Properties

Label 630.4.m.a.323.4
Level $630$
Weight $4$
Character 630.323
Analytic conductor $37.171$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(197,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.197");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} - 62 x^{14} + 184 x^{13} + 5442 x^{12} + 68448 x^{11} + 1829094 x^{10} + \cdots + 101023536964 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.4
Root \(-4.87117 + 11.7600i\) of defining polynomial
Character \(\chi\) \(=\) 630.323
Dual form 630.4.m.a.197.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +4.00000i q^{4} +(2.20200 + 10.9614i) q^{5} +(-4.94975 + 4.94975i) q^{7} +(5.65685 - 5.65685i) q^{8} +(12.3876 - 18.6158i) q^{10} -11.1562i q^{11} +(-13.2513 - 13.2513i) q^{13} +14.0000 q^{14} -16.0000 q^{16} +(-64.0454 - 64.0454i) q^{17} -24.3466i q^{19} +(-43.8454 + 8.80800i) q^{20} +(-15.7773 + 15.7773i) q^{22} +(-34.3522 + 34.3522i) q^{23} +(-115.302 + 48.2738i) q^{25} +37.4803i q^{26} +(-19.7990 - 19.7990i) q^{28} -100.235 q^{29} +255.547 q^{31} +(22.6274 + 22.6274i) q^{32} +181.148i q^{34} +(-65.1553 - 43.3566i) q^{35} +(269.852 - 269.852i) q^{37} +(-34.4312 + 34.4312i) q^{38} +(74.4632 + 49.5504i) q^{40} -209.816i q^{41} +(131.973 + 131.973i) q^{43} +44.6248 q^{44} +97.1626 q^{46} +(-101.411 - 101.411i) q^{47} -49.0000i q^{49} +(231.332 + 94.7928i) q^{50} +(53.0052 - 53.0052i) q^{52} +(-88.7497 + 88.7497i) q^{53} +(122.287 - 24.5660i) q^{55} +56.0000i q^{56} +(141.754 + 141.754i) q^{58} +130.691 q^{59} +926.587 q^{61} +(-361.398 - 361.398i) q^{62} -64.0000i q^{64} +(116.073 - 174.431i) q^{65} +(234.513 - 234.513i) q^{67} +(256.182 - 256.182i) q^{68} +(30.8280 + 153.459i) q^{70} +35.1316i q^{71} +(509.130 + 509.130i) q^{73} -763.257 q^{74} +97.3862 q^{76} +(55.2204 + 55.2204i) q^{77} -577.709i q^{79} +(-35.2320 - 175.382i) q^{80} +(-296.724 + 296.724i) q^{82} +(87.0751 - 87.0751i) q^{83} +(560.996 - 843.052i) q^{85} -373.275i q^{86} +(-63.1091 - 63.1091i) q^{88} -130.731 q^{89} +131.181 q^{91} +(-137.409 - 137.409i) q^{92} +286.833i q^{94} +(266.871 - 53.6111i) q^{95} +(-948.039 + 948.039i) q^{97} +(-69.2965 + 69.2965i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 44 q^{5} - 24 q^{10} - 212 q^{13} + 224 q^{14} - 256 q^{16} + 32 q^{17} + 32 q^{20} + 72 q^{22} - 128 q^{23} - 268 q^{25} + 232 q^{29} - 200 q^{31} + 112 q^{35} + 900 q^{37} - 368 q^{38} - 128 q^{40}+ \cdots - 2668 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) 0 0
\(4\) 4.00000i 0.500000i
\(5\) 2.20200 + 10.9614i 0.196953 + 0.980413i
\(6\) 0 0
\(7\) −4.94975 + 4.94975i −0.267261 + 0.267261i
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) 0 0
\(10\) 12.3876 18.6158i 0.391730 0.588683i
\(11\) 11.1562i 0.305793i −0.988242 0.152897i \(-0.951140\pi\)
0.988242 0.152897i \(-0.0488601\pi\)
\(12\) 0 0
\(13\) −13.2513 13.2513i −0.282711 0.282711i 0.551478 0.834189i \(-0.314064\pi\)
−0.834189 + 0.551478i \(0.814064\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) −64.0454 64.0454i −0.913723 0.913723i 0.0828395 0.996563i \(-0.473601\pi\)
−0.996563 + 0.0828395i \(0.973601\pi\)
\(18\) 0 0
\(19\) 24.3466i 0.293973i −0.989139 0.146986i \(-0.953043\pi\)
0.989139 0.146986i \(-0.0469574\pi\)
\(20\) −43.8454 + 8.80800i −0.490206 + 0.0984764i
\(21\) 0 0
\(22\) −15.7773 + 15.7773i −0.152897 + 0.152897i
\(23\) −34.3522 + 34.3522i −0.311431 + 0.311431i −0.845464 0.534033i \(-0.820676\pi\)
0.534033 + 0.845464i \(0.320676\pi\)
\(24\) 0 0
\(25\) −115.302 + 48.2738i −0.922419 + 0.386190i
\(26\) 37.4803i 0.282711i
\(27\) 0 0
\(28\) −19.7990 19.7990i −0.133631 0.133631i
\(29\) −100.235 −0.641833 −0.320917 0.947107i \(-0.603991\pi\)
−0.320917 + 0.947107i \(0.603991\pi\)
\(30\) 0 0
\(31\) 255.547 1.48057 0.740283 0.672296i \(-0.234692\pi\)
0.740283 + 0.672296i \(0.234692\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 181.148i 0.913723i
\(35\) −65.1553 43.3566i −0.314664 0.209389i
\(36\) 0 0
\(37\) 269.852 269.852i 1.19901 1.19901i 0.224548 0.974463i \(-0.427910\pi\)
0.974463 0.224548i \(-0.0720904\pi\)
\(38\) −34.4312 + 34.4312i −0.146986 + 0.146986i
\(39\) 0 0
\(40\) 74.4632 + 49.5504i 0.294341 + 0.195865i
\(41\) 209.816i 0.799212i −0.916687 0.399606i \(-0.869147\pi\)
0.916687 0.399606i \(-0.130853\pi\)
\(42\) 0 0
\(43\) 131.973 + 131.973i 0.468038 + 0.468038i 0.901278 0.433240i \(-0.142630\pi\)
−0.433240 + 0.901278i \(0.642630\pi\)
\(44\) 44.6248 0.152897
\(45\) 0 0
\(46\) 97.1626 0.311431
\(47\) −101.411 101.411i −0.314730 0.314730i 0.532009 0.846739i \(-0.321437\pi\)
−0.846739 + 0.532009i \(0.821437\pi\)
\(48\) 0 0
\(49\) 49.0000i 0.142857i
\(50\) 231.332 + 94.7928i 0.654305 + 0.268114i
\(51\) 0 0
\(52\) 53.0052 53.0052i 0.141356 0.141356i
\(53\) −88.7497 + 88.7497i −0.230013 + 0.230013i −0.812698 0.582685i \(-0.802002\pi\)
0.582685 + 0.812698i \(0.302002\pi\)
\(54\) 0 0
\(55\) 122.287 24.5660i 0.299803 0.0602268i
\(56\) 56.0000i 0.133631i
\(57\) 0 0
\(58\) 141.754 + 141.754i 0.320917 + 0.320917i
\(59\) 130.691 0.288382 0.144191 0.989550i \(-0.453942\pi\)
0.144191 + 0.989550i \(0.453942\pi\)
\(60\) 0 0
\(61\) 926.587 1.94487 0.972437 0.233167i \(-0.0749087\pi\)
0.972437 + 0.233167i \(0.0749087\pi\)
\(62\) −361.398 361.398i −0.740283 0.740283i
\(63\) 0 0
\(64\) 64.0000i 0.125000i
\(65\) 116.073 174.431i 0.221493 0.332855i
\(66\) 0 0
\(67\) 234.513 234.513i 0.427616 0.427616i −0.460200 0.887815i \(-0.652222\pi\)
0.887815 + 0.460200i \(0.152222\pi\)
\(68\) 256.182 256.182i 0.456862 0.456862i
\(69\) 0 0
\(70\) 30.8280 + 153.459i 0.0526379 + 0.262026i
\(71\) 35.1316i 0.0587233i 0.999569 + 0.0293617i \(0.00934745\pi\)
−0.999569 + 0.0293617i \(0.990653\pi\)
\(72\) 0 0
\(73\) 509.130 + 509.130i 0.816289 + 0.816289i 0.985568 0.169279i \(-0.0541438\pi\)
−0.169279 + 0.985568i \(0.554144\pi\)
\(74\) −763.257 −1.19901
\(75\) 0 0
\(76\) 97.3862 0.146986
\(77\) 55.2204 + 55.2204i 0.0817266 + 0.0817266i
\(78\) 0 0
\(79\) 577.709i 0.822751i −0.911466 0.411375i \(-0.865049\pi\)
0.911466 0.411375i \(-0.134951\pi\)
\(80\) −35.2320 175.382i −0.0492382 0.245103i
\(81\) 0 0
\(82\) −296.724 + 296.724i −0.399606 + 0.399606i
\(83\) 87.0751 87.0751i 0.115153 0.115153i −0.647182 0.762335i \(-0.724053\pi\)
0.762335 + 0.647182i \(0.224053\pi\)
\(84\) 0 0
\(85\) 560.996 843.052i 0.715866 1.07579i
\(86\) 373.275i 0.468038i
\(87\) 0 0
\(88\) −63.1091 63.1091i −0.0764483 0.0764483i
\(89\) −130.731 −0.155702 −0.0778508 0.996965i \(-0.524806\pi\)
−0.0778508 + 0.996965i \(0.524806\pi\)
\(90\) 0 0
\(91\) 131.181 0.151116
\(92\) −137.409 137.409i −0.155716 0.155716i
\(93\) 0 0
\(94\) 286.833i 0.314730i
\(95\) 266.871 53.6111i 0.288215 0.0578988i
\(96\) 0 0
\(97\) −948.039 + 948.039i −0.992358 + 0.992358i −0.999971 0.00761270i \(-0.997577\pi\)
0.00761270 + 0.999971i \(0.497577\pi\)
\(98\) −69.2965 + 69.2965i −0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −193.095 461.210i −0.193095 0.461210i
\(101\) 1264.05i 1.24532i −0.782492 0.622661i \(-0.786052\pi\)
0.782492 0.622661i \(-0.213948\pi\)
\(102\) 0 0
\(103\) −1276.13 1276.13i −1.22079 1.22079i −0.967352 0.253437i \(-0.918439\pi\)
−0.253437 0.967352i \(-0.581561\pi\)
\(104\) −149.921 −0.141356
\(105\) 0 0
\(106\) 251.022 0.230013
\(107\) −863.617 863.617i −0.780271 0.780271i 0.199606 0.979876i \(-0.436034\pi\)
−0.979876 + 0.199606i \(0.936034\pi\)
\(108\) 0 0
\(109\) 595.503i 0.523292i 0.965164 + 0.261646i \(0.0842653\pi\)
−0.965164 + 0.261646i \(0.915735\pi\)
\(110\) −207.682 138.199i −0.180015 0.119788i
\(111\) 0 0
\(112\) 79.1960 79.1960i 0.0668153 0.0668153i
\(113\) 1045.53 1045.53i 0.870401 0.870401i −0.122115 0.992516i \(-0.538968\pi\)
0.992516 + 0.122115i \(0.0389676\pi\)
\(114\) 0 0
\(115\) −452.190 300.903i −0.366669 0.243994i
\(116\) 400.940i 0.320917i
\(117\) 0 0
\(118\) −184.825 184.825i −0.144191 0.144191i
\(119\) 634.017 0.488406
\(120\) 0 0
\(121\) 1206.54 0.906491
\(122\) −1310.39 1310.39i −0.972437 0.972437i
\(123\) 0 0
\(124\) 1022.19i 0.740283i
\(125\) −783.042 1157.57i −0.560299 0.828290i
\(126\) 0 0
\(127\) 1574.42 1574.42i 1.10006 1.10006i 0.105657 0.994403i \(-0.466305\pi\)
0.994403 0.105657i \(-0.0336945\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −410.835 + 82.5317i −0.277174 + 0.0556808i
\(131\) 280.821i 0.187294i −0.995605 0.0936469i \(-0.970148\pi\)
0.995605 0.0936469i \(-0.0298525\pi\)
\(132\) 0 0
\(133\) 120.509 + 120.509i 0.0785675 + 0.0785675i
\(134\) −663.302 −0.427616
\(135\) 0 0
\(136\) −724.591 −0.456862
\(137\) 252.477 + 252.477i 0.157450 + 0.157450i 0.781436 0.623986i \(-0.214488\pi\)
−0.623986 + 0.781436i \(0.714488\pi\)
\(138\) 0 0
\(139\) 264.069i 0.161137i 0.996749 + 0.0805684i \(0.0256736\pi\)
−0.996749 + 0.0805684i \(0.974326\pi\)
\(140\) 173.426 260.621i 0.104694 0.157332i
\(141\) 0 0
\(142\) 49.6836 49.6836i 0.0293617 0.0293617i
\(143\) −147.834 + 147.834i −0.0864512 + 0.0864512i
\(144\) 0 0
\(145\) −220.717 1098.71i −0.126411 0.629261i
\(146\) 1440.04i 0.816289i
\(147\) 0 0
\(148\) 1079.41 + 1079.41i 0.599505 + 0.599505i
\(149\) 2198.50 1.20878 0.604389 0.796690i \(-0.293417\pi\)
0.604389 + 0.796690i \(0.293417\pi\)
\(150\) 0 0
\(151\) −765.951 −0.412796 −0.206398 0.978468i \(-0.566174\pi\)
−0.206398 + 0.978468i \(0.566174\pi\)
\(152\) −137.725 137.725i −0.0734932 0.0734932i
\(153\) 0 0
\(154\) 156.187i 0.0817266i
\(155\) 562.714 + 2801.14i 0.291602 + 1.45157i
\(156\) 0 0
\(157\) 726.741 726.741i 0.369429 0.369429i −0.497840 0.867269i \(-0.665873\pi\)
0.867269 + 0.497840i \(0.165873\pi\)
\(158\) −817.003 + 817.003i −0.411375 + 0.411375i
\(159\) 0 0
\(160\) −198.201 + 297.853i −0.0979325 + 0.147171i
\(161\) 340.069i 0.166467i
\(162\) 0 0
\(163\) −2180.21 2180.21i −1.04765 1.04765i −0.998806 0.0488469i \(-0.984445\pi\)
−0.0488469 0.998806i \(-0.515555\pi\)
\(164\) 839.262 0.399606
\(165\) 0 0
\(166\) −246.285 −0.115153
\(167\) −2005.42 2005.42i −0.929247 0.929247i 0.0684103 0.997657i \(-0.478207\pi\)
−0.997657 + 0.0684103i \(0.978207\pi\)
\(168\) 0 0
\(169\) 1845.81i 0.840149i
\(170\) −1985.62 + 398.888i −0.895826 + 0.179960i
\(171\) 0 0
\(172\) −527.891 + 527.891i −0.234019 + 0.234019i
\(173\) −548.219 + 548.219i −0.240927 + 0.240927i −0.817233 0.576307i \(-0.804493\pi\)
0.576307 + 0.817233i \(0.304493\pi\)
\(174\) 0 0
\(175\) 331.775 809.661i 0.143313 0.349741i
\(176\) 178.499i 0.0764483i
\(177\) 0 0
\(178\) 184.881 + 184.881i 0.0778508 + 0.0778508i
\(179\) 567.116 0.236806 0.118403 0.992966i \(-0.462223\pi\)
0.118403 + 0.992966i \(0.462223\pi\)
\(180\) 0 0
\(181\) 1630.60 0.669622 0.334811 0.942285i \(-0.391328\pi\)
0.334811 + 0.942285i \(0.391328\pi\)
\(182\) −185.518 185.518i −0.0755578 0.0755578i
\(183\) 0 0
\(184\) 388.650i 0.155716i
\(185\) 3552.16 + 2363.73i 1.41167 + 0.939377i
\(186\) 0 0
\(187\) −714.504 + 714.504i −0.279410 + 0.279410i
\(188\) 405.643 405.643i 0.157365 0.157365i
\(189\) 0 0
\(190\) −453.230 301.595i −0.173057 0.115158i
\(191\) 746.332i 0.282737i 0.989957 + 0.141368i \(0.0451502\pi\)
−0.989957 + 0.141368i \(0.954850\pi\)
\(192\) 0 0
\(193\) −794.631 794.631i −0.296367 0.296367i 0.543222 0.839589i \(-0.317204\pi\)
−0.839589 + 0.543222i \(0.817204\pi\)
\(194\) 2681.46 0.992358
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −1274.65 1274.65i −0.460990 0.460990i 0.437990 0.898980i \(-0.355691\pi\)
−0.898980 + 0.437990i \(0.855691\pi\)
\(198\) 0 0
\(199\) 2325.26i 0.828309i 0.910207 + 0.414155i \(0.135923\pi\)
−0.910207 + 0.414155i \(0.864077\pi\)
\(200\) −379.171 + 925.327i −0.134057 + 0.327152i
\(201\) 0 0
\(202\) −1787.63 + 1787.63i −0.622661 + 0.622661i
\(203\) 496.138 496.138i 0.171537 0.171537i
\(204\) 0 0
\(205\) 2299.86 462.014i 0.783558 0.157407i
\(206\) 3609.45i 1.22079i
\(207\) 0 0
\(208\) 212.021 + 212.021i 0.0706778 + 0.0706778i
\(209\) −271.615 −0.0898949
\(210\) 0 0
\(211\) 4052.63 1.32225 0.661125 0.750276i \(-0.270079\pi\)
0.661125 + 0.750276i \(0.270079\pi\)
\(212\) −354.999 354.999i −0.115007 0.115007i
\(213\) 0 0
\(214\) 2442.68i 0.780271i
\(215\) −1155.99 + 1737.20i −0.366689 + 0.551052i
\(216\) 0 0
\(217\) −1264.89 + 1264.89i −0.395698 + 0.395698i
\(218\) 842.168 842.168i 0.261646 0.261646i
\(219\) 0 0
\(220\) 98.2639 + 489.148i 0.0301134 + 0.149902i
\(221\) 1697.37i 0.516640i
\(222\) 0 0
\(223\) −2347.66 2347.66i −0.704982 0.704982i 0.260494 0.965476i \(-0.416115\pi\)
−0.965476 + 0.260494i \(0.916115\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) −2957.21 −0.870401
\(227\) 2784.65 + 2784.65i 0.814202 + 0.814202i 0.985261 0.171059i \(-0.0547189\pi\)
−0.171059 + 0.985261i \(0.554719\pi\)
\(228\) 0 0
\(229\) 520.541i 0.150211i 0.997176 + 0.0751054i \(0.0239293\pi\)
−0.997176 + 0.0751054i \(0.976071\pi\)
\(230\) 213.952 + 1065.03i 0.0613373 + 0.305331i
\(231\) 0 0
\(232\) −567.014 + 567.014i −0.160458 + 0.160458i
\(233\) −1571.50 + 1571.50i −0.441854 + 0.441854i −0.892635 0.450780i \(-0.851146\pi\)
0.450780 + 0.892635i \(0.351146\pi\)
\(234\) 0 0
\(235\) 888.293 1334.91i 0.246578 0.370552i
\(236\) 522.764i 0.144191i
\(237\) 0 0
\(238\) −896.636 896.636i −0.244203 0.244203i
\(239\) 1384.19 0.374626 0.187313 0.982300i \(-0.440022\pi\)
0.187313 + 0.982300i \(0.440022\pi\)
\(240\) 0 0
\(241\) 3182.15 0.850542 0.425271 0.905066i \(-0.360179\pi\)
0.425271 + 0.905066i \(0.360179\pi\)
\(242\) −1706.30 1706.30i −0.453245 0.453245i
\(243\) 0 0
\(244\) 3706.35i 0.972437i
\(245\) 537.106 107.898i 0.140059 0.0281361i
\(246\) 0 0
\(247\) −322.623 + 322.623i −0.0831094 + 0.0831094i
\(248\) 1445.59 1445.59i 0.370141 0.370141i
\(249\) 0 0
\(250\) −529.664 + 2744.44i −0.133996 + 0.694295i
\(251\) 2486.77i 0.625354i −0.949860 0.312677i \(-0.898774\pi\)
0.949860 0.312677i \(-0.101226\pi\)
\(252\) 0 0
\(253\) 383.240 + 383.240i 0.0952336 + 0.0952336i
\(254\) −4453.14 −1.10006
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2405.54 + 2405.54i 0.583866 + 0.583866i 0.935963 0.352098i \(-0.114531\pi\)
−0.352098 + 0.935963i \(0.614531\pi\)
\(258\) 0 0
\(259\) 2671.40i 0.640898i
\(260\) 697.726 + 464.291i 0.166427 + 0.110747i
\(261\) 0 0
\(262\) −397.141 + 397.141i −0.0936469 + 0.0936469i
\(263\) 3431.00 3431.00i 0.804428 0.804428i −0.179357 0.983784i \(-0.557402\pi\)
0.983784 + 0.179357i \(0.0574016\pi\)
\(264\) 0 0
\(265\) −1168.24 777.390i −0.270810 0.180206i
\(266\) 340.852i 0.0785675i
\(267\) 0 0
\(268\) 938.050 + 938.050i 0.213808 + 0.213808i
\(269\) 954.486 0.216342 0.108171 0.994132i \(-0.465501\pi\)
0.108171 + 0.994132i \(0.465501\pi\)
\(270\) 0 0
\(271\) −6647.95 −1.49016 −0.745082 0.666973i \(-0.767589\pi\)
−0.745082 + 0.666973i \(0.767589\pi\)
\(272\) 1024.73 + 1024.73i 0.228431 + 0.228431i
\(273\) 0 0
\(274\) 714.114i 0.157450i
\(275\) 538.552 + 1286.34i 0.118094 + 0.282069i
\(276\) 0 0
\(277\) −886.468 + 886.468i −0.192284 + 0.192284i −0.796682 0.604398i \(-0.793414\pi\)
0.604398 + 0.796682i \(0.293414\pi\)
\(278\) 373.450 373.450i 0.0805684 0.0805684i
\(279\) 0 0
\(280\) −613.836 + 123.312i −0.131013 + 0.0263189i
\(281\) 6975.17i 1.48080i 0.672169 + 0.740398i \(0.265363\pi\)
−0.672169 + 0.740398i \(0.734637\pi\)
\(282\) 0 0
\(283\) −2865.87 2865.87i −0.601974 0.601974i 0.338862 0.940836i \(-0.389958\pi\)
−0.940836 + 0.338862i \(0.889958\pi\)
\(284\) −140.526 −0.0293617
\(285\) 0 0
\(286\) 418.138 0.0864512
\(287\) 1038.53 + 1038.53i 0.213598 + 0.213598i
\(288\) 0 0
\(289\) 3290.63i 0.669781i
\(290\) −1241.67 + 1865.95i −0.251425 + 0.377836i
\(291\) 0 0
\(292\) −2036.52 + 2036.52i −0.408145 + 0.408145i
\(293\) −3734.87 + 3734.87i −0.744688 + 0.744688i −0.973476 0.228788i \(-0.926524\pi\)
0.228788 + 0.973476i \(0.426524\pi\)
\(294\) 0 0
\(295\) 287.781 + 1432.55i 0.0567976 + 0.282733i
\(296\) 3053.03i 0.599505i
\(297\) 0 0
\(298\) −3109.14 3109.14i −0.604389 0.604389i
\(299\) 910.421 0.176090
\(300\) 0 0
\(301\) −1306.46 −0.250177
\(302\) 1083.22 + 1083.22i 0.206398 + 0.206398i
\(303\) 0 0
\(304\) 389.545i 0.0734932i
\(305\) 2040.34 + 10156.6i 0.383048 + 1.90678i
\(306\) 0 0
\(307\) 1810.71 1810.71i 0.336621 0.336621i −0.518473 0.855094i \(-0.673499\pi\)
0.855094 + 0.518473i \(0.173499\pi\)
\(308\) −220.882 + 220.882i −0.0408633 + 0.0408633i
\(309\) 0 0
\(310\) 3165.61 4757.20i 0.579982 0.871584i
\(311\) 5454.29i 0.994484i 0.867612 + 0.497242i \(0.165654\pi\)
−0.867612 + 0.497242i \(0.834346\pi\)
\(312\) 0 0
\(313\) −1449.71 1449.71i −0.261797 0.261797i 0.563987 0.825784i \(-0.309267\pi\)
−0.825784 + 0.563987i \(0.809267\pi\)
\(314\) −2055.54 −0.369429
\(315\) 0 0
\(316\) 2310.83 0.411375
\(317\) −5878.12 5878.12i −1.04148 1.04148i −0.999102 0.0423754i \(-0.986507\pi\)
−0.0423754 0.999102i \(-0.513493\pi\)
\(318\) 0 0
\(319\) 1118.24i 0.196268i
\(320\) 701.526 140.928i 0.122552 0.0246191i
\(321\) 0 0
\(322\) −480.930 + 480.930i −0.0832335 + 0.0832335i
\(323\) −1559.29 + 1559.29i −0.268610 + 0.268610i
\(324\) 0 0
\(325\) 2167.60 + 888.216i 0.369959 + 0.151598i
\(326\) 6166.57i 1.04765i
\(327\) 0 0
\(328\) −1186.90 1186.90i −0.199803 0.199803i
\(329\) 1003.92 0.168230
\(330\) 0 0
\(331\) −1074.33 −0.178400 −0.0892001 0.996014i \(-0.528431\pi\)
−0.0892001 + 0.996014i \(0.528431\pi\)
\(332\) 348.300 + 348.300i 0.0575767 + 0.0575767i
\(333\) 0 0
\(334\) 5672.19i 0.929247i
\(335\) 3086.97 + 2054.18i 0.503460 + 0.335020i
\(336\) 0 0
\(337\) 1465.54 1465.54i 0.236894 0.236894i −0.578669 0.815563i \(-0.696428\pi\)
0.815563 + 0.578669i \(0.196428\pi\)
\(338\) −2610.36 + 2610.36i −0.420074 + 0.420074i
\(339\) 0 0
\(340\) 3372.21 + 2243.99i 0.537893 + 0.357933i
\(341\) 2850.93i 0.452747i
\(342\) 0 0
\(343\) 242.538 + 242.538i 0.0381802 + 0.0381802i
\(344\) 1493.10 0.234019
\(345\) 0 0
\(346\) 1550.60 0.240927
\(347\) 7444.95 + 7444.95i 1.15177 + 1.15177i 0.986197 + 0.165578i \(0.0529490\pi\)
0.165578 + 0.986197i \(0.447051\pi\)
\(348\) 0 0
\(349\) 1705.27i 0.261550i 0.991412 + 0.130775i \(0.0417465\pi\)
−0.991412 + 0.130775i \(0.958254\pi\)
\(350\) −1614.23 + 675.833i −0.246527 + 0.103214i
\(351\) 0 0
\(352\) 252.436 252.436i 0.0382241 0.0382241i
\(353\) 1279.17 1279.17i 0.192871 0.192871i −0.604065 0.796935i \(-0.706453\pi\)
0.796935 + 0.604065i \(0.206453\pi\)
\(354\) 0 0
\(355\) −385.090 + 77.3598i −0.0575731 + 0.0115657i
\(356\) 522.923i 0.0778508i
\(357\) 0 0
\(358\) −802.024 802.024i −0.118403 0.118403i
\(359\) −10602.6 −1.55872 −0.779362 0.626574i \(-0.784457\pi\)
−0.779362 + 0.626574i \(0.784457\pi\)
\(360\) 0 0
\(361\) 6266.25 0.913580
\(362\) −2306.02 2306.02i −0.334811 0.334811i
\(363\) 0 0
\(364\) 524.724i 0.0755578i
\(365\) −4459.65 + 6701.85i −0.639530 + 0.961071i
\(366\) 0 0
\(367\) −3185.68 + 3185.68i −0.453110 + 0.453110i −0.896385 0.443275i \(-0.853816\pi\)
0.443275 + 0.896385i \(0.353816\pi\)
\(368\) 549.635 549.635i 0.0778578 0.0778578i
\(369\) 0 0
\(370\) −1680.69 8366.32i −0.236149 1.17553i
\(371\) 878.577i 0.122947i
\(372\) 0 0
\(373\) −7344.99 7344.99i −1.01959 1.01959i −0.999804 0.0197908i \(-0.993700\pi\)
−0.0197908 0.999804i \(-0.506300\pi\)
\(374\) 2020.92 0.279410
\(375\) 0 0
\(376\) −1147.33 −0.157365
\(377\) 1328.24 + 1328.24i 0.181453 + 0.181453i
\(378\) 0 0
\(379\) 473.320i 0.0641499i 0.999485 + 0.0320749i \(0.0102115\pi\)
−0.999485 + 0.0320749i \(0.989788\pi\)
\(380\) 214.445 + 1067.48i 0.0289494 + 0.144107i
\(381\) 0 0
\(382\) 1055.47 1055.47i 0.141368 0.141368i
\(383\) 4292.11 4292.11i 0.572628 0.572628i −0.360234 0.932862i \(-0.617303\pi\)
0.932862 + 0.360234i \(0.117303\pi\)
\(384\) 0 0
\(385\) −483.695 + 726.886i −0.0640296 + 0.0962221i
\(386\) 2247.56i 0.296367i
\(387\) 0 0
\(388\) −3792.16 3792.16i −0.496179 0.496179i
\(389\) 6713.73 0.875063 0.437532 0.899203i \(-0.355853\pi\)
0.437532 + 0.899203i \(0.355853\pi\)
\(390\) 0 0
\(391\) 4400.20 0.569124
\(392\) −277.186 277.186i −0.0357143 0.0357143i
\(393\) 0 0
\(394\) 3605.26i 0.460990i
\(395\) 6332.47 1272.11i 0.806635 0.162043i
\(396\) 0 0
\(397\) −4327.63 + 4327.63i −0.547097 + 0.547097i −0.925600 0.378503i \(-0.876439\pi\)
0.378503 + 0.925600i \(0.376439\pi\)
\(398\) 3288.42 3288.42i 0.414155 0.414155i
\(399\) 0 0
\(400\) 1844.84 772.381i 0.230605 0.0965476i
\(401\) 10695.5i 1.33194i −0.745977 0.665972i \(-0.768017\pi\)
0.745977 0.665972i \(-0.231983\pi\)
\(402\) 0 0
\(403\) −3386.32 3386.32i −0.418573 0.418573i
\(404\) 5056.19 0.622661
\(405\) 0 0
\(406\) −1403.29 −0.171537
\(407\) −3010.53 3010.53i −0.366649 0.366649i
\(408\) 0 0
\(409\) 12106.0i 1.46358i 0.681530 + 0.731790i \(0.261315\pi\)
−0.681530 + 0.731790i \(0.738685\pi\)
\(410\) −3905.88 2599.11i −0.470482 0.313075i
\(411\) 0 0
\(412\) 5104.54 5104.54i 0.610394 0.610394i
\(413\) −646.887 + 646.887i −0.0770732 + 0.0770732i
\(414\) 0 0
\(415\) 1146.20 + 762.721i 0.135578 + 0.0902181i
\(416\) 599.685i 0.0706778i
\(417\) 0 0
\(418\) 384.122 + 384.122i 0.0449474 + 0.0449474i
\(419\) −13263.1 −1.54641 −0.773207 0.634154i \(-0.781348\pi\)
−0.773207 + 0.634154i \(0.781348\pi\)
\(420\) 0 0
\(421\) 9762.69 1.13018 0.565089 0.825030i \(-0.308842\pi\)
0.565089 + 0.825030i \(0.308842\pi\)
\(422\) −5731.29 5731.29i −0.661125 0.661125i
\(423\) 0 0
\(424\) 1004.09i 0.115007i
\(425\) 10476.3 + 4292.88i 1.19571 + 0.489965i
\(426\) 0 0
\(427\) −4586.37 + 4586.37i −0.519789 + 0.519789i
\(428\) 3454.47 3454.47i 0.390135 0.390135i
\(429\) 0 0
\(430\) 4091.60 821.952i 0.458871 0.0921815i
\(431\) 12237.2i 1.36762i −0.729659 0.683811i \(-0.760321\pi\)
0.729659 0.683811i \(-0.239679\pi\)
\(432\) 0 0
\(433\) −7799.19 7799.19i −0.865601 0.865601i 0.126381 0.991982i \(-0.459664\pi\)
−0.991982 + 0.126381i \(0.959664\pi\)
\(434\) 3577.65 0.395698
\(435\) 0 0
\(436\) −2382.01 −0.261646
\(437\) 836.357 + 836.357i 0.0915524 + 0.0915524i
\(438\) 0 0
\(439\) 11028.7i 1.19903i 0.800365 + 0.599513i \(0.204639\pi\)
−0.800365 + 0.599513i \(0.795361\pi\)
\(440\) 552.794 830.727i 0.0598942 0.0900076i
\(441\) 0 0
\(442\) 2400.44 2400.44i 0.258320 0.258320i
\(443\) 6642.85 6642.85i 0.712441 0.712441i −0.254605 0.967045i \(-0.581945\pi\)
0.967045 + 0.254605i \(0.0819453\pi\)
\(444\) 0 0
\(445\) −287.869 1432.99i −0.0306659 0.152652i
\(446\) 6640.19i 0.704982i
\(447\) 0 0
\(448\) 316.784 + 316.784i 0.0334077 + 0.0334077i
\(449\) −9379.79 −0.985879 −0.492940 0.870064i \(-0.664078\pi\)
−0.492940 + 0.870064i \(0.664078\pi\)
\(450\) 0 0
\(451\) −2340.75 −0.244393
\(452\) 4182.13 + 4182.13i 0.435201 + 0.435201i
\(453\) 0 0
\(454\) 7876.18i 0.814202i
\(455\) 288.861 + 1437.92i 0.0297626 + 0.148156i
\(456\) 0 0
\(457\) −1475.37 + 1475.37i −0.151017 + 0.151017i −0.778572 0.627555i \(-0.784056\pi\)
0.627555 + 0.778572i \(0.284056\pi\)
\(458\) 736.156 736.156i 0.0751054 0.0751054i
\(459\) 0 0
\(460\) 1203.61 1808.76i 0.121997 0.183334i
\(461\) 4695.56i 0.474391i 0.971462 + 0.237195i \(0.0762281\pi\)
−0.971462 + 0.237195i \(0.923772\pi\)
\(462\) 0 0
\(463\) −11226.8 11226.8i −1.12690 1.12690i −0.990679 0.136219i \(-0.956505\pi\)
−0.136219 0.990679i \(-0.543495\pi\)
\(464\) 1603.76 0.160458
\(465\) 0 0
\(466\) 4444.86 0.441854
\(467\) −9068.66 9068.66i −0.898603 0.898603i 0.0967097 0.995313i \(-0.469168\pi\)
−0.995313 + 0.0967097i \(0.969168\pi\)
\(468\) 0 0
\(469\) 2321.56i 0.228570i
\(470\) −3144.08 + 631.607i −0.308565 + 0.0619869i
\(471\) 0 0
\(472\) 739.300 739.300i 0.0720954 0.0720954i
\(473\) 1472.31 1472.31i 0.143123 0.143123i
\(474\) 0 0
\(475\) 1175.30 + 2807.22i 0.113529 + 0.271166i
\(476\) 2536.07i 0.244203i
\(477\) 0 0
\(478\) −1957.54 1957.54i −0.187313 0.187313i
\(479\) 6196.56 0.591082 0.295541 0.955330i \(-0.404500\pi\)
0.295541 + 0.955330i \(0.404500\pi\)
\(480\) 0 0
\(481\) −7151.78 −0.677948
\(482\) −4500.25 4500.25i −0.425271 0.425271i
\(483\) 0 0
\(484\) 4826.16i 0.453245i
\(485\) −12479.4 8304.20i −1.16837 0.777473i
\(486\) 0 0
\(487\) −1520.50 + 1520.50i −0.141479 + 0.141479i −0.774299 0.632820i \(-0.781897\pi\)
0.632820 + 0.774299i \(0.281897\pi\)
\(488\) 5241.57 5241.57i 0.486218 0.486218i
\(489\) 0 0
\(490\) −912.174 606.992i −0.0840976 0.0559614i
\(491\) 11019.6i 1.01285i −0.862285 0.506423i \(-0.830967\pi\)
0.862285 0.506423i \(-0.169033\pi\)
\(492\) 0 0
\(493\) 6419.59 + 6419.59i 0.586458 + 0.586458i
\(494\) 912.517 0.0831094
\(495\) 0 0
\(496\) −4088.75 −0.370141
\(497\) −173.893 173.893i −0.0156945 0.0156945i
\(498\) 0 0
\(499\) 22048.8i 1.97803i −0.147800 0.989017i \(-0.547219\pi\)
0.147800 0.989017i \(-0.452781\pi\)
\(500\) 4630.28 3132.17i 0.414145 0.280150i
\(501\) 0 0
\(502\) −3516.83 + 3516.83i −0.312677 + 0.312677i
\(503\) 12595.9 12595.9i 1.11655 1.11655i 0.124307 0.992244i \(-0.460329\pi\)
0.992244 0.124307i \(-0.0396709\pi\)
\(504\) 0 0
\(505\) 13855.7 2783.44i 1.22093 0.245270i
\(506\) 1083.97i 0.0952336i
\(507\) 0 0
\(508\) 6297.70 + 6297.70i 0.550030 + 0.550030i
\(509\) −16575.0 −1.44337 −0.721685 0.692222i \(-0.756632\pi\)
−0.721685 + 0.692222i \(0.756632\pi\)
\(510\) 0 0
\(511\) −5040.13 −0.436325
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 6803.89i 0.583866i
\(515\) 11178.1 16798.2i 0.956439 1.43731i
\(516\) 0 0
\(517\) −1131.36 + 1131.36i −0.0962421 + 0.0962421i
\(518\) 3777.93 3777.93i 0.320449 0.320449i
\(519\) 0 0
\(520\) −330.127 1643.34i −0.0278404 0.138587i
\(521\) 6016.40i 0.505918i 0.967477 + 0.252959i \(0.0814038\pi\)
−0.967477 + 0.252959i \(0.918596\pi\)
\(522\) 0 0
\(523\) −2484.66 2484.66i −0.207737 0.207737i 0.595568 0.803305i \(-0.296927\pi\)
−0.803305 + 0.595568i \(0.796927\pi\)
\(524\) 1123.29 0.0936469
\(525\) 0 0
\(526\) −9704.33 −0.804428
\(527\) −16366.6 16366.6i −1.35283 1.35283i
\(528\) 0 0
\(529\) 9806.86i 0.806021i
\(530\) 552.751 + 2751.54i 0.0453018 + 0.225508i
\(531\) 0 0
\(532\) −482.037 + 482.037i −0.0392838 + 0.0392838i
\(533\) −2780.33 + 2780.33i −0.225946 + 0.225946i
\(534\) 0 0
\(535\) 7564.72 11368.1i 0.611311 0.918664i
\(536\) 2653.21i 0.213808i
\(537\) 0 0
\(538\) −1349.85 1349.85i −0.108171 0.108171i
\(539\) −546.654 −0.0436847
\(540\) 0 0
\(541\) 21734.4 1.72724 0.863620 0.504144i \(-0.168192\pi\)
0.863620 + 0.504144i \(0.168192\pi\)
\(542\) 9401.62 + 9401.62i 0.745082 + 0.745082i
\(543\) 0 0
\(544\) 2898.37i 0.228431i
\(545\) −6527.52 + 1311.30i −0.513042 + 0.103064i
\(546\) 0 0
\(547\) −11992.9 + 11992.9i −0.937437 + 0.937437i −0.998155 0.0607183i \(-0.980661\pi\)
0.0607183 + 0.998155i \(0.480661\pi\)
\(548\) −1009.91 + 1009.91i −0.0787248 + 0.0787248i
\(549\) 0 0
\(550\) 1057.53 2580.78i 0.0819875 0.200082i
\(551\) 2440.38i 0.188681i
\(552\) 0 0
\(553\) 2859.51 + 2859.51i 0.219889 + 0.219889i
\(554\) 2507.31 0.192284
\(555\) 0 0
\(556\) −1056.28 −0.0805684
\(557\) −845.158 845.158i −0.0642917 0.0642917i 0.674230 0.738522i \(-0.264476\pi\)
−0.738522 + 0.674230i \(0.764476\pi\)
\(558\) 0 0
\(559\) 3497.62i 0.264639i
\(560\) 1042.48 + 693.705i 0.0786661 + 0.0523471i
\(561\) 0 0
\(562\) 9864.38 9864.38i 0.740398 0.740398i
\(563\) −7506.71 + 7506.71i −0.561936 + 0.561936i −0.929857 0.367921i \(-0.880070\pi\)
0.367921 + 0.929857i \(0.380070\pi\)
\(564\) 0 0
\(565\) 13762.7 + 9158.18i 1.02478 + 0.681925i
\(566\) 8105.92i 0.601974i
\(567\) 0 0
\(568\) 198.734 + 198.734i 0.0146808 + 0.0146808i
\(569\) −26291.3 −1.93707 −0.968533 0.248885i \(-0.919936\pi\)
−0.968533 + 0.248885i \(0.919936\pi\)
\(570\) 0 0
\(571\) 7621.82 0.558604 0.279302 0.960203i \(-0.409897\pi\)
0.279302 + 0.960203i \(0.409897\pi\)
\(572\) −591.337 591.337i −0.0432256 0.0432256i
\(573\) 0 0
\(574\) 2937.42i 0.213598i
\(575\) 2302.58 5619.20i 0.166998 0.407542i
\(576\) 0 0
\(577\) −3844.11 + 3844.11i −0.277352 + 0.277352i −0.832051 0.554699i \(-0.812833\pi\)
0.554699 + 0.832051i \(0.312833\pi\)
\(578\) 4653.66 4653.66i 0.334891 0.334891i
\(579\) 0 0
\(580\) 4394.84 882.869i 0.314631 0.0632054i
\(581\) 861.999i 0.0615521i
\(582\) 0 0
\(583\) 990.110 + 990.110i 0.0703365 + 0.0703365i
\(584\) 5760.15 0.408145
\(585\) 0 0
\(586\) 10563.8 0.744688
\(587\) −17141.5 17141.5i −1.20529 1.20529i −0.972536 0.232751i \(-0.925227\pi\)
−0.232751 0.972536i \(-0.574773\pi\)
\(588\) 0 0
\(589\) 6221.68i 0.435246i
\(590\) 1618.95 2432.91i 0.112968 0.169765i
\(591\) 0 0
\(592\) −4317.63 + 4317.63i −0.299753 + 0.299753i
\(593\) 18789.8 18789.8i 1.30119 1.30119i 0.373602 0.927589i \(-0.378122\pi\)
0.927589 0.373602i \(-0.121878\pi\)
\(594\) 0 0
\(595\) 1396.11 + 6949.69i 0.0961929 + 0.478839i
\(596\) 8793.99i 0.604389i
\(597\) 0 0
\(598\) −1287.53 1287.53i −0.0880452 0.0880452i
\(599\) −4068.85 −0.277544 −0.138772 0.990324i \(-0.544315\pi\)
−0.138772 + 0.990324i \(0.544315\pi\)
\(600\) 0 0
\(601\) 21141.3 1.43489 0.717447 0.696613i \(-0.245311\pi\)
0.717447 + 0.696613i \(0.245311\pi\)
\(602\) 1847.62 + 1847.62i 0.125088 + 0.125088i
\(603\) 0 0
\(604\) 3063.80i 0.206398i
\(605\) 2656.80 + 13225.3i 0.178536 + 0.888735i
\(606\) 0 0
\(607\) −4688.80 + 4688.80i −0.313530 + 0.313530i −0.846275 0.532746i \(-0.821160\pi\)
0.532746 + 0.846275i \(0.321160\pi\)
\(608\) 550.900 550.900i 0.0367466 0.0367466i
\(609\) 0 0
\(610\) 11478.2 17249.1i 0.761865 1.14491i
\(611\) 2687.65i 0.177955i
\(612\) 0 0
\(613\) −9592.65 9592.65i −0.632045 0.632045i 0.316536 0.948581i \(-0.397480\pi\)
−0.948581 + 0.316536i \(0.897480\pi\)
\(614\) −5121.47 −0.336621
\(615\) 0 0
\(616\) 624.748 0.0408633
\(617\) −1440.20 1440.20i −0.0939715 0.0939715i 0.658558 0.752530i \(-0.271167\pi\)
−0.752530 + 0.658558i \(0.771167\pi\)
\(618\) 0 0
\(619\) 27476.0i 1.78409i 0.451942 + 0.892047i \(0.350731\pi\)
−0.451942 + 0.892047i \(0.649269\pi\)
\(620\) −11204.5 + 2250.86i −0.725783 + 0.145801i
\(621\) 0 0
\(622\) 7713.54 7713.54i 0.497242 0.497242i
\(623\) 647.084 647.084i 0.0416130 0.0416130i
\(624\) 0 0
\(625\) 10964.3 11132.2i 0.701714 0.712459i
\(626\) 4100.40i 0.261797i
\(627\) 0 0
\(628\) 2906.97 + 2906.97i 0.184714 + 0.184714i
\(629\) −34565.6 −2.19113
\(630\) 0 0
\(631\) 8466.11 0.534121 0.267061 0.963680i \(-0.413948\pi\)
0.267061 + 0.963680i \(0.413948\pi\)
\(632\) −3268.01 3268.01i −0.205688 0.205688i
\(633\) 0 0
\(634\) 16625.8i 1.04148i
\(635\) 20724.7 + 13790.9i 1.29517 + 0.861853i
\(636\) 0 0
\(637\) −649.313 + 649.313i −0.0403873 + 0.0403873i
\(638\) 1581.43 1581.43i 0.0981340 0.0981340i
\(639\) 0 0
\(640\) −1191.41 792.806i −0.0735854 0.0489663i
\(641\) 10985.9i 0.676937i 0.940978 + 0.338469i \(0.109909\pi\)
−0.940978 + 0.338469i \(0.890091\pi\)
\(642\) 0 0
\(643\) −3316.64 3316.64i −0.203414 0.203414i 0.598047 0.801461i \(-0.295944\pi\)
−0.801461 + 0.598047i \(0.795944\pi\)
\(644\) 1360.28 0.0832335
\(645\) 0 0
\(646\) 4410.33 0.268610
\(647\) 4424.11 + 4424.11i 0.268825 + 0.268825i 0.828627 0.559802i \(-0.189123\pi\)
−0.559802 + 0.828627i \(0.689123\pi\)
\(648\) 0 0
\(649\) 1458.02i 0.0881851i
\(650\) −1809.32 4321.57i −0.109180 0.260778i
\(651\) 0 0
\(652\) 8720.85 8720.85i 0.523827 0.523827i
\(653\) −10798.5 + 10798.5i −0.647135 + 0.647135i −0.952300 0.305165i \(-0.901288\pi\)
0.305165 + 0.952300i \(0.401288\pi\)
\(654\) 0 0
\(655\) 3078.18 618.369i 0.183625 0.0368880i
\(656\) 3357.05i 0.199803i
\(657\) 0 0
\(658\) −1419.75 1419.75i −0.0841150 0.0841150i
\(659\) −9904.31 −0.585459 −0.292729 0.956195i \(-0.594563\pi\)
−0.292729 + 0.956195i \(0.594563\pi\)
\(660\) 0 0
\(661\) −11545.5 −0.679378 −0.339689 0.940538i \(-0.610322\pi\)
−0.339689 + 0.940538i \(0.610322\pi\)
\(662\) 1519.33 + 1519.33i 0.0892001 + 0.0892001i
\(663\) 0 0
\(664\) 985.142i 0.0575767i
\(665\) −1055.58 + 1586.31i −0.0615545 + 0.0925027i
\(666\) 0 0
\(667\) 3443.29 3443.29i 0.199887 0.199887i
\(668\) 8021.69 8021.69i 0.464623 0.464623i
\(669\) 0 0
\(670\) −1460.59 7270.68i −0.0842202 0.419240i
\(671\) 10337.2i 0.594729i
\(672\) 0 0
\(673\) 19870.9 + 19870.9i 1.13814 + 1.13814i 0.988784 + 0.149352i \(0.0477189\pi\)
0.149352 + 0.988784i \(0.452281\pi\)
\(674\) −4145.18 −0.236894
\(675\) 0 0
\(676\) 7383.23 0.420074
\(677\) 12685.1 + 12685.1i 0.720131 + 0.720131i 0.968632 0.248501i \(-0.0799379\pi\)
−0.248501 + 0.968632i \(0.579938\pi\)
\(678\) 0 0
\(679\) 9385.11i 0.530438i
\(680\) −1595.55 7942.50i −0.0899802 0.447913i
\(681\) 0 0
\(682\) −4031.83 + 4031.83i −0.226373 + 0.226373i
\(683\) 1163.64 1163.64i 0.0651910 0.0651910i −0.673760 0.738951i \(-0.735322\pi\)
0.738951 + 0.673760i \(0.235322\pi\)
\(684\) 0 0
\(685\) −2211.54 + 3323.45i −0.123355 + 0.185376i
\(686\) 686.000i 0.0381802i
\(687\) 0 0
\(688\) −2111.56 2111.56i −0.117010 0.117010i
\(689\) 2352.10 0.130055
\(690\) 0 0
\(691\) −5447.87 −0.299923 −0.149961 0.988692i \(-0.547915\pi\)
−0.149961 + 0.988692i \(0.547915\pi\)
\(692\) −2192.87 2192.87i −0.120463 0.120463i
\(693\) 0 0
\(694\) 21057.5i 1.15177i
\(695\) −2894.55 + 581.480i −0.157981 + 0.0317364i
\(696\) 0 0
\(697\) −13437.7 + 13437.7i −0.730259 + 0.730259i
\(698\) 2411.61 2411.61i 0.130775 0.130775i
\(699\) 0 0
\(700\) 3238.64 + 1327.10i 0.174870 + 0.0716566i
\(701\) 24663.2i 1.32884i −0.747360 0.664419i \(-0.768679\pi\)
0.747360 0.664419i \(-0.231321\pi\)
\(702\) 0 0
\(703\) −6569.97 6569.97i −0.352477 0.352477i
\(704\) −713.997 −0.0382241
\(705\) 0 0
\(706\) −3618.04 −0.192871
\(707\) 6256.72 + 6256.72i 0.332826 + 0.332826i
\(708\) 0 0
\(709\) 12637.3i 0.669401i −0.942325 0.334700i \(-0.891365\pi\)
0.942325 0.334700i \(-0.108635\pi\)
\(710\) 654.003 + 435.196i 0.0345694 + 0.0230037i
\(711\) 0 0
\(712\) −739.525 + 739.525i −0.0389254 + 0.0389254i
\(713\) −8778.58 + 8778.58i −0.461095 + 0.461095i
\(714\) 0 0
\(715\) −1945.99 1294.93i −0.101785 0.0677310i
\(716\) 2268.47i 0.118403i
\(717\) 0 0
\(718\) 14994.3 + 14994.3i 0.779362 + 0.779362i
\(719\) 32882.4 1.70557 0.852787 0.522260i \(-0.174911\pi\)
0.852787 + 0.522260i \(0.174911\pi\)
\(720\) 0 0
\(721\) 12633.1 0.652539
\(722\) −8861.81 8861.81i −0.456790 0.456790i
\(723\) 0 0
\(724\) 6522.40i 0.334811i
\(725\) 11557.3 4838.72i 0.592039 0.247870i
\(726\) 0 0
\(727\) −7994.87 + 7994.87i −0.407859 + 0.407859i −0.880991 0.473132i \(-0.843123\pi\)
0.473132 + 0.880991i \(0.343123\pi\)
\(728\) 742.072 742.072i 0.0377789 0.0377789i
\(729\) 0 0
\(730\) 15784.7 3170.96i 0.800301 0.160771i
\(731\) 16904.5i 0.855315i
\(732\) 0 0
\(733\) 15704.5 + 15704.5i 0.791351 + 0.791351i 0.981714 0.190363i \(-0.0609664\pi\)
−0.190363 + 0.981714i \(0.560966\pi\)
\(734\) 9010.47 0.453110
\(735\) 0 0
\(736\) −1554.60 −0.0778578
\(737\) −2616.27 2616.27i −0.130762 0.130762i
\(738\) 0 0
\(739\) 14876.6i 0.740522i −0.928928 0.370261i \(-0.879268\pi\)
0.928928 0.370261i \(-0.120732\pi\)
\(740\) −9454.91 + 14208.6i −0.469689 + 0.705837i
\(741\) 0 0
\(742\) −1242.50 + 1242.50i −0.0614737 + 0.0614737i
\(743\) −8266.54 + 8266.54i −0.408170 + 0.408170i −0.881100 0.472930i \(-0.843196\pi\)
0.472930 + 0.881100i \(0.343196\pi\)
\(744\) 0 0
\(745\) 4841.09 + 24098.5i 0.238072 + 1.18510i
\(746\) 20774.8i 1.01959i
\(747\) 0 0
\(748\) −2858.02 2858.02i −0.139705 0.139705i
\(749\) 8549.37 0.417072
\(750\) 0 0
\(751\) −15772.3 −0.766362 −0.383181 0.923673i \(-0.625171\pi\)
−0.383181 + 0.923673i \(0.625171\pi\)
\(752\) 1622.57 + 1622.57i 0.0786824 + 0.0786824i
\(753\) 0 0
\(754\) 3756.84i 0.181453i
\(755\) −1686.62 8395.86i −0.0813014 0.404711i
\(756\) 0 0
\(757\) −4591.71 + 4591.71i −0.220460 + 0.220460i −0.808692 0.588232i \(-0.799824\pi\)
0.588232 + 0.808692i \(0.299824\pi\)
\(758\) 669.375 669.375i 0.0320749 0.0320749i
\(759\) 0 0
\(760\) 1206.38 1812.92i 0.0575790 0.0865284i
\(761\) 21849.6i 1.04080i 0.853923 + 0.520399i \(0.174217\pi\)
−0.853923 + 0.520399i \(0.825783\pi\)
\(762\) 0 0
\(763\) −2947.59 2947.59i −0.139856 0.139856i
\(764\) −2985.33 −0.141368
\(765\) 0 0
\(766\) −12139.9 −0.572628
\(767\) −1731.82 1731.82i −0.0815287 0.0815287i
\(768\) 0 0
\(769\) 24303.2i 1.13965i 0.821765 + 0.569827i \(0.192990\pi\)
−0.821765 + 0.569827i \(0.807010\pi\)
\(770\) 1712.02 343.924i 0.0801259 0.0160963i
\(771\) 0 0
\(772\) 3178.53 3178.53i 0.148183 0.148183i
\(773\) −15121.1 + 15121.1i −0.703580 + 0.703580i −0.965177 0.261598i \(-0.915751\pi\)
0.261598 + 0.965177i \(0.415751\pi\)
\(774\) 0 0
\(775\) −29465.1 + 12336.2i −1.36570 + 0.571780i
\(776\) 10725.8i 0.496179i
\(777\) 0 0
\(778\) −9494.65 9494.65i −0.437532 0.437532i
\(779\) −5108.29 −0.234947
\(780\) 0 0
\(781\) 391.936 0.0179572
\(782\) −6222.82 6222.82i −0.284562 0.284562i
\(783\) 0 0
\(784\) 784.000i 0.0357143i
\(785\) 9566.35 + 6365.78i 0.434953 + 0.289433i
\(786\) 0 0
\(787\) −25166.4 + 25166.4i −1.13988 + 1.13988i −0.151406 + 0.988472i \(0.548380\pi\)
−0.988472 + 0.151406i \(0.951620\pi\)
\(788\) 5098.60 5098.60i 0.230495 0.230495i
\(789\) 0 0
\(790\) −10754.5 7156.42i −0.484339 0.322296i
\(791\) 10350.2i 0.465249i
\(792\) 0 0
\(793\) −12278.5 12278.5i −0.549838 0.549838i
\(794\) 12240.4 0.547097
\(795\) 0 0
\(796\) −9301.05 −0.414155
\(797\) 9173.02 + 9173.02i 0.407685 + 0.407685i 0.880931 0.473245i \(-0.156918\pi\)
−0.473245 + 0.880931i \(0.656918\pi\)
\(798\) 0 0
\(799\) 12989.8i 0.575152i
\(800\) −3701.31 1516.68i −0.163576 0.0670286i
\(801\) 0 0
\(802\) −15125.8 + 15125.8i −0.665972 + 0.665972i
\(803\) 5679.96 5679.96i 0.249616 0.249616i
\(804\) 0 0
\(805\) 3727.62 748.832i 0.163206 0.0327862i
\(806\) 9577.97i 0.418573i
\(807\) 0 0
\(808\) −7150.54 7150.54i −0.311331 0.311331i
\(809\) 11657.9 0.506640 0.253320 0.967383i \(-0.418477\pi\)
0.253320 + 0.967383i \(0.418477\pi\)
\(810\) 0 0
\(811\) 3256.76 0.141012 0.0705058 0.997511i \(-0.477539\pi\)
0.0705058 + 0.997511i \(0.477539\pi\)
\(812\) 1984.55 + 1984.55i 0.0857685 + 0.0857685i
\(813\) 0 0
\(814\) 8515.05i 0.366649i
\(815\) 19097.2 28698.9i 0.820794 1.23347i
\(816\) 0 0
\(817\) 3213.08 3213.08i 0.137591 0.137591i
\(818\) 17120.5 17120.5i 0.731790 0.731790i
\(819\) 0 0
\(820\) 1848.06 + 9199.45i 0.0787035 + 0.391779i
\(821\) 33602.8i 1.42844i −0.699922 0.714219i \(-0.746782\pi\)
0.699922 0.714219i \(-0.253218\pi\)
\(822\) 0 0
\(823\) −30124.8 30124.8i −1.27592 1.27592i −0.942930 0.332992i \(-0.891942\pi\)
−0.332992 0.942930i \(-0.608058\pi\)
\(824\) −14437.8 −0.610394
\(825\) 0 0
\(826\) 1829.67 0.0770732
\(827\) 15779.9 + 15779.9i 0.663508 + 0.663508i 0.956205 0.292698i \(-0.0945529\pi\)
−0.292698 + 0.956205i \(0.594553\pi\)
\(828\) 0 0
\(829\) 10880.8i 0.455858i 0.973678 + 0.227929i \(0.0731955\pi\)
−0.973678 + 0.227929i \(0.926805\pi\)
\(830\) −542.321 2699.62i −0.0226798 0.112898i
\(831\) 0 0
\(832\) −848.083 + 848.083i −0.0353389 + 0.0353389i
\(833\) −3138.23 + 3138.23i −0.130532 + 0.130532i
\(834\) 0 0
\(835\) 17566.2 26398.1i 0.728028 1.09406i
\(836\) 1086.46i 0.0449474i
\(837\) 0 0
\(838\) 18756.9 + 18756.9i 0.773207 + 0.773207i
\(839\) −41921.6 −1.72502 −0.862511 0.506038i \(-0.831110\pi\)
−0.862511 + 0.506038i \(0.831110\pi\)
\(840\) 0 0
\(841\) −14342.0 −0.588050
\(842\) −13806.5 13806.5i −0.565089 0.565089i
\(843\) 0 0
\(844\) 16210.5i 0.661125i
\(845\) 20232.5 4064.47i 0.823693 0.165470i
\(846\) 0 0
\(847\) −5972.06 + 5972.06i −0.242270 + 0.242270i
\(848\) 1420.00 1420.00i 0.0575033 0.0575033i
\(849\) 0 0
\(850\) −8744.69 20886.8i −0.352871 0.842836i
\(851\) 18540.0i 0.746819i
\(852\) 0 0
\(853\) 15664.8 + 15664.8i 0.628783 + 0.628783i 0.947762 0.318979i \(-0.103340\pi\)
−0.318979 + 0.947762i \(0.603340\pi\)
\(854\) 12972.2 0.519789
\(855\) 0 0
\(856\) −9770.71 −0.390135
\(857\) 18769.7 + 18769.7i 0.748144 + 0.748144i 0.974131 0.225986i \(-0.0725604\pi\)
−0.225986 + 0.974131i \(0.572560\pi\)
\(858\) 0 0
\(859\) 45678.3i 1.81435i −0.420757 0.907174i \(-0.638235\pi\)
0.420757 0.907174i \(-0.361765\pi\)
\(860\) −6948.81 4623.98i −0.275526 0.183345i
\(861\) 0 0
\(862\) −17306.0 + 17306.0i −0.683811 + 0.683811i
\(863\) −28253.7 + 28253.7i −1.11445 + 1.11445i −0.121904 + 0.992542i \(0.538900\pi\)
−0.992542 + 0.121904i \(0.961100\pi\)
\(864\) 0 0
\(865\) −7216.39 4802.04i −0.283659 0.188756i
\(866\) 22059.4i 0.865601i
\(867\) 0 0
\(868\) −5059.57 5059.57i −0.197849 0.197849i
\(869\) −6445.04 −0.251591
\(870\) 0 0
\(871\) −6215.19 −0.241784
\(872\) 3368.67 + 3368.67i 0.130823 + 0.130823i
\(873\) 0 0
\(874\) 2365.57i 0.0915524i
\(875\) 9605.54 + 1853.83i 0.371116 + 0.0716237i
\(876\) 0 0
\(877\) 16236.5 16236.5i 0.625163 0.625163i −0.321684 0.946847i \(-0.604249\pi\)
0.946847 + 0.321684i \(0.104249\pi\)
\(878\) 15597.0 15597.0i 0.599513 0.599513i
\(879\) 0 0
\(880\) −1956.59 + 393.056i −0.0749509 + 0.0150567i
\(881\) 26937.3i 1.03013i 0.857152 + 0.515064i \(0.172232\pi\)
−0.857152 + 0.515064i \(0.827768\pi\)
\(882\) 0 0
\(883\) −31344.0 31344.0i −1.19458 1.19458i −0.975768 0.218807i \(-0.929783\pi\)
−0.218807 0.975768i \(-0.570217\pi\)
\(884\) −6789.48 −0.258320
\(885\) 0 0
\(886\) −18788.8 −0.712441
\(887\) 30884.9 + 30884.9i 1.16913 + 1.16913i 0.982415 + 0.186710i \(0.0597826\pi\)
0.186710 + 0.982415i \(0.440217\pi\)
\(888\) 0 0
\(889\) 15586.0i 0.588007i
\(890\) −1619.44 + 2433.66i −0.0609930 + 0.0916588i
\(891\) 0 0
\(892\) 9390.64 9390.64i 0.352491 0.352491i
\(893\) −2469.01 + 2469.01i −0.0925220 + 0.0925220i
\(894\) 0 0
\(895\) 1248.79 + 6216.36i 0.0466396 + 0.232168i
\(896\) 896.000i 0.0334077i
\(897\) 0 0
\(898\) 13265.0 + 13265.0i 0.492940 + 0.492940i
\(899\) −25614.7 −0.950276
\(900\) 0 0
\(901\) 11368.0 0.420337
\(902\) 3310.31 + 3310.31i 0.122197 + 0.122197i
\(903\) 0 0
\(904\) 11828.8i 0.435201i
\(905\) 3590.58 + 17873.6i 0.131884 + 0.656506i
\(906\) 0 0
\(907\) −16176.9 + 16176.9i −0.592222 + 0.592222i −0.938231 0.346009i \(-0.887537\pi\)
0.346009 + 0.938231i \(0.387537\pi\)
\(908\) −11138.6 + 11138.6i −0.407101 + 0.407101i
\(909\) 0 0
\(910\) 1625.02 2442.04i 0.0591965 0.0889591i
\(911\) 27877.8i 1.01387i 0.861985 + 0.506934i \(0.169221\pi\)
−0.861985 + 0.506934i \(0.830779\pi\)
\(912\) 0 0
\(913\) −971.428 971.428i −0.0352131 0.0352131i
\(914\) 4172.97 0.151017
\(915\) 0 0
\(916\) −2082.16 −0.0751054
\(917\) 1389.99 + 1389.99i 0.0500564 + 0.0500564i
\(918\) 0 0
\(919\) 42951.1i 1.54170i −0.637014 0.770852i \(-0.719831\pi\)
0.637014 0.770852i \(-0.280169\pi\)
\(920\) −4260.13 + 855.808i −0.152666 + 0.0306687i
\(921\) 0 0
\(922\) 6640.53 6640.53i 0.237195 0.237195i
\(923\) 465.539 465.539i 0.0166017 0.0166017i
\(924\) 0 0
\(925\) −18087.8 + 44141.4i −0.642944 + 1.56904i
\(926\) 31754.2i 1.12690i
\(927\) 0 0
\(928\) −2268.06 2268.06i −0.0802291 0.0802291i
\(929\) 11071.3 0.390999 0.195499 0.980704i \(-0.437367\pi\)
0.195499 + 0.980704i \(0.437367\pi\)
\(930\) 0 0
\(931\) −1192.98 −0.0419961
\(932\) −6285.98 6285.98i −0.220927 0.220927i
\(933\) 0 0
\(934\) 25650.0i 0.898603i
\(935\) −9405.27 6258.59i −0.328968 0.218907i
\(936\) 0 0
\(937\) 14724.1 14724.1i 0.513356 0.513356i −0.402197 0.915553i \(-0.631753\pi\)
0.915553 + 0.402197i \(0.131753\pi\)
\(938\) 3283.18 3283.18i 0.114285 0.114285i
\(939\) 0 0
\(940\) 5339.63 + 3553.17i 0.185276 + 0.123289i
\(941\) 350.679i 0.0121486i 0.999982 + 0.00607429i \(0.00193352\pi\)
−0.999982 + 0.00607429i \(0.998066\pi\)
\(942\) 0 0
\(943\) 7207.62 + 7207.62i 0.248900 + 0.248900i
\(944\) −2091.06 −0.0720954
\(945\) 0 0
\(946\) −4164.34 −0.143123
\(947\) 12754.6 + 12754.6i 0.437664 + 0.437664i 0.891225 0.453561i \(-0.149847\pi\)
−0.453561 + 0.891225i \(0.649847\pi\)
\(948\) 0 0
\(949\) 13493.3i 0.461549i
\(950\) 2307.88 5632.13i 0.0788184 0.192348i
\(951\) 0 0
\(952\) 3586.54 3586.54i 0.122101 0.122101i
\(953\) 33245.6 33245.6i 1.13004 1.13004i 0.139874 0.990169i \(-0.455330\pi\)
0.990169 0.139874i \(-0.0446696\pi\)
\(954\) 0 0
\(955\) −8180.81 + 1643.42i −0.277199 + 0.0556858i
\(956\) 5536.75i 0.187313i
\(957\) 0 0
\(958\) −8763.26 8763.26i −0.295541 0.295541i
\(959\) −2499.40 −0.0841604
\(960\) 0 0
\(961\) 35513.1 1.19208
\(962\) 10114.1 + 10114.1i 0.338974 + 0.338974i
\(963\) 0 0
\(964\) 12728.6i 0.425271i
\(965\) 6960.45 10460.0i 0.232192 0.348932i
\(966\) 0 0
\(967\) 4645.67 4645.67i 0.154493 0.154493i −0.625628 0.780121i \(-0.715157\pi\)
0.780121 + 0.625628i \(0.215157\pi\)
\(968\) 6825.22 6825.22i 0.226623 0.226623i
\(969\) 0 0
\(970\) 5904.57 + 29392.4i 0.195448 + 0.972921i
\(971\) 25155.4i 0.831384i −0.909505 0.415692i \(-0.863539\pi\)
0.909505 0.415692i \(-0.136461\pi\)
\(972\) 0 0
\(973\) −1307.07 1307.07i −0.0430656 0.0430656i
\(974\) 4300.62 0.141479
\(975\) 0 0
\(976\) −14825.4 −0.486218
\(977\) 28348.0 + 28348.0i 0.928285 + 0.928285i 0.997595 0.0693105i \(-0.0220799\pi\)
−0.0693105 + 0.997595i \(0.522080\pi\)
\(978\) 0 0
\(979\) 1458.46i 0.0476125i
\(980\) 431.592 + 2148.42i 0.0140681 + 0.0700295i
\(981\) 0 0
\(982\) −15584.1 + 15584.1i −0.506423 + 0.506423i
\(983\) 21336.6 21336.6i 0.692299 0.692299i −0.270438 0.962737i \(-0.587169\pi\)
0.962737 + 0.270438i \(0.0871685\pi\)
\(984\) 0 0
\(985\) 11165.1 16778.7i 0.361167 0.542754i
\(986\) 18157.3i 0.586458i
\(987\) 0 0
\(988\) −1290.49 1290.49i −0.0415547 0.0415547i
\(989\) −9067.10 −0.291524
\(990\) 0 0
\(991\) −26409.0 −0.846529 −0.423265 0.906006i \(-0.639116\pi\)
−0.423265 + 0.906006i \(0.639116\pi\)
\(992\) 5782.36 + 5782.36i 0.185071 + 0.185071i
\(993\) 0 0
\(994\) 491.843i 0.0156945i
\(995\) −25488.0 + 5120.23i −0.812085 + 0.163138i
\(996\) 0 0
\(997\) 10650.8 10650.8i 0.338330 0.338330i −0.517409 0.855738i \(-0.673103\pi\)
0.855738 + 0.517409i \(0.173103\pi\)
\(998\) −31181.7 + 31181.7i −0.989017 + 0.989017i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.m.a.323.4 yes 16
3.2 odd 2 630.4.m.b.323.5 yes 16
5.2 odd 4 630.4.m.b.197.5 yes 16
15.2 even 4 inner 630.4.m.a.197.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.4.m.a.197.4 16 15.2 even 4 inner
630.4.m.a.323.4 yes 16 1.1 even 1 trivial
630.4.m.b.197.5 yes 16 5.2 odd 4
630.4.m.b.323.5 yes 16 3.2 odd 2