371\) 1443.13i 0.201951i
\(372\) 0 0
\(373\) 1131.80 + 1131.80i 0.157111 + 0.157111i 0.781285 0.624174i \(-0.214564\pi\)
−0.624174 + 0.781285i \(0.714564\pi\)
\(374\) −11216.7 −1.55081
\(375\) 0 0
\(376\) −2986.80 −0.409661
\(377\) 13688.6 + 13688.6i 1.87002 + 1.87002i
\(378\) 0 0
\(379\) 8534.48i 1.15669i 0.815791 + 0.578347i \(0.196302\pi\)
−0.815791 + 0.578347i \(0.803698\pi\)
\(380\) −1059.83 2155.97i −0.143074 0.291050i
\(381\) 0 0
\(382\) 4216.67 4216.67i 0.564774 0.564774i
\(383\) 5183.36 5183.36i 0.691533 0.691533i −0.271036 0.962569i \(-0.587366\pi\)
0.962569 + 0.271036i \(0.0873662\pi\)
\(384\) 0 0
\(385\) 1263.54 3706.91i 0.167262 0.490705i
\(386\) 6492.64i 0.856132i
\(387\) 0 0
\(388\) −3768.68 3768.68i −0.493107 0.493107i
\(389\) −3462.83 −0.451343 −0.225672 0.974203i \(-0.572458\pi\)
−0.225672 + 0.974203i \(0.572458\pi\)
\(390\) 0 0
\(391\) 21698.6 2.80651
\(392\) −277.186 277.186i −0.0357143 0.0357143i
\(393\) 0 0
\(394\) 9188.60i 1.17491i
\(395\) 4512.51 2218.25i 0.574807 0.282563i
\(396\) 0 0
\(397\) −1021.59 + 1021.59i −0.129148 + 0.129148i −0.768726 0.639578i \(-0.779109\pi\)
0.639578 + 0.768726i \(0.279109\pi\)
\(398\) −1446.98 + 1446.98i −0.182238 + 0.182238i
\(399\) 0 0
\(400\) 1221.52 1583.63i 0.152690 0.197954i
\(401\) 1485.73i 0.185022i 0.995712 + 0.0925110i \(0.0294893\pi\)
−0.995712 + 0.0925110i \(0.970511\pi\)
\(402\) 0 0
\(403\) −6922.66 6922.66i −0.855688 0.855688i
\(404\) 7184.09 0.884707
\(405\) 0 0
\(406\) −3560.69 −0.435257
\(407\) −590.161 590.161i −0.0718752 0.0718752i
\(408\) 0 0
\(409\) 1933.47i 0.233750i −0.993147 0.116875i \(-0.962712\pi\)
0.993147 0.116875i \(-0.0372877\pi\)
\(410\) −6753.26 2301.92i −0.813462 0.277278i
\(411\) 0 0
\(412\) 1445.39 1445.39i 0.172838 0.172838i
\(413\) −2123.56 + 2123.56i −0.253011 + 0.253011i
\(414\) 0 0
\(415\) 5065.99 + 1726.80i 0.599229 + 0.204254i
\(416\) 2435.66i 0.287062i
\(417\) 0 0
\(418\) 3801.63 + 3801.63i 0.444841 + 0.444841i
\(419\) −5825.91 −0.679271 −0.339635 0.940557i \(-0.610304\pi\)
−0.339635 + 0.940557i \(0.610304\pi\)
\(420\) 0 0
\(421\) −1576.13 −0.182461 −0.0912304 0.995830i \(-0.529080\pi\)
−0.0912304 + 0.995830i \(0.529080\pi\)
\(422\) 390.300 + 390.300i 0.0450225 + 0.0450225i
\(423\) 0 0
\(424\) 1649.30i 0.188908i
\(425\) −13894.1 + 1793.55i −1.58579 + 0.204706i
\(426\) 0 0
\(427\) 724.835 724.835i 0.0821480 0.0821480i
\(428\) −126.091 + 126.091i −0.0142402 + 0.0142402i
\(429\) 0 0
\(430\) 5482.97 2695.31i 0.614912 0.302278i
\(431\) 14248.8i 1.59244i 0.605007 + 0.796220i \(0.293170\pi\)
−0.605007 + 0.796220i \(0.706830\pi\)
\(432\) 0 0
\(433\) −6575.28 6575.28i −0.729764 0.729764i 0.240808 0.970573i \(-0.422587\pi\)
−0.970573 + 0.240808i \(0.922587\pi\)
\(434\) 1800.73 0.199166
\(435\) 0 0
\(436\) −3367.90 −0.369938
\(437\) −7354.19 7354.19i −0.805031 0.805031i
\(438\) 0 0
\(439\) 4976.57i 0.541045i −0.962714 0.270522i \(-0.912804\pi\)
0.962714 0.270522i \(-0.0871964\pi\)
\(440\) −1444.05 + 4236.47i −0.156460 + 0.459013i
\(441\) 0 0
\(442\) −12064.0 + 12064.0i −1.29824 + 1.29824i
\(443\) −8182.61 + 8182.61i −0.877579 + 0.877579i −0.993284 0.115704i \(-0.963087\pi\)
0.115704 + 0.993284i \(0.463087\pi\)
\(444\) 0 0
\(445\) −1241.12 2524.77i −0.132213 0.268957i
\(446\) 1252.44i 0.132970i
\(447\) 0 0
\(448\) 316.784 + 316.784i 0.0334077 + 0.0334077i
\(449\) 116.512 0.0122462 0.00612308 0.999981i \(-0.498051\pi\)
0.00612308 + 0.999981i \(0.498051\pi\)
\(450\) 0 0
\(451\) 15967.0 1.66709
\(452\) −4244.55 4244.55i −0.441696 0.441696i
\(453\) 0 0
\(454\) 13390.1i 1.38421i
\(455\) −2627.93 5345.89i −0.270767 0.550811i
\(456\) 0 0
\(457\) −5744.50 + 5744.50i −0.588001 + 0.588001i −0.937090 0.349089i \(-0.886491\pi\)
0.349089 + 0.937090i \(0.386491\pi\)
\(458\) 342.451 342.451i 0.0349382 0.0349382i
\(459\) 0 0
\(460\) 2793.49 8195.39i 0.283146 0.830678i
\(461\) 14172.1i 1.43180i 0.698203 + 0.715899i \(0.253983\pi\)
−0.698203 + 0.715899i \(0.746017\pi\)
\(462\) 0 0
\(463\) 2176.56 + 2176.56i 0.218474 + 0.218474i 0.807855 0.589381i \(-0.200628\pi\)
−0.589381 + 0.807855i \(0.700628\pi\)
\(464\) 4069.36 0.407145
\(465\) 0 0
\(466\) −5868.87 −0.583412
\(467\) 8344.13 + 8344.13i 0.826810 + 0.826810i 0.987074 0.160264i \(-0.0512347\pi\)
−0.160264 + 0.987074i \(0.551235\pi\)
\(468\) 0 0
\(469\) 6503.30i 0.640287i
\(470\) 7492.06 3682.94i 0.735283 0.361450i
\(471\) 0 0
\(472\) 2426.92 2426.92i 0.236670 0.236670i
\(473\) −9668.13 + 9668.13i −0.939833 + 0.939833i
\(474\) 0 0
\(475\) 5316.93 + 4101.17i 0.513595 + 0.396157i
\(476\) 3138.10i 0.302173i
\(477\) 0 0
\(478\) −7831.95 7831.95i −0.749425 0.749425i
\(479\) −5643.81 −0.538356 −0.269178 0.963090i \(-0.586752\pi\)
−0.269178 + 0.963090i \(0.586752\pi\)
\(480\) 0 0
\(481\) −1269.48 −0.120339
\(482\) −2605.25 2605.25i −0.246195 0.246195i
\(483\) 0 0
\(484\) 4692.47i 0.440690i
\(485\) 14100.4 + 4806.27i 1.32013 + 0.449982i
\(486\) 0 0
\(487\) −5851.74 + 5851.74i −0.544492 + 0.544492i −0.924843 0.380350i \(-0.875803\pi\)
0.380350 + 0.924843i \(0.375803\pi\)
\(488\) −828.382 + 828.382i −0.0768424 + 0.0768424i
\(489\) 0 0
\(490\) 1037.08 + 353.501i 0.0956134 + 0.0325909i
\(491\) 8977.31i 0.825133i −0.910927 0.412567i \(-0.864632\pi\)
0.910927 0.412567i \(-0.135368\pi\)
\(492\) 0 0
\(493\) −20155.8 20155.8i −1.84132 1.84132i
\(494\) 8177.56 0.744789
\(495\) 0 0
\(496\) −2057.98 −0.186303
\(497\) −3618.76 3618.76i −0.326607 0.326607i
\(498\) 0 0
\(499\) 11113.0i 0.996962i 0.866901 + 0.498481i \(0.166109\pi\)
−0.866901 + 0.498481i \(0.833891\pi\)
\(500\) −1111.32 + 5478.59i −0.0993996 + 0.490020i
\(501\) 0 0
\(502\) −6800.45 + 6800.45i −0.604620 + 0.604620i
\(503\) 7844.62 7844.62i 0.695376 0.695376i −0.268033 0.963410i \(-0.586374\pi\)
0.963410 + 0.268033i \(0.0863737\pi\)
\(504\) 0 0
\(505\) −18020.5 + 8858.50i −1.58793 + 0.780590i
\(506\) 19376.7i 1.70237i
\(507\) 0 0
\(508\) −4434.75 4434.75i −0.387323 0.387323i
\(509\) −5411.99 −0.471281 −0.235641 0.971840i \(-0.575719\pi\)
−0.235641 + 0.971840i \(0.575719\pi\)
\(510\) 0 0
\(511\) 4599.70 0.398197
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 14511.2i 1.24526i
\(515\) −1843.33 + 5407.86i −0.157722 + 0.462716i
\(516\) 0 0
\(517\) −13210.8 + 13210.8i −1.12381 + 1.12381i
\(518\) 165.109 165.109i 0.0140048 0.0140048i
\(519\) 0 0
\(520\) 3003.34 + 6109.59i 0.253279 + 0.515237i
\(521\) 811.829i 0.0682666i −0.999417 0.0341333i \(-0.989133\pi\)
0.999417 0.0341333i \(-0.0108671\pi\)
\(522\) 0 0
\(523\) −624.754 624.754i −0.0522344 0.0522344i 0.680507 0.732741i \(-0.261760\pi\)
−0.732741 + 0.680507i \(0.761760\pi\)
\(524\) −5980.45 −0.498582
\(525\) 0 0
\(526\) −9615.01 −0.797023
\(527\) 10193.3 + 10193.3i 0.842557 + 0.842557i
\(528\) 0 0
\(529\) 25317.0i 2.08079i
\(530\) 2033.70 + 4137.08i 0.166676 + 0.339063i
\(531\) 0 0
\(532\) −1063.58 + 1063.58i −0.0866768 + 0.0866768i
\(533\) 17173.1 17173.1i 1.39559 1.39559i
\(534\) 0 0
\(535\) 160.806 471.764i 0.0129949 0.0381236i
\(536\) 7432.34i 0.598933i
\(537\) 0 0
\(538\) −4379.17 4379.17i −0.350928 0.350928i
\(539\) −2452.02 −0.195948
\(540\) 0 0
\(541\) 1928.13 0.153228 0.0766142 0.997061i \(-0.475589\pi\)
0.0766142 + 0.997061i \(0.475589\pi\)
\(542\) −4688.88 4688.88i −0.371595 0.371595i
\(543\) 0 0
\(544\) 3586.40i 0.282657i
\(545\) 8448.01 4152.86i 0.663987 0.326402i
\(546\) 0 0
\(547\) 9490.21 9490.21i 0.741814 0.741814i −0.231113 0.972927i \(-0.574237\pi\)
0.972927 + 0.231113i \(0.0742368\pi\)
\(548\) −4326.22 + 4326.22i −0.337239 + 0.337239i
\(549\) 0 0
\(550\) −1601.63 12407.3i −0.124171 0.961910i
\(551\) 13662.6i 1.05635i
\(552\) 0 0
\(553\) −2226.10 2226.10i −0.171182 0.171182i
\(554\) −11238.0 −0.861834
\(555\) 0 0
\(556\) −3681.68 −0.280824
\(557\) −8850.91 8850.91i −0.673295 0.673295i 0.285179 0.958474i \(-0.407947\pi\)
−0.958474 + 0.285179i \(0.907947\pi\)
\(558\) 0 0
\(559\) 20796.8i 1.57354i
\(560\) −1185.24 404.001i −0.0894381 0.0304860i
\(561\) 0 0
\(562\) −8805.86 + 8805.86i −0.660948 + 0.660948i
\(563\) −2719.96 + 2719.96i −0.203610 + 0.203610i −0.801545 0.597935i \(-0.795988\pi\)
0.597935 + 0.801545i \(0.295988\pi\)
\(564\) 0 0
\(565\) 15880.8 + 5413.16i 1.18250 + 0.403068i
\(566\) 140.824i 0.0104581i
\(567\) 0 0
\(568\) 4135.73 + 4135.73i 0.305513 + 0.305513i
\(569\) 20169.8 1.48605 0.743023 0.669266i \(-0.233391\pi\)
0.743023 + 0.669266i \(0.233391\pi\)
\(570\) 0 0
\(571\) 17518.3 1.28392 0.641961 0.766737i \(-0.278121\pi\)
0.641961 + 0.766737i \(0.278121\pi\)
\(572\) −10773.1 10773.1i −0.787489 0.787489i
\(573\) 0 0
\(574\) 4467.09i 0.324830i
\(575\) 3098.34 + 24001.8i 0.224712 + 1.74077i
\(576\) 0 0
\(577\) 16545.2 16545.2i 1.19374 1.19374i 0.217730 0.976009i \(-0.430135\pi\)
0.976009 0.217730i \(-0.0698653\pi\)
\(578\) 10815.6 10815.6i 0.778321 0.778321i
\(579\) 0 0
\(580\) −10207.6 + 5017.82i −0.730769 + 0.359230i
\(581\) 3351.01i 0.239283i
\(582\) 0 0
\(583\) −7294.93 7294.93i −0.518225 0.518225i
\(584\) −5256.80 −0.372479
\(585\) 0 0
\(586\) 11773.1 0.829935
\(587\) 17588.7 + 17588.7i 1.23674 + 1.23674i 0.961327 + 0.275410i \(0.0888137\pi\)
0.275410 + 0.961327i \(0.411186\pi\)
\(588\) 0 0
\(589\) 6909.54i 0.483366i
\(590\) −3095.10 + 9080.25i −0.215972 + 0.633607i
\(591\) 0 0
\(592\) −188.696 + 188.696i −0.0131003 + 0.0131003i
\(593\) 2495.82 2495.82i 0.172835 0.172835i −0.615389 0.788224i \(-0.711001\pi\)
0.788224 + 0.615389i \(0.211001\pi\)
\(594\) 0 0
\(595\) 3869.50 + 7871.58i 0.266612 + 0.542359i
\(596\) 10706.4i 0.735827i
\(597\) 0 0
\(598\) 20840.3 + 20840.3i 1.42512 + 1.42512i
\(599\) −14590.2 −0.995222 −0.497611 0.867400i \(-0.665789\pi\)
−0.497611 + 0.867400i \(0.665789\pi\)
\(600\) 0 0
\(601\) −12899.3 −0.875498 −0.437749 0.899097i \(-0.644224\pi\)
−0.437749 + 0.899097i \(0.644224\pi\)
\(602\) −2704.85 2704.85i −0.183125 0.183125i
\(603\) 0 0
\(604\) 5535.60i 0.372915i
\(605\) 5786.15 + 11770.5i 0.388827 + 0.790977i
\(606\) 0 0
\(607\) 4187.38 4187.38i 0.280001 0.280001i −0.553108 0.833109i \(-0.686558\pi\)
0.833109 + 0.553108i \(0.186558\pi\)
\(608\) 1215.52 1215.52i 0.0810787 0.0810787i
\(609\) 0 0
\(610\) 1056.45 3099.36i 0.0701222 0.205721i
\(611\) 28417.3i 1.88157i
\(612\) 0 0
\(613\) 11263.3 + 11263.3i 0.742123 + 0.742123i 0.972986 0.230863i \(-0.0741549\pi\)
−0.230863 + 0.972986i \(0.574155\pi\)
\(614\) −10113.6 −0.664743
\(615\) 0 0
\(616\) 2802.30 0.183292
\(617\) 8548.13 + 8548.13i 0.557755 + 0.557755i 0.928668 0.370913i \(-0.120955\pi\)
−0.370913 + 0.928668i \(0.620955\pi\)
\(618\) 0 0
\(619\) 9303.95i 0.604131i −0.953287 0.302066i \(-0.902324\pi\)
0.953287 0.302066i \(-0.0976762\pi\)
\(620\) 5162.23 2537.64i 0.334387 0.164378i
\(621\) 0 0
\(622\) −2482.81 + 2482.81i −0.160051 + 0.160051i
\(623\) −1245.52 + 1245.52i −0.0800973 + 0.0800973i
\(624\) 0 0
\(625\) −3967.87 15112.8i −0.253944 0.967219i
\(626\) 5503.92i 0.351407i
\(627\) 0 0
\(628\) −8443.56 8443.56i −0.536520 0.536520i
\(629\) 1869.25 0.118493
\(630\) 0 0
\(631\) −14580.9 −0.919896 −0.459948 0.887946i \(-0.652132\pi\)
−0.459948 + 0.887946i \(0.652132\pi\)
\(632\) 2544.12 + 2544.12i 0.160126 + 0.160126i
\(633\) 0 0
\(634\) 6579.52i 0.412155i
\(635\) 16592.5 + 5655.73i 1.03693 + 0.353450i
\(636\) 0 0
\(637\) −2637.23 + 2637.23i −0.164036 + 0.164036i
\(638\) 17999.0 17999.0i 1.11691 1.11691i
\(639\) 0 0
\(640\) 1354.55 + 461.715i 0.0836617 + 0.0285170i
\(641\) 4094.31i 0.252286i −0.992012 0.126143i \(-0.959740\pi\)
0.992012 0.126143i \(-0.0402598\pi\)
\(642\) 0 0
\(643\) −9405.18 9405.18i −0.576834 0.576834i 0.357196 0.934030i \(-0.383733\pi\)
−0.934030 + 0.357196i \(0.883733\pi\)
\(644\) −5421.02 −0.331705
\(645\) 0 0
\(646\) −12041.1 −0.733359
\(647\) −11841.8 11841.8i −0.719548 0.719548i 0.248964 0.968513i \(-0.419910\pi\)
−0.968513 + 0.248964i \(0.919910\pi\)
\(648\) 0 0
\(649\) 21468.8i 1.29850i
\(650\) −15067.1 11621.9i −0.909202 0.701305i
\(651\) 0 0
\(652\) −6122.79 + 6122.79i −0.367771 + 0.367771i
\(653\) 1134.32 1134.32i 0.0679778 0.0679778i −0.672301 0.740278i \(-0.734694\pi\)
0.740278 + 0.672301i \(0.234694\pi\)
\(654\) 0 0
\(655\) 15001.3 7374.33i 0.894885 0.439907i
\(656\) 5105.24i 0.303851i
\(657\) 0 0
\(658\) −3695.97 3695.97i −0.218973 0.218973i
\(659\) −10897.4 −0.644161 −0.322081 0.946712i \(-0.604382\pi\)
−0.322081 + 0.946712i \(0.604382\pi\)
\(660\) 0 0
\(661\) −25208.4 −1.48335 −0.741673 0.670761i \(-0.765967\pi\)
−0.741673 + 0.670761i \(0.765967\pi\)
\(662\) 15040.3 + 15040.3i 0.883017 + 0.883017i
\(663\) 0 0
\(664\) 3829.73i 0.223829i
\(665\) 1356.40 3979.35i 0.0790964 0.232049i
\(666\) 0 0
\(667\) −34818.8 + 34818.8i −2.02128 + 2.02128i
\(668\) 4863.97 4863.97i 0.281726 0.281726i
\(669\) 0 0
\(670\) −9164.61 18643.2i −0.528448 1.07500i
\(671\) 7327.96i 0.421599i
\(672\) 0 0
\(673\) −2811.39 2811.39i −0.161027 0.161027i 0.621995 0.783022i \(-0.286323\pi\)
−0.783022 + 0.621995i \(0.786323\pi\)
\(674\) 14578.4 0.833147
\(675\) 0 0
\(676\) −14385.6 −0.818478
\(677\) −17846.8 17846.8i −1.01316 1.01316i −0.999912 0.0132440i \(-0.995784\pi\)
−0.0132440 0.999912i \(-0.504216\pi\)
\(678\) 0 0
\(679\) 9327.00i 0.527154i
\(680\) −4422.29 8996.09i −0.249393 0.507330i
\(681\) 0 0
\(682\) −9102.57 + 9102.57i −0.511078 + 0.511078i
\(683\) −4610.86 + 4610.86i −0.258316 + 0.258316i −0.824369 0.566053i \(-0.808470\pi\)
0.566053 + 0.824369i \(0.308470\pi\)
\(684\) 0 0
\(685\) 5517.31 16186.4i 0.307745 0.902847i
\(686\) 686.000i 0.0381802i
\(687\) 0 0
\(688\) 3091.26 + 3091.26i 0.171298 + 0.171298i
\(689\) −15691.9 −0.867654
\(690\) 0 0
\(691\) −1414.28 −0.0778605 −0.0389302 0.999242i \(-0.512395\pi\)
−0.0389302 + 0.999242i \(0.512395\pi\)
\(692\) 6787.49 + 6787.49i 0.372864 + 0.372864i
\(693\) 0 0
\(694\) 8362.11i 0.457380i
\(695\) 9235.10 4539.78i 0.504039 0.247775i
\(696\) 0 0
\(697\) −25286.6 + 25286.6i −1.37417 + 1.37417i
\(698\) −9278.69 + 9278.69i −0.503157 + 0.503157i
\(699\) 0 0
\(700\) 3471.20 448.089i 0.187427 0.0241945i
\(701\) 20378.1i 1.09796i 0.835836 + 0.548979i \(0.184983\pi\)
−0.835836 + 0.548979i \(0.815017\pi\)
\(702\) 0 0
\(703\) −633.535 633.535i −0.0339889 0.0339889i
\(704\) −3202.63 −0.171454
\(705\) 0 0
\(706\) −12614.7 −0.672467
\(707\) 8889.86 + 8889.86i 0.472896 + 0.472896i
\(708\) 0 0
\(709\) 2551.74i 0.135166i 0.997714 + 0.0675831i \(0.0215288\pi\)
−0.997714 + 0.0675831i \(0.978471\pi\)
\(710\) −15473.7 5274.38i −0.817912 0.278794i
\(711\) 0 0
\(712\) 1423.45 1423.45i 0.0749242 0.0749242i
\(713\) 17608.8 17608.8i 0.924901 0.924901i
\(714\) 0 0
\(715\) 40307.0 + 13739.1i 2.10825 + 0.718619i
\(716\) 9179.34i 0.479117i
\(717\) 0 0
\(718\) 2710.01 + 2710.01i 0.140859 + 0.140859i
\(719\) −14660.4 −0.760416 −0.380208 0.924901i \(-0.624148\pi\)
−0.380208 + 0.924901i \(0.624148\pi\)
\(720\) 0 0
\(721\) 3577.15 0.184771
\(722\) −5619.07 5619.07i −0.289640 0.289640i
\(723\) 0 0
\(724\) 378.961i 0.0194530i
\(725\) 19417.2 25173.3i 0.994673 1.28954i
\(726\) 0 0
\(727\) 9221.73 9221.73i 0.470447 0.470447i −0.431612 0.902059i \(-0.642055\pi\)
0.902059 + 0.431612i \(0.142055\pi\)
\(728\) 3013.97 3013.97i 0.153441 0.153441i
\(729\) 0 0
\(730\) 13186.1 6482.01i 0.668548 0.328644i
\(731\) 30622.3i 1.54940i
\(732\) 0 0
\(733\) −5953.45 5953.45i −0.299994 0.299994i 0.541017 0.841012i \(-0.318039\pi\)
−0.841012 + 0.541017i \(0.818039\pi\)
\(734\) 10766.0 0.541389
\(735\) 0 0
\(736\) 6195.45 0.310282
\(737\) 32873.6 + 32873.6i 1.64303 + 1.64303i
\(738\) 0 0
\(739\) 10358.0i 0.515596i 0.966199 + 0.257798i \(0.0829968\pi\)
−0.966199 + 0.257798i \(0.917003\pi\)
\(740\) 240.648 706.001i 0.0119546 0.0350718i
\(741\) 0 0
\(742\) 2040.90 2040.90i 0.100976 0.100976i
\(743\) −25378.8 + 25378.8i −1.25311 + 1.25311i −0.298786 + 0.954320i \(0.596582\pi\)
−0.954320 + 0.298786i \(0.903418\pi\)
\(744\) 0 0
\(745\) −13201.8 26856.0i −0.649231 1.32071i
\(746\) 3201.22i 0.157111i
\(747\) 0 0
\(748\) 15862.8 + 15862.8i 0.775404 + 0.775404i
\(749\) −312.058 −0.0152235
\(750\) 0 0
\(751\) 14724.1 0.715432 0.357716 0.933830i \(-0.383556\pi\)
0.357716 + 0.933830i \(0.383556\pi\)
\(752\) 4223.97 + 4223.97i 0.204830 + 0.204830i
\(753\) 0 0
\(754\) 38717.1i 1.87002i
\(755\) −6825.80 13885.5i −0.329028 0.669330i
\(756\) 0 0
\(757\) 7636.45 7636.45i 0.366647 0.366647i −0.499606 0.866253i \(-0.666522\pi\)
0.866253 + 0.499606i \(0.166522\pi\)
\(758\) 12069.6 12069.6i 0.578347 0.578347i
\(759\) 0 0
\(760\) −1550.18 + 4547.83i −0.0739879 + 0.217062i
\(761\) 27010.6i 1.28664i −0.765597 0.643321i \(-0.777556\pi\)
0.765597 0.643321i \(-0.222444\pi\)
\(762\) 0 0
\(763\) −4167.56 4167.56i −0.197740 0.197740i
\(764\) −11926.5 −0.564774
\(765\) 0 0
\(766\) −14660.8 −0.691533
\(767\) −23090.5 23090.5i −1.08702 1.08702i
\(768\) 0 0
\(769\) 18288.0i 0.857582i 0.903404 + 0.428791i \(0.141060\pi\)
−0.903404 + 0.428791i \(0.858940\pi\)
\(770\) −7029.28 + 3455.44i −0.328984 + 0.161722i
\(771\) 0 0
\(772\) 9181.98 9181.98i 0.428066 0.428066i
\(773\) −1643.27 + 1643.27i −0.0764611 + 0.0764611i −0.744303 0.667842i \(-0.767218\pi\)
0.667842 + 0.744303i \(0.267218\pi\)
\(774\) 0 0
\(775\) −9819.80 + 12730.8i −0.455145 + 0.590070i
\(776\) 10659.4i 0.493107i
\(777\) 0 0
\(778\) 4897.18 + 4897.18i 0.225672 + 0.225672i
\(779\) 17140.5 0.788347
\(780\) 0 0
\(781\) 36585.1 1.67621
\(782\) −30686.4 30686.4i −1.40325 1.40325i
\(783\) 0 0
\(784\) 784.000i 0.0357143i
\(785\) 31591.3 + 10768.2i 1.43636 + 0.489599i
\(786\) 0 0
\(787\) 17422.9 17422.9i 0.789150 0.789150i −0.192205 0.981355i \(-0.561564\pi\)
0.981355 + 0.192205i \(0.0615639\pi\)
\(788\) 12994.6 12994.6i 0.587456 0.587456i
\(789\) 0 0
\(790\) −9518.73 3244.57i −0.428685 0.146122i
\(791\) 10504.7i 0.472193i
\(792\) 0 0
\(793\) 7881.47 + 7881.47i 0.352937 + 0.352937i
\(794\) 2889.48 0.129148
\(795\) 0 0
\(796\) 4092.68 0.182238
\(797\) −8434.48 8434.48i −0.374861 0.374861i 0.494383 0.869244i \(-0.335394\pi\)
−0.869244 + 0.494383i \(0.835394\pi\)
\(798\) 0 0
\(799\) 41843.1i 1.85270i
\(800\) −3967.08 + 512.102i −0.175322 + 0.0226319i
\(801\) 0 0
\(802\) 2101.14 2101.14i 0.0925110 0.0925110i
\(803\) −23251.1 + 23251.1i −1.02181 + 1.02181i
\(804\) 0 0
\(805\) 13598.0 6684.51i 0.595364 0.292668i
\(806\) 19580.2i 0.855688i
\(807\) 0 0
\(808\) −10159.8 10159.8i −0.442354 0.442354i
\(809\) −34990.7 −1.52065 −0.760327 0.649540i \(-0.774961\pi\)
−0.760327 + 0.649540i \(0.774961\pi\)
\(810\) 0 0
\(811\) −44670.0 −1.93413 −0.967063 0.254537i \(-0.918077\pi\)
−0.967063 + 0.254537i \(0.918077\pi\)
\(812\) 5035.58 + 5035.58i 0.217628 + 0.217628i
\(813\) 0 0
\(814\) 1669.23i 0.0718752i
\(815\) 7808.52 22908.2i 0.335608 0.984588i
\(816\) 0 0
\(817\) −10378.7 + 10378.7i −0.444436 + 0.444436i
\(818\) −2734.34 + 2734.34i −0.116875 + 0.116875i
\(819\) 0 0
\(820\) 6295.14 + 12806.0i 0.268092 + 0.545370i
\(821\) 31375.0i 1.33373i −0.745177 0.666866i \(-0.767635\pi\)
0.745177 0.666866i \(-0.232365\pi\)
\(822\) 0 0
\(823\) −4697.73 4697.73i −0.198970 0.198970i 0.600588 0.799558i \(-0.294933\pi\)
−0.799558 + 0.600588i \(0.794933\pi\)
\(824\) −4088.17 −0.172838
\(825\) 0 0
\(826\) 6006.33 0.253011
\(827\) 8084.35 + 8084.35i 0.339928 + 0.339928i 0.856340 0.516412i \(-0.172733\pi\)
−0.516412 + 0.856340i \(0.672733\pi\)
\(828\) 0 0
\(829\) 19624.9i 0.822196i 0.911591 + 0.411098i \(0.134855\pi\)
−0.911591 + 0.411098i \(0.865145\pi\)
\(830\) −4722.33 9606.46i −0.197487 0.401741i
\(831\) 0 0
\(832\) −3444.54 + 3444.54i −0.143531 + 0.143531i
\(833\) 3883.20 3883.20i 0.161518 0.161518i
\(834\) 0 0
\(835\) −6203.12 + 18198.4i −0.257087 + 0.754229i
\(836\) 10752.6i 0.444841i
\(837\) 0 0
\(838\) 8239.08 + 8239.08i 0.339635 + 0.339635i
\(839\) −1357.49 −0.0558590 −0.0279295 0.999610i \(-0.508891\pi\)
−0.0279295 + 0.999610i \(0.508891\pi\)
\(840\) 0 0
\(841\) 40297.4 1.65228
\(842\) 2228.99 + 2228.99i 0.0912304 + 0.0912304i
\(843\) 0 0
\(844\) 1103.93i 0.0450225i
\(845\) 36084.6 17738.4i 1.46905 0.722155i
\(846\) 0 0
\(847\) 5806.63 5806.63i 0.235559 0.235559i
\(848\) −2332.46 + 2332.46i −0.0944539 + 0.0944539i
\(849\) 0 0
\(850\) 22185.7 + 17112.7i 0.895249 + 0.690543i
\(851\) 3229.10i 0.130073i
\(852\) 0 0
\(853\) −29496.2 29496.2i −1.18398 1.18398i −0.978705 0.205272i \(-0.934192\pi\)
−0.205272 0.978705i \(-0.565808\pi\)
\(854\) −2050.14 −0.0821480
\(855\) 0 0
\(856\) 356.638 0.0142402
\(857\) 12080.3 + 12080.3i 0.481510 + 0.481510i 0.905614 0.424104i \(-0.139411\pi\)
−0.424104 + 0.905614i \(0.639411\pi\)
\(858\) 0 0
\(859\) 38185.8i 1.51674i 0.651822 + 0.758372i \(0.274005\pi\)
−0.651822 + 0.758372i \(0.725995\pi\)
\(860\) −11565.8 3942.34i −0.458595 0.156317i
\(861\) 0 0
\(862\) 20150.9 20150.9i 0.796220 0.796220i
\(863\) −17934.6 + 17934.6i −0.707416 + 0.707416i −0.965991 0.258575i \(-0.916747\pi\)
0.258575 + 0.965991i \(0.416747\pi\)
\(864\) 0 0
\(865\) −25395.1 8656.22i −0.998221 0.340255i
\(866\) 18597.7i 0.729764i
\(867\) 0 0
\(868\) −2546.62 2546.62i −0.0995830 0.0995830i
\(869\) 22505.6 0.878537
\(870\) 0 0
\(871\) 70713.5 2.75090
\(872\) 4762.92 + 4762.92i 0.184969 + 0.184969i
\(873\) 0 0
\(874\) 20800.8i 0.805031i
\(875\) −8154.60 + 5404.22i −0.315058 + 0.208795i
\(876\) 0 0
\(877\) −10265.9 + 10265.9i −0.395272 + 0.395272i −0.876562 0.481290i \(-0.840168\pi\)
0.481290 + 0.876562i \(0.340168\pi\)
\(878\) −7037.93 + 7037.93i −0.270522 + 0.270522i
\(879\) 0 0
\(880\) 8033.46 3949.08i 0.307736 0.151277i
\(881\) 13503.1i 0.516381i 0.966094 + 0.258190i \(0.0831262\pi\)
−0.966094 + 0.258190i \(0.916874\pi\)
\(882\) 0 0
\(883\) −3590.04 3590.04i −0.136823 0.136823i 0.635378 0.772201i \(-0.280844\pi\)
−0.772201 + 0.635378i \(0.780844\pi\)
\(884\) 34122.0 1.29824
\(885\) 0 0
\(886\) 23143.9 0.877579
\(887\) −5217.72 5217.72i −0.197513 0.197513i 0.601420 0.798933i \(-0.294602\pi\)
−0.798933 + 0.601420i \(0.794602\pi\)
\(888\) 0 0
\(889\) 10975.5i 0.414066i
\(890\) −1815.35 + 5325.78i −0.0683716 + 0.200585i
\(891\) 0 0
\(892\) −1771.21 + 1771.21i −0.0664849 + 0.0664849i
\(893\) −14181.7 + 14181.7i −0.531436 + 0.531436i
\(894\) 0 0
\(895\) 11318.8 + 23025.4i 0.422732 + 0.859948i
\(896\) 896.000i 0.0334077i
\(897\) 0 0
\(898\) −164.772 164.772i −0.00612308 0.00612308i
\(899\) −32713.6 −1.21364
\(900\) 0 0
\(901\) 23105.6 0.854339
\(902\) −22580.8 22580.8i −0.833545 0.833545i
\(903\) 0 0
\(904\) 12005.4i 0.441696i
\(905\) 467.287 + 950.583i 0.0171637 + 0.0349154i
\(906\) 0 0
\(907\) −23419.2 + 23419.2i −0.857357 + 0.857357i −0.991026 0.133669i \(-0.957324\pi\)
0.133669 + 0.991026i \(0.457324\pi\)
\(908\) 18936.5 18936.5i 0.692104 0.692104i
\(909\) 0 0
\(910\) −3843.78 + 11276.7i −0.140022 + 0.410789i
\(911\) 4729.94i 0.172020i −0.996294 0.0860098i \(-0.972588\pi\)
0.996294 0.0860098i \(-0.0274116\pi\)
\(912\) 0 0
\(913\) 16939.1 + 16939.1i 0.614022 + 0.614022i
\(914\) 16247.9 0.588001
\(915\) 0 0
\(916\) −968.599 −0.0349382
\(917\) −7400.43 7400.43i −0.266503 0.266503i
\(918\) 0 0
\(919\) 26469.5i 0.950108i −0.879957 0.475054i \(-0.842429\pi\)
0.879957 0.475054i \(-0.157571\pi\)
\(920\) −15540.6 + 7639.44i −0.556912 + 0.273766i
\(921\) 0 0
\(922\) 20042.3 20042.3i 0.715899 0.715899i
\(923\) 39348.5 39348.5i 1.40322 1.40322i
\(924\) 0 0
\(925\) 266.910 + 2067.66i 0.00948751 + 0.0734966i
\(926\) 6156.25i 0.218474i
\(927\) 0 0
\(928\) −5754.95 5754.95i −0.203573 0.203573i
\(929\) −25871.8 −0.913697 −0.456849 0.889544i \(-0.651022\pi\)
−0.456849 + 0.889544i \(0.651022\pi\)
\(930\) 0 0
\(931\) −2632.23 −0.0926614
\(932\) 8299.83 + 8299.83i 0.291706 + 0.291706i
\(933\) 0 0
\(934\) 23600.8i 0.826810i
\(935\) −59350.2 20230.2i −2.07589 0.707591i
\(936\) 0 0
\(937\) 10302.9 10302.9i 0.359211 0.359211i −0.504311 0.863522i \(-0.668253\pi\)
0.863522 + 0.504311i \(0.168253\pi\)
\(938\) −9197.05 + 9197.05i −0.320143 + 0.320143i
\(939\) 0 0
\(940\) −15803.8 5386.91i −0.548366 0.186917i
\(941\) 19838.5i 0.687264i −0.939104 0.343632i \(-0.888343\pi\)
0.939104 0.343632i \(-0.111657\pi\)
\(942\) 0 0
\(943\) 43682.2 + 43682.2i 1.50847 + 1.50847i
\(944\) −6864.38 −0.236670
\(945\) 0 0
\(946\) 27345.6 0.939833
\(947\) 8536.06 + 8536.06i 0.292909 + 0.292909i 0.838228 0.545319i \(-0.183592\pi\)
−0.545319 + 0.838228i \(0.683592\pi\)
\(948\) 0 0
\(949\) 50014.7i 1.71080i
\(950\) −1719.35 13319.2i −0.0587189 0.454876i
\(951\) 0 0
\(952\) −4437.94 + 4437.94i −0.151087 + 0.151087i
\(953\) 25950.7 25950.7i 0.882085 0.882085i −0.111661 0.993746i \(-0.535617\pi\)
0.993746 + 0.111661i \(0.0356171\pi\)
\(954\) 0 0
\(955\) 29916.4 14706.3i 1.01369 0.498308i
\(956\) 22152.1i 0.749425i
\(957\) 0 0
\(958\) 7981.56 + 7981.56i 0.269178 + 0.269178i
\(959\) −10706.8 −0.360523
\(960\) 0 0
\(961\) −13246.9 −0.444661
\(962\) 1795.31 + 1795.31i 0.0601696 + 0.0601696i
\(963\) 0 0
\(964\) 7368.77i 0.246195i
\(965\) −11710.0 + 34354.1i −0.390629 + 1.14601i
\(966\) 0 0
\(967\) −22719.0 + 22719.0i −0.755525 + 0.755525i −0.975505 0.219979i \(-0.929401\pi\)
0.219979 + 0.975505i \(0.429401\pi\)
\(968\) −6636.15 + 6636.15i −0.220345 + 0.220345i
\(969\) 0 0
\(970\) −13143.8 26738.0i −0.435076 0.885058i
\(971\) 43649.4i 1.44261i −0.692617 0.721306i \(-0.743542\pi\)
0.692617 0.721306i \(-0.256458\pi\)
\(972\) 0 0
\(973\) −4555.85 4555.85i −0.150107 0.150107i
\(974\) 16551.2 0.544492
\(975\) 0 0
\(976\) 2343.02 0.0768424
\(977\) −16833.7 16833.7i −0.551235 0.551235i 0.375562 0.926797i \(-0.377450\pi\)
−0.926797 + 0.375562i \(0.877450\pi\)
\(978\) 0 0
\(979\) 12592.0i 0.411074i
\(980\) −966.729 1966.58i −0.0315112 0.0641021i
\(981\) 0 0
\(982\) −12695.8 + 12695.8i −0.412567 + 0.412567i
\(983\) −21752.1 + 21752.1i −0.705784 + 0.705784i −0.965646 0.259862i \(-0.916323\pi\)
0.259862 + 0.965646i \(0.416323\pi\)
\(984\) 0 0
\(985\) −16572.3 + 48619.0i −0.536080 + 1.57272i
\(986\) 57009.2i 1.84132i
\(987\) 0 0
\(988\) −11564.8 11564.8i −0.372394 0.372394i
\(989\) −52899.7 −1.70082
\(990\) 0 0
\(991\) 46742.8 1.49832 0.749159 0.662390i \(-0.230458\pi\)
0.749159 + 0.662390i \(0.230458\pi\)
\(992\) 2910.43 + 2910.43i 0.0931514 + 0.0931514i
\(993\) 0 0
\(994\) 10235.4i 0.326607i
\(995\) −10266.0 + 5046.57i −0.327091 + 0.160791i
\(996\) 0 0
\(997\) 43984.5 43984.5i 1.39720 1.39720i 0.589232 0.807964i \(-0.299431\pi\)
0.807964 0.589232i \(-0.200569\pi\)
\(998\) 15716.1 15716.1i 0.498481 0.498481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.m.a.323.2 yes 16
3.2 odd 2 630.4.m.b.323.7 yes 16
5.2 odd 4 630.4.m.b.197.7 yes 16
15.2 even 4 inner 630.4.m.a.197.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.4.m.a.197.2 16 15.2 even 4 inner
630.4.m.a.323.2 yes 16 1.1 even 1 trivial
630.4.m.b.197.7 yes 16 5.2 odd 4
630.4.m.b.323.7 yes 16 3.2 odd 2